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Abstract. Starting with the second fundamental form of a differentiable
mapping between arbitrary dimensioned Riemannian manifolds, this pa-
per defines, in a natural way, its convexity. The classical concept of
geodesic and the new concept of convex (concave) curve on a Riemannian
manifold are expressed in relation to convex mappings. Some analytical
and geometric descriptions are given in order to establish the position of
convex mappings in the context of other remarkable applications, such as
harmonic, subharmonic, superharmonic and totally geodesic ones. Also,
some invariant convexity is defined and analyzed, based on Riemannian
cone fields structures.
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1 Introduction

The theory of harmonicity in Riemannian context classifies harmonic morphisms and
totally geodesic mappings as harmonic mappings, that is differentiable mappings of
class C∞ with null local tension field ([3]-[8], [12], [18], [24]). More precisely, recall
that harmonic morphisms are semi-conformal harmonic mappings (see [2], [9]-[11],
[21]), while totally geodesic mappings have null second fundamental form.

Inspired by the Riemannian convexity of functions analyzed in [22] and also by
the subharmonicity of functions studied in [13], some new concepts came in order to
be defined:
(1) subharmonic/ superharmonic morphisms (see [1]) as differentiable mappings pulling
back germs of subharmonic/ superharmonic functions into germs of subharmonic/ su-
perharmonic functions;
(2) subharmonic and superharmonic mappings (see [1]) as a class C∞ mappings hav-
ing positive/ negative tension field local components; from geometric point of view,
the subharmonic mappings pull back germs of partial increasing convex functions into
germs of subharmonic functions, while the superharmonic mappings pull back germs
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of partial increasing concave functions into germs of superharmonic functions;
(3) convex and concave mappings between Riemannian manifolds (the topic of the
current paper), as a class C∞ mappings with Hessian matrices fields containing the
local components of the second fundamental form positive/ negative semidefinite.
Convexity of mappings is studied through its analytical and geometrical features, and
through its correlation with different aspects of harmonicity. More precisely, some
equivalent geometric definition of convexity may be phrased; one of these, for exam-
ple, states that convex mappings pull back germs of locally convex partial increasing
functions into germs of convex functions.

The following diagram includes all these results and gives a complete perspective
on harmonicity.

2 Geometric tools related to Riemannian
differentiable mappings

2.1 The second fundamental form of C∞ mappings

This section is dedicated entirely to recalling basic definitions and instruments related
to differentiable mappings between Riemannian manifolds ([2], [15], [16], [25] ). Let
(M, g) and (N,h) be two Riemannian manifolds, and let ϕ ∈ C∞(M,N) be a class
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C∞ differentiable mapping between them. The differential of ϕ at x ∈M is the homo-
morphism of tangent spaces dϕx : TxM → Tϕ(x)N, dϕx(Xx)(f) = Xx(f ◦ ϕ), ∀f ∈
C∞(M). Moreover, if ϕ−1TN = ∪x∈MTϕ(x)N , then dϕ ∈ E = Hom(TM,ϕ−1TN) =
T ∗M ⊗ ϕ−1TN → M . Since E is a fiber bundle over M , there exists an induced
linear connection E∇, called pull-back connection, generated by the Levi-Civita con-
nection ∇M on M and the pull-back connection ∇ϕ of the inverse tangent bundle
ϕ−1TN → M , generated itself by the Levi-Civita connection ∇N on N . More pre-
cisely, if X,Y ∈ C∞(TM), F ∈ C∞(Hom(TM,ϕ−1TN)) and Z ∈ C∞(ϕ−1TN),
then

∇ϕ(X,Z) = ∇ϕXZ = ∇Ndϕ(X)Z

and
E∇F (X,Y ) =

(
E∇XF

)
Y = ∇ϕXF (Y )− F (∇MX Y ).

In particular, for F = dϕ, it follows:

E∇dϕ(X,Y ) = ∇ϕX(dϕ(Y ))− dϕ(∇MX Y ) = ∇Ndϕ(X)(dϕ(Y ))− dϕ(∇MX Y ).

Definition 2.1. If (M, g), (N,h) and ϕ are as above, then β : C∞(M,N) →
C∞(T ∗M × T ∗M ⊗ ϕ−1TN), defined by β(ϕ)

not
=
E
∇dϕ is called the second fun-

damental form of the differentiable mapping ϕ.

