
Existence of free boundaries using

the mean curvature

Mohammed Barkatou

Abstract. This paper deals with a free boundary problem for both Lapla-
cian and p-Laplacian operators. We begin by proving the existence of solu-
tion (which is of class C2) for the associated shape optimization problem.
Then, after performing the shape derivative we will present two approaches
in order to get sufficient conditions of existence of the free boundaries. The
first one needs the use of some maximum principle. The second one uses
the monotonicity of the mean curvature and can be applied for general
divergence operators.
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1 Introduction

Let µ be a positive measure with compact support Kµ (with a nonempty interior)
and let k > 0 be a parameter. We look for an open and bounded set Ω ⊂ RN (N ≥ 2)
such that

1. Ω strictly contains Kµ and

2. there exists a function uΩ, satisfying the following overdetermined problem

(FB)

 −div(A (|∇uΩ|)∇uΩ) = µ in Ω,
uΩ = 0 on ∂Ω,
|∇uΩ| = k on ∂Ω (overdetermined condition) .

Imposing boundary conditions for both uΩ and |∇uΩ| on ∂Ω makes problem (FB)
overdetermined, so that in general without any assumptions on data this problem has

no solution. Notice that since uΩ = 0 on ∂Ω then |∇uΩ| = −∂uΩ

∂ν
, where ν is the

outward normal vector to ∂Ω.
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In the linear case, when A = 1 and the equation becomes −∆u = µ, (FB) is called
the quadrature surfaces free boundary problem and arises in many areas of physics
(free streamlines, jets, Hele-show flows, electromagnetic shaping, gravitational prob-
lems etc.) It has been intensively studied from different points of view, by several
authors. For more details about the methods used for solving this problem see the
introduction in [12]. In [2] using the maximum principle together with the compat-
ibility condition of the Neumann problem, the authors gave sufficient condition of
existence for problem (FB). When A(t) = tp−2the equation becomes −∆pu = µ. As
far as the authors know this problem still open. In [4] using essentially the Hopf’s
comparison principle (see Lemma 2.5 below), the author gave a sufficient condition
of existence for this problem. The purpose of the present paper is to put conditions
on µ and k in order to satisfy 1 and 2. Our approach here consists on solving the
shape optimization problem associated to (FB). Then performing the shape deriva-
tive, we will get the overdetermined condition but not in the entire boundary of Ω.
To conclude, we will give two theorems. The proof of the first one needs the use of
some maximum principle. For the second theorem, we will use the monotonicity of
the mean curvature for the domains which are of class C2. The outline of the paper
is as follows. Section 2 contains some preliminary results. Section 4 is devoted to
the shape optimization problems while some auxiliary results are stated and proved
in Section 4. In Section 5, we state and prove the main theorems. Section 6 contains
some concluding remarks.

2 Preliminaries

Let D be an open ball of RN (N ≥ 2)which will contain all the sets we use in this
paper.

Definition 2.1. Let K1 and K2 be two compact subsets of D. We call a Hausdorff
distance of K1 and K2 (or briefly dH(K1,K2)), the following positive number:

dH(K1,K2) = max [ρ(K1,K2), ρ(K2,K1)] ,

where ρ(Ki,Kj) = max
x∈Ki

d(x,Kj) i, j = 1, 2 and d(x,Kj) = min
y∈Kj

|x− y| .

Definition 2.2. Let ωn be a sequence of open subsets ofD and ω be an open subset of
D. Let Kn and K be their complements in D. We say that the sequence ωn converges

in the Hausdorff sense, to ω (or briefly ωn
H−→ ω) if

lim
n→+∞

dH(Kn,K) = 0.

Definition 2.3. Let ωn be a sequence of open subsets of D and ω be an open subset
of D. We say that the sequence ωn converges in the compact sense, to ω (or briefly

ωn
K−→ ω) if

• every compact subset of ω is included in ωn, for n large enough, and

• every compact subset of ωc is included in ωc
n,for n large enough.
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Definition 2.4. Let ωn be a sequence of open subsets of D and ω be an open subset
of D. We say that the sequence ωn converges in the sense of characteristic functions,

to ω (or briefly ωn
L−→ ω) if χωn converges to χω in Lp

loc(RN ), p ̸= ∞, (χω is the
characteristic function of ω).

Lemma 2.1. ([8], [18]) If ωn is a sequence of open subsets of D, there exists a
subsequence (still denoted by ωn) which converges, in the Hausdorff sense, to some
open subset of D.

Definition 2.5. [3] Let C be a compact convex set, the bounded domain ω satisfies
C-GNP if

1. ω ⊃ int(C),

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c∩ω is connected,
and

4. for every x ∈ ∂ω \ C the inward normal ray to ω (if exists) meets C.