Since C∞(T ∗M ⊗ T ∗M ⊗ ϕ−1TN) = C∞(Hom(TM × TM,ϕ−1TN)), it follows
that β(ϕ) is a 2-covariant tensor field on M , i.e., β(ϕ) : C∞(TM) × C∞(TM) →
C∞(ϕ−1TN).

Proposition 2.1. The second fundamental form of a differentiable mapping is a
symmetric bilinear tensor field.

Definition 2.2. If ϕ ∈ C∞(M,N) is a differentiable mapping between Riemannian
manifolds and β(ϕ) denotes the second fundamental form, then τ(ϕ) = Trgβ(ϕ) is
called the tension field of the mapping ϕ.

Definition 2.3. A mapping ϕ ∈ C∞(M,N) satisfying τ(ϕ) ≡ 0 is called harmonic
mapping.

Definition 2.4. A mapping ϕ ∈ C∞(M,N) satisfying β ≡ 0 is called totally geodesic
mapping.

Remark 2.5. Let (x1, ..., xm) and (y1, ..., yn) denote the local coordinates on M and
N , and let { ∂

∂xi }i=1,m and { ∂
∂yα }α=1,n denote the corresponding local frame fields in

C∞(TM) and C∞(ϕ−1TN), respectively. In the following we use classical Eisenhart

notations for local tensorial calculus: ϕαi = ∂ϕα

∂xi , ϕ
γ
ij = ∂2ϕγ

∂xi∂xj −
g Γkijϕ

γ
k etc., where

gΓkij denote the Christoffel symbols on M .
Since the range of the second fundamental form of some differentiable mapping

consists in sections of the pull-back fiber bundle ϕ−1TN → M, denote by ϕγ;ij its
local components with respect to the canonical local frame field, that is

β(ϕ)ij = (E∇dϕ)ij =E ∇dϕ(
∂

∂xi
,
∂

∂xj
) = ϕγ;ij

∂

∂yγ
.
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This suggests that it represents a second order partial covariant derivative. Indeed,
according to the definition of β,

β(ϕ)ij =E ∇dϕ(
∂

∂xi
,
∂

∂xj
) = ∇N

dϕ( ∂

∂xi
)
(dϕ(

∂

∂xj
))− dϕ(∇M∂

∂xi

∂

∂xj
)

= ∇N
ϕαi

∂
∂yα

(ϕβj
∂

∂yβ
)− dϕ(gΓkij

∂

∂xk
) =

[
∂2ϕγ

∂xi∂xj
+h Γγαβϕ

α
i ϕ

β
j −

g Γkijϕ
γ
k

]
∂

∂yγ

=
[
ϕγij +h Γγαβϕ

α
i ϕ

β
j

] ∂

∂yγ
,

therefore,
ϕγ;ij = ϕγij +h Γγαβϕ

α
i ϕ

β
j .

This local expression of the second fundamental form also proves its symmetry.
Moreover, when choosing normal local coordinates with respect to p ∈ M and

q = ϕ(p) ∈ N , since gΓkij(p) = 0 and hΓγαβ(q) = 0, it follows

β(ϕ)ij(p) = (E∇dϕ)ij(p) =
∂2ϕσ

∂xi∂xj
(p)

∂

∂yσ

∣∣∣∣
ϕ(p)

.

Also, the tension field may be expressed through its local components τγ(ϕ) =
gijϕγ;ij .

Remark 2.6. In particular, if (M, g) is a Riemannian manifold and f ∈ C∞(M),
then df is a differentiable 1-form, and the corresponding second fundamental form is
the Hessian tensor β(f) = Hessf = ∇df : C∞(TM)× C∞(TM)→ C∞(M),

β(f)(X,Y ) = X(Y f)− (g∇XY )f, ∀X,Y ∈ C∞(TM),

or, equivalent,

β(f) =

(
∂2f

∂xi∂xj
−g Γkij

∂f

∂xk

)
dxi ⊗ dxj = fijdx

i ⊗ dxj .

The Hessian of f is the matrix field (β(f)ij)i,j=1,m.

Remark 2.7. Let (M, g) be a Riemannian manifold and γ : R→M be a parametrized
curve on M . If d

dt denotes the coordinate vector field on R, then dγ( ddt ) = γ̇ and the
second fundamental form of γ is

β(γ)(
d

dt
,
d

dt
) =M ∇γ̇ γ̇,

with local components

β(γ)k = γk; =
d2γk

dt2
+g Γkij

dγi

dt

dγj

dt
, ∀k = 1,m.

Since, for this particular situation, τ(f) = β(f), it follows that whenever the above
components vanish, we are dealing with a geodesic of the manifold (M, g).
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In the following, consider three Riemannian manifolds (M, g), (N,h) and (P, l),
respectively and two C∞ differentiable mappings ϕ : M → N and ψ : N → P .

Proposition 2.2. (Second fundamental form of composed mappings ([2]).) The be-
havior of the second fundamental form with respect to composition of mappings is
described by

β(ψ ◦ ϕ) = β(ψ)(dϕ⊗ dϕ) + dψ(β(ϕ)),

or, in local coordinates,

(ψ ◦ ϕ)r;ij = ψr;αβϕ
α
i ϕ

β
j + ψrαϕ

α
;ij .

2.2 Convexity, subharmonicity and superharmonicity
of functions

Convex and strictly convex functions [22], [23], subharmonic and superharmonic func-
tions [13] are highly relevant elements in the context of partial differential equations,
multivariable complex calculus and potential theory. Intuitively, subharmonic func-
tions are related to one-variable convex functions as it follows: given a convex function,
its graph is situated under each segment line connecting two of its points; similarly,
if the values of a subharmonic function, restricted to an arbitrary sphere are smaller
then the values of a harmonic function on that sphere, then same property is valid
for the interior of the sphere, too. The complex analogue for convex functions are
the plurisubharmonic functions ([13], [20]). They are relevant in complex analysis
([14], [19]), for defining Stein manifolds and also in the study of holomorphic and
pseudoconvex domains.

Definition 2.8. ([22]) Let (M, g) be a complete Riemannian manifold and U ⊂ M
be an open totally convex subset. A function f : U → R is called (geodesic) convex
(on U) if its restriction to each geodesic segment is convex, i.e. for each geodesic
C : R→ U and each a, b ∈ R,

f(C(λa+ (1− λ)b)) ≤ λf(C(a)) + (1− λ)f(C(b)), ∀λ ∈ [0, 1].

When dealing with strict inequality, the function f is called strictly convex.

An important aspect related to convexity is the correlation with the second order
covariant derivative (see [22]). If f : M → R is a class C2 convex function, then
Hess(f) = (fij)i,j∈1,m is positive semidefinite all over M ,

β(X,X) = (M∇df)(X,X) ≥ 0, ∀X ∈ C∞(TM).

If the previous inequality is strict for each nonzero vector field, that is the Hessian
matrix field is positive definite, then f is strictly convex on M . Yet, the converse of
this statement is not true. Moreover, the concavity of a function f is equivalent with
the convexity of its opposite −f and with the Hessian matrix field being negative
semidefinite.

Definition 2.9. Let (M, g) be a Riemannian manifold and U ⊂ M be an open
subset. A class C2 local function f : U → R is called subharmonic (superharmonic)
if its Laplacian is non-negative (non-positive), i.e. ∆Mf = Traceg(

g∇f) ≥ (≤)0.
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If the above inequalities are strict, the f is called strictly subharmonic and strictly
superharmonic, respectively. If , instead, ∆Mf = 0, all over the open set U , then f
is called harmonic function on U .

Remark 2.10. Each C∞ geodesic convex function on a Riemannian manifold is
a subharmonic function and also Lipschitz continuous on the compact subsets of
manifold M (see [13]).

The following Lemma combines results from [2], [11] and [17] and provides an
important tool in the study of convexity and harmonicity. Its proof is based on two
important ideas: (1) locally, by choosing normal coordinates around an arbitrary
fixed point, the Riemannian environment gains Euclidean behavior and (2) the C∞

function subject to analyze may be replaced by a Taylor polynomial.

Lemma 2.3. (Functions arising from given 2-jets.) Let (N,h) be an n-dimensional
Riemannian manifold, n ≥ 2 and c, Cα, Cαβ ∈ R given constants such that matrix
C = (Cαβ)α,β=1,n is symmetric. Then, for each point q ∈ N , there exists a C∞ real
valued function f defined on an open neighborhood of q, such that

(2.1) f(q) = c; fα(q) = Cα; fαβ(q) = Cαβ

and
A.

1. if C is positive (negative) definite, then f is strictly convex (concave);

2. if C is positive (negative) semidefinite, then f is convex (concave) at q;

B.