Remark 2.6. If Ω satisfies the C-GNP and C has a nonempty interior, then Ω is
connected.

Theorem 2.2. If ωn ∈ OC , then there exists an open subset ω ⊂ D and a subse-

quence (again labeled ωn) such that (i ) ωn
H−→ ω, (ii) ωn

K−→ ω, (iii) χωn converges
to χω in L1(D) and (iv) ω ∈ OC .

For the proof of this theorem, see Theorem 3.1 in [3].

Proposition 2.3. Let {ωn, ω} ⊂ OC such that ωn
H−→ ω. Let un and uω be

respectively the solutions of P (ωn, µ) and P (ω, µ). Then un converges strongly in
H1

0 (D) to uω (un and uω are extended by zero in D).

This proposition is proven for N = 2 or 3 (see Theorem 4.3 in [3]).

Definition 2.7. Let C be a convex set. We say that an open subset ω has the C-SP,
if

1. ω ⊃ int(C),

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c∩ω is connected,
and

4. ∀ x ∈ ∂ω \ C Kx ∩ ω = f� ,where Kx is the closed cone defined by{
y ∈ RN : (y − x).(z − x) ≤ 0, ∀ z ∈ C

}
.

Remark 2.8. Kx is the normal cone to the convex hull of C and {x}.

Proposition 2.4. ω has the C-GNP if and only if ω satisfies the C-SP.
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For the proof of this proposition see Proposition 2.3 in [3].

Lemma 2.5. (Hopf’s Comparison principle). Let U ⊂ RN be open and bounded,
and v1, v2 ∈ C1

(
U
)
, with ∆pv1 ≤ ∆pv2. Then the following hold.

1. If v1 ≥ v2 on ∂U, then v1 ≥ v2 in U.

2. Suppose v1 > v2 in U, v1 (x) = v2 (x) for some x ∈ ∂U, |∇v2| ≥ γ in U (for
some γ > 0), and U satisfies the interior sphere condition. Then ∂v2

∂ν (x) >
∂v1

∂ν (x), where ν is the unit outward normal vector on ∂U, at x.

3. If v1 ≥ v2 and v1 ̸= v2 in U, |∇v2| ≥ γ in U (for some γ > 0), then v1 > v2 in
U.

This lemma is proven in ([23], Lemma 3.2, Proposition 3.4.1, 3.4.2)

As in the linear case, to obtain a continuity result for the Dirichlet problem in
the non linear case, we can use the compact convergence and the p-stability of the
limit domain (we say that an open set Ω is p-stable if for any u ∈ H1,p

(
RN

)
such

that u = 0 a.e. in int(Ωc), we get u|Ω ∈ H1,p
0 (Ω)). Here, we will use the theorem (see

below) obtained by Bucur and Trebeschi where they generalize the Sverak’s result
[21].

In [7], the authors gave a compactness-continuity result for the solution of a non
linear Dirichlet problems (in particular with the p-Laplacian operator) when the do-
main varies.

Definition 2.9. (γp-convergence) We say that a sequence Ωn of open subsets of D
γp-converges to Ω if and only if for any µ ∈ H−1,q(D) ( 1p +

1
q = 1) the solutions un of

the Dirichlet problems P (Ωn, µ) converges strongly in H1,p
0 (D), as n → +∞, to the

solution uΩ of P (Ω, µ), (un and uΩ are extended by zero to D).

Set

Ol (D) = {ω ⊆ D | ♯ωc ≤ l}

where ♯ωc denotes the number of connected components of the complement of ω.

Theorem 2.6. [7] Let N ≥ p > N − 1. Consider Ωn ∈ Ol (D) and assume Ωn
H−→

Ω, then Ω ∈ Ol (D) and Ωn γp-converges to Ω.

Remark 2.10. If p > N , any sequence of open sets which converge in the Hausdorff
sense is γp-convergent.

Corollary 2.7. Assume that the convex C has a nonempty interior. If Ωn ∈ OC and

Ωn
H−→ Ω, then Ωn γp-converges to Ω.