1. if TrC =
∑n
α=1 Cαα > (<)0, then f is strict subharmonic (superharmonic);

2. if TrC ≥ (≤)0, then f is subharmonic (superharmonic) at q;

3. if TrC = 0, then f is harmonic at q.

Proof. Let q ∈ N and (V, (yα)α=1,n) be a normal local chart centered at q. Assume
that f(q)=c=0. If Γγαβ denote the Christoffel symbols with respect to the considered
local chart, they may be rewritten

Γγαβ = Kγ
αβσy

σ + Lγαβσδy
σyδ,

where Kγ
αβσ ∈ R and Lγαβσδ ∈ C∞(V ). Define f : V → R,

f = Cαy
α +

1

2
Cαβy

αyβ .

Since (yα)α=1,n are normal local coordinates centered at q, it follows that

fα(q) = Cα, fαβ(q) = Cαβ .

Moreover, fαβ = ∂2f
∂yα∂yβ

− Γγαβfγ = Cαβ − Γγαβ(Cγ + Cγσy
σ) and it follows

fαβ = Cαβ −Kγ
αβσCγy

σ − Pαβσδyσyδ,
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where Pαβσδ = Kγ
αβσCγδ +CγL

γ
αβσδ +CγµL

γ
αβσδy

µ ∈ C∞(V ) and Cαβ , Cα, K
γ
αβσ ∈

R.
A. If C = (Cαβ)α,β=1,n is positive definite, then (fαβ)α,β=1,n is also positive definite
in a neighborhood of q, therefore f is strictly convex. Moreover, statement A2 is a
direct consequence of (2.1).

B. The normality of the local chart around q leads to ∆f(q) = δαβ ∂2f
∂yα∂yβ

(q) = TrC,
and similar arguments as above lead to the announced conclusion. �

3 Convex mappings between Riemannian manifolds

3.1 Definition of convexity

Recently, the subharmonicity and superharmonicity were extended from differentiable
functions to differentiable mappings between Riemannian manifolds. Similar ideas are
used in the following in order to introduce and analyze the new concept of convex
Riemannian mapping.

Let (M, g) and (N,h) be two Riemannian manifolds and ϕ : M → N a C∞ dif-
ferentiable mapping. If (U, (x1, ..., xm)) and (V, (y1, ..., yn)) are local charts around

p ∈ M and q = ϕ(p), respectively, we denoted by ϕσ;ij = ϕσij +h Γσαβϕ
α
i ϕ

β
j the

components of the second fundamental form of ϕ with respect to the chosen co-
ordinates. The Hessians of the mapping ϕ at p are the symmetric matrix fields
Hessσf(p) = (β(ϕ)σij(p))i,j=1,m = (ϕσ;ij(p))i,j=1,m, σ = 1, n and the Laplacians
of the mapping ϕ are the traces of these Hessians, with respect to metric g, i.e.
(∆f)σ(p) = gij(p)ϕσ;ij(p), that is the components of the tension field with respect to
the chosen coordinate frame field.

Definition 3.1. A C∞ differentiable mapping ϕ : M → N is called subharmonic
(superharmonic) if the corresponding Laplacians are positive (negative) on M , i.e.

gij(p)ϕσ;ij(p) ≥ 0 (≤ 0), ∀p ∈M, ∀σ = 1, n.

Definition 3.2. A C∞ differentiable mapping ϕ : M → N is called convex (concave)
if the corresponding Hessian matrices are positive (negative) semidefinite on M , i.e.

ϕσ;ij(p)ξ
iξj ≥ 0, ∀p ∈M, ∀ξ = (ξi)i=1,m ∈ Rm\{0}.

Whenever the above inequalities are strict, we speak about strict convexity, con-
cavity, subharmonicity and superharmonicity. Moreover, in this context, totally
geodesic mappings appear as both convex and concave mappings.

3.2 Properties of convex mappings

The harmonic and the totally geodesic mappings have been characterized by T. Ishi-
hara (see [17]), in relation to the pull-back transport property of convex germs as it
follows: (i) ϕ is a harmonic mapping iff pulls back germs of convex functions into
germs of subharmonic functions; (ii) ϕ is a totally geodesic mapping iff pulls back
convex germs into convex germs; (iii) If m = dimM ≤ n = dimN , a C∞ differ-
entiable mapping ϕ : (M, g) → (N,h) pulls back strictly convex germs into strictly
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convex germs if and only if it is a totally geodesic immersion. When m > n, there are
no differentiable mappings to return strictly convex germs into strictly convex germs.
Inspired by these, the following theorem analyzes the pull-back transport properties
of convex mappings. Let us start with a definition.

Definition 3.3. A C∞ differentiable function f : N → R is called partial locally
increasing if there exists an open subset V ⊂ N , such that fσ(q) ≥ 0, ∀q ∈ V, ∀σ =
1, n.

Theorem 3.1. (Pull-back transport properties) A C∞ differentiable mapping ϕ :
M → N is convex if and only if ϕ pulls back locally convex partial increasing functions
on N into locally convex functions on M .

Proof. The arguments here develop some ideas from [17].
”⇒” Let f : N → R be a locally convex and increasing function on N . Since ϕ is
a convex mapping, it follows that df(β(ϕ)) = (fσϕ

σ
;ij)i,j=1,m is positive semidefinite

on some open subset U ⊂M . Also, since f is convex, it follows that β(f)(dϕ, dϕ) =

(fαβϕ
α
i ϕ

β
j )i,j=1,m is also positive semidefinite on U and, consequence of Proposition

2.2, f ◦ ϕ is convex on U .
”⇐” Suppose ϕ is not convex, therefore there exist a point p ∈ M and an index
τ ∈ {1, ..., n} such that Hessτf(p) = (β(ϕ)τij(p))i,j=1,m fails from being positive

semidefinite. More precisely, there exists ξ = (ξ1, ..., ξm) ∈ Rm\{0}, such that
β(ϕ)τij(p)ξ

iξj = ϕτ;ij(p)ξ
iξj < 0. Let

λ = ϕτ;ij(p)ξ
iξj < 0 and µ = δαβϕ

α
i (p)ϕβj (p)ξiξj .

Denote C = (δαβ)α,β=1,n and Cτ = −(µ + 1)/λ, Cσ = 0, ∀σ 6= τ. Applying the
technical Lemma 2.3 for the positive definite matrix C, it follows that there exists a
strictly convex function f : V → R, defined on an open neighborhood V of q = ϕ(p),
such that

fσ(q) = Cσ =

{
−(µ+ 1)/λ, if σ = τ

0, if σ 6= τ
, fαβ(q) = δαβ , ∀α, β = 1, n.

Then,

(f ◦ ϕ)ij(p) = fαβ(q)ϕαi (p)ϕβj (p) + fσ(q)ϕσ;ij(p)

= δαβϕ
α
i (p)ϕβj (p)− µ+ 1

λ
ϕτ;ij(p).

It follows

Hess(f ◦ ϕ)(ξ, ξ) = δαβϕ
α
i (p)ϕβj (p)ξiξj − µ+ 1

λ
ϕτ;ij(p)ξ

iξj = µ− µ+ 1

λ
· λ = −1,

therefore f ◦ ϕ is not convex, contrary to the hypotheses. Therefore, the assumption
about ϕ not being convex fails from being valid. �

Corollary 3.2. A C∞ differentiable mapping ϕ : M → N is convex if and only
ϕ pulls back locally concave partial decreasing functions on N into locally concave
functions on M .
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Corollary 3.3. A C∞ differentiable mapping ϕ : M → N is concave if and only
ϕ pulls back locally convex partial decreasing functions on N into locally concave
functions on M .

Corollary 3.4. A C∞ differentiable mapping ϕ : M → N is concave if and only
ϕ pulls back locally convex partial increasing functions on N into locally concave
functions on M .

Remark 3.4. To resume the results above, ϕ is a convex mapping iff it pulls back
locally increasing germs of convex functions into germs of convex functions.

Some important concepts in the theory of Riemannian submanifolds refers to
minimal and totally geodesic submanifolds. Recall that a minimal submanifold is
the range of a harmonic isometric embedding, while totally geodesic submanifolds are
ranges of totally geodesic isometric embeddings. Similarly, we may define subminimal,
superminimal, convex, respectively concave submanifolds.

Theorem 3.5. (Push-forward transport properties)
(i) Any convex (concave) isometric embedding carries totally geodesic submanifolds
into convex (concave) submanifolds.
(ii) Any convex (concave) isometric embedding carries minimal submanifolds into sub-
minimal (superminimal) submanifolds.

Proof. Let ϕ : (M, g) → (N,h) be a differentiable convex mapping and µ : (P, l) →
(M, g) an isometric embedding, that is µ∗g = l. Using the composition law developed
in Proposition 2.2, we have

(ϕ ◦ µ)γuv = ϕγ;ijµ
i
uµ

j
v + ϕγkµ

k
;uv

and

τγ(ϕ ◦ µ) = luv(ϕ ◦ µ)γuv = luvϕγ;ijµ
i
uµ

j
v + luvϕγkµ

k
;uv.

(i) If (P, l) is a geodesic submanifold, it follows that µk;uv(µ) = 0, ∀k = 1,m, ∀u, v =

1, p and, since ϕ is convex mapping,

(ϕ ◦ µ)γuvξ
uξv = ϕγ;ijµ

i
uµ

j
vξ
uξv ≥ 0, ∀γ = 1, n, ∀ξ ∈ Rp\{0},

that is ϕ ◦ µ is a convex mapping and its range is a convex submanifold.
(ii) If (P, l) is a minimal submanifold, it follows that τ(µ)k = luvµk;uv = 0, ∀k = 1,m
and, since ϕ is convex mapping,

τγ(ϕ ◦ µ) = luvϕγ;ijµ
i
uµ

j
v ≥ 0, ∀γ = 1, n

that is ϕ ◦ µ is a subharmonic mapping and its range is a subminimal submanifold.
Moreover, the proof stands similarly if ϕ is concave. �

Corollary 3.6. Convex (concave) mappings carry geodesic curves into convex (con-
cave) curves.
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Remark 3.5. Since totally geodesic mappings are both convex and concave, the
transport theorems formulated above confirm some basic properties of totally geodesic
mappings. Indeed, theorem 3.5 confirms that the images of geodesics from M through
ϕ are geodesics in N . The most elementary examples of totally geodesic mappings are
the euclidean immersions Rn ⊂ Rm (1 ≤ n ≤ m), (x1, ..., xn) → (x1, ..., xn, 0, ..., 0)
and their restrictions to unit spheres Sn−1 ⊂ Sm−1.

Moreover, the composition of totally geodesic mappings is also a totally geodesic
mapping, while the composition of harmonic mappings usually fails from staying
harmonic and the inverse of a totally geodesic diffeomorphism is also a totally geodesic
mapping.

4 Invariant Riemannian convexity of mappings

The convexity concept described above is highly dependent on the chosen coordinate
frame. In order to overcome this limitation, this section introduces an invariant type
of convexity.

4.1 Cone structures on Euclidean spaces

Definition 4.1. A subset C ⊂ Rn is called convex and pointed cone if R+C ⊂ C,
C + C ⊂ C and C ∩ (−C) = {0}.

Definition 4.2. Let C denote a closed and convex pointed cone, with non-void
interior. The following partial order relations may be defined:

x �C y ⇔ y − x ∈ C;

x ≺C y ⇔ y − x ∈ int(C);

x
≺
=C y ⇔ y − x ∈ C − {0};

4.2 Cone fields on Riemannian manifolds

Definition 4.3. Let (N,h) be a complete Riemannian manifold. A mapping C :
N → P(TN) is called a cone field on manifold N if, for each q ∈ N , C(q) is a convex
and pointed cone on TqN .

Definition 4.4. Let C denote a cone field on a complete Riemannian manifold (N,h).
The following cone field associated partial order relations may be defined:

q1 �C q2 ⇔ exp−1q1 (q2) ∈ C(q1);

q1 ≺C q2 ⇔ exp−1q1 (q2) ∈ int(C(q1));

q1
≺
=C q2 ⇔ exp−1q1 (q2) ∈ C(q1)− {0};
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4.3 Riemannian C-convex mappings

Based on the geometric elements defined above, a natural convexity concept emerges.
Let (M, g) and (N,h) be two complete Riemannian manifolds, U ⊂ M be a totally
geodesic open subset and let C be a fixed cone field on N .

Definition 4.5. A differentiable mapping ϕ : U ⊂M → N is called C-convex if, for
each two points p1, p2 in U and each geodesic γ : [0, 1] → U connecting them, the
following relation stands

ϕ(γ(t)) �C δ(t), ∀t ∈ [0, 1],

where δ : [0, 1]→ N denotes the minimal geodesic between q1 = ϕ(p1) and q2 = ϕ(p2).

Remark 4.6. According to the definition of the cone field associated partial order
relation, the previous relation may be rewritten:

exp−1ϕ(γ(t))(δ(t)) ∈ C(ϕ(γ(t)), ∀t ∈ [0, 1].

In the following, we develop some properties of cone convex mappings.

Theorem 4.1. If U ⊂ M is a totally geodesic open subset and ϕ : U ⊂ (M, g) →
(N,h) is a C-convex mapping of class C∞, then, for each two points p1, p2 in U and
each geodesic γ : [0, 1]→M connecting them,

exp−1ϕ(p1)(ϕ(p2))− dϕp1(γ̇(0)) ∈ C(ϕ(p1)).

In particular, if M = N = R, C = [0,∞) and ϕ : U ⊂ R→ R is a convex function,
we find a classical property of convex functions:

ϕ(p2)− ϕ(p1) ≥ ϕ′(p1)(p2 − p1), ∀p1, p2 ∈ U.

Proof. Since exp−1ϕ(γ(t))(δ(t)) ∈ C(ϕ(γ(t)), exp−1q1 (q1) = 0 ∈ C(ϕ(γ(t)) and t > 0, it

follows, based on the properties of a cone field,

exp−1ϕ(γ(t))(δ(t))− exp
−1
q1 (q1)

t
∈ C(ϕ(γ(t)).

Letting t→∞, we obtain

d

dt

[
exp−1ϕ(γ(t))(δ(t))

]
t=0
∈ C(q1)

and, using the properties of the exponential mapping, we compute

d

dt

[
exp−1ϕ(γ(t))(δ(t))

]
t=0

= δ̇(0)− dϕ(γ(t))

dt

∣∣∣∣
t=0

.

Finally, we obtain

exp−1ϕ(p1)(ϕ(p2))− dϕp1(γ̇(0)) ∈ C(ϕ(p1)).

�
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Theorem 4.2. If U ⊂ M is a totally geodesic open subset and ϕ : U ⊂ (M, g) →
(N,h) is a C-convex mapping of class C∞, then, for each vector field X ∈ C∞(TU),

β(ϕ)(X,X) ∈ C.

In particular, if M = N = R, C = [0,∞) and ϕ : U ⊂ R→ R is a convex function,
then we find a classical outcome:

f ′′(p) ≥ 0, ∀p ∈ U.

Also, if f : U ⊂ (M, g) → R is a convex function on a complete Riemannian
manifold and C is as above, then the Hessian matrix field is positive semidefinite.

Proof. Let p ∈ M be an arbitrary fixed point and X ∈ TxM . Consider γ : I → U
a C2 geodesic, where I is a real interval, such that 0 ∈ I, γ(0) = p and γ̇(0) = X.
Applying Theorem 4.1, for p1 = p, q = ϕ(p) and p2 = γ(t), we obtain

(4.1) exp−1q (ϕ(γ(t)))− tdϕp(X) ∈ C(q).

On the other hand, by writing the Taylor formula associated to the differentiable
function t→ exp−1q (ϕ(γ(t))), we obtain

(4.2) exp−1q (ϕ(γ(t))) = exp−1q (q) + t dϕp(X) +
t2

2

d

dt2

∣∣∣∣
t=0

[
exp−1q (ϕ(γ(t)))

]
+ θ(t)t3.

Combining relations (4.1) and (4.2) and using the properties of the convex pointed
cone structures, it follows

d

dt2

∣∣∣∣
t=0

[
exp−1q (ϕ(γ(t)))

]
∈ C(q).

The computations lead to

d2(exp−1q )q(dϕp(X), dϕp(X)) + d(exp−1q )q

(
d

dt2

∣∣∣∣
t=0

ϕ(γ(t))

)
∈ C(q),

that is
d

dt2

∣∣∣∣
t=0

(ϕ(γ(t))) = ∇Ndϕp(X)dϕp(X) ∈ C(q).

Moreover, since γ(·) is a geodesic on M , we may add the therm dϕ(∇MXX) = 0 and
we obtain β(ϕ)(p)(X,X) ∈ C(q), ∀p ∈ U, ∀X ∈ TpM . �

Remark 4.7. Let (M, g) and (N,h) be two Riemannian manifolds and ϕ : M → N
be a C∞ differentiable mapping. Let (U, (x1, ..., xm)) and (V, (y1, ..., yn)) be some
fixed local charts around p ∈M and q = ϕ(p), respectively. We define the local cone
field

C = {Y = (Y α) ∈ C∞(TN) |Y α ≥ 0, ∀α = 1, n}.

According to Theorem 4.2, if ϕ is C-convex, then the components of the second
fundamental form are positive semidefinite. Therefore, the convexity of mappings
introduced and analyzed in Section 3 is a local particular example of C-convexity. By
defining other types of cones, we may derive some quite exotic convexities.



Convex mappings between Riemannian manifolds 13

Acknowledgments. The authors would like to respectfully express warm thanks
to prof. dr. Constantin Udriste, for his inspiring ideas on Riemannian convexity and
also for his guidance and valuable remarks, which led to the improvement of this
paper.

References

[1] V. Arsinte, Subharmonic morphisms, BSG Proceedings 18, Geometry Balkan
Press, Bucharest, 11–22.

[2] P. Baird and J. C. Wood Harmonic Morphisms Between Riemannian Manifolds,
Clarendon Press, Oxford 2003.

[3] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
J. of Math. 86 (1964), 109–160.

[4] J. Eells and L. Lemaire, A report on harmonic maps, Bull. of the London
Math.Soc. 10 (1978), 1–68.

[5] J. Eells and L. Lemaire, Another report of harmonic maps, Bull. of the London
Math. Soc. 20 (1988), 385–524.

[6] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, Amer. Math. Soc.,
Providence, Rhode Island 1983.

[7] J. Eells and L. Lemaire, Deformations of metrics and associated harmonic maps,
Patodi Memorial, vol. Geometry Analysis, TATA Inst. 1981; 33-45.

[8] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, Expository Lectures
Conference Board of Math. Sci. 5, Amer.Math.Soc. 1983.

[9] B. Fuglede, Harmonic Morphisms between Riemannian Manifolds, Ann. Inst.
Fourier, Grenoble, 28, 2 (1978), 107–144.

[10] B. Fuglede, Harmonic morphisms, Complex Analysis, Joensuu (1978), Lecture
Notes in Mathematics 747, Springer-Verlag, Berlin 1979.

[11] B. Fuglede, Harmonic Morphisms between semi-Riemannian Manifolds, Annales
Academiae Scientiarum Fennicae Mathematica, 21 (1996), 31–50.

[12] R. E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic
functions, Ann. Inst. Fourier, Grenoble, 25, 1 (1975), 215–235.

[13] R. E. Greene and H. Wu, On the Subharmonicity and Plurisubharmonicity of
Geodesically Convex Functions, Indiana University Mathematics Journal, 22, 7
(1973), 641–653.

[14] L. Hormander, An Introduction to Complex Analysis in Several Variables, Noth-
Holland, 1990.

[15] R. Hermann, Differential Geometry and the Calculus of Variations, Academic
Press, New York and London 1968.

[16] S. T. Hu, Differentiable Manifolds, Holt, Rinehart and Winston, Inc. 1969.

[17] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic func-
tions, J. Math. Kyoto Univ. 19, 2 (1979), 215–229.

[18] J. Jost, Harmonic mappings and minimal immersions, Lectures Notes in Math.,
Springer-Verlag, 1984.

[19] R. Narasimhan, Analysis on Real And Complex Manifolds, North Holland, Am-
sterdam 1968.



14 V. Arsinte, A. Bejenaru

[20] Y. Ohnita and S. Udagawa, Complex-Analicity of Pluriharmonic Maps and their
Constructions, Lectures Notes in Math., Springer-Verlag, 1991.

[21] M. Svensson, Polynomial Harmonic Morphisms, Master Thesis, Lunds Univer-
sitet 1998.

[22] C. Udriste, Convex functions and optimization methods on Riemannian man-
ifolds, Mathematics and Its Applications, Kluwer Academic Publishers, Dor-
drecht, Boston, London 1994.

[23] C. Udriste and A. Bejenaru, Riemannian convexity of functionals, Journal of
Global Optimization, 51, 2 (2011), 361-376.

[24] H. Urakawa, Calculus of Variations and Harmonic Maps, Translations of Math-
ematical Monographs, Amer. Math. Soc., 1993.

[25] T. J. Willmore, Riemannian Geometry, Oxford University Press, 2002.

Authors’ addresses:

Vasile Arsinte
Callatis Theoretical High-School, Departament of Mathematics,
36 Rozelor Str., Mangalia 905500, Constanţa, Romania.
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