Proof. If the interior of C is nonempty and Ωn ∈ OC , according to Remark 2.6, Ωn

is connected. Therefore Ωn ∈ Ol (D) . Now, if Ωn
H−→ Ω, by the previous theorem Ωn

γp-converges to Ω. �
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Theorem 2.8. Let L be a compact subset of RN . Let fn be a sequence a functions
defined on L. We assume that the fn are of class C3 and∣∣∣∣∂fn∂xi

∣∣∣∣ ≤ M,

∣∣∣∣ ∂2fn
∂xi∂xj

∣∣∣∣ ≤ M,

∣∣∣∣ ∂3fn
∂xi∂xj∂xk

∣∣∣∣ ≤ M,

where M is a strictly positive constant and is independent of n.
Define a sequence Ωn, by Ωn = {x ∈ L : fn (x) > 0} and suppose there exists

α > 0 such that |fn (x)| + |∇fn (x)| ≥ α for all x in L. If the Ωn have the C-GNP,
then there exists Ω of class C2 and a subsequence (still denoted by Ωn) such that Ωn

converges in the compact sense, to Ω.

3 Shape optimization problems

Up to now, µ = f where f ∈ L2(D) for p = 2 or f ∈ L∞(D) for p ̸= 2.

In [12],[20] (for p = 2) or in [14] (for p ̸= 2) by using the moving plane method
[11], the authors showed that if the problem (FB) admits a solution (Ω, uΩ) such that
Ω is of class C2 and uΩ ∈ C2(Ω \Kµ) ∩ C1

(
Ω
)
, then all the inward normals at the

boundary ∂Ω of Ω meet C (the convex hull of Kµ). Since we relate the existence of
a solution for Problem (FB) to the existence of a minimum of some shape optimiza-
tion problem, it is natural to solve this one in a class of domains with this geometric
normal property.

Using the shape derivative, the problem (FB) can be seen as the Euler equation
of the following problem of minimization, e.g. [22] and [17]:

(OP ) Find Ω ∈ OC such that J(Ω) = min
ω∈OC

J(ω),

where

OC = {ω ⊂ D : ω satisfies C-GNP}

and

J(ω) =

∫
ω

(
1

p
|∇uω|p − fuω +

kp

p

)
dx

with uω the solution of the Dirichlet problem.

P (ω, f)

{
−∆puω = f in ω,
uω = 0 on ∂ω.

3.1 Existence of the minima

Theorem 3.1. There exists Ω ∈ OC which minimizes the functional J on OC . Ω is
of class C2.

We will give the proof in the case where p ̸= 2. For p = 2 , just replace in the
proof the Hopf’s comparison principle by the maximum principle. The continuity
result thanks to Proposition 2.3 from above.
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Proof. Using the variational formulation of the Dirichlet problem P (ω, f), we get∫
ω

|∇uω(x)|pdx =

∫
ω

fuω.

If uD denotes the solution of the Dirichlet problem P (D, f), by the Hopf’s comparison
principle (see Lemma 2.5 part 1.), 0 ≤ uω ≤ uD so

J(ω) = −p− 1

p

∫
ω

fuω +
kp

p

∫
ω

dx ≥ −p− 1

p

∫
D

fuD

and inf J exists. Let Ωn be a minimizing sequence in OC . (one can choose it as in
Theorem 2.8 from above). Since int(C) ⊂ Ωn ⊂ D, according to (i) of the Theorem
and the continuity of the inclusion for the Hausdorff topology, there exist an open set Ω

and a subsequence of Ωn (still denoted by Ωn) such that Ωn
H−→ Ω and int(C) ⊂ Ω ⊂

D. (ii) of Theorem 2.8 together with Theorem 2.8 imply that Ω is of class C2. Now
by (iii) of Theorem 2.2

∫
Ωn

dx converges to
∫
Ω
dx, and by Corollary 2.7,

∫
D
funχΩn

converges to
∫
D
fuΩχΩ =

∫
Ω
|∇uΩ(x)|pdx. Hence J(Ω) ≤ lim inf

n→+∞
J(Ωn). According to

(iv) of Theorem 2.2, Ω ∈ OC , therefore J(Ω) = min
ω∈OC

J(ω). The regularity C2 of Ω

thanks to Theorem 2.8. �

Put
OΩ = {ω ⊂ Ω : ω satisfies C-GNP}

and

j(ω) = k|∂ω|+
∫
∂ω

∂uω

∂ν
dx

where ν is the exterior normal vector to ∂ω, |∂ω| denotes the perimeter of ω and
uω the solution of the Dirichlet problem P(ω ,f). By Green formula, j becomes

j(ω) = k|∂ω| −
∫
ω

f(x)dx

Theorem 3.2. There exists Ω∗ ∈ OΩ which minimizes the functional j on OΩ. Ω
∗

is of class C2.

For the proof of this theorem, we use (iii) and (iv) of Theorem 2.2. Once again,
the C2 regularity of Ω∗ thanks to Theorem 2.8.

3.2 The optimality conditions

In this paragraph, we are going to use the standard tool of the domain derivative
to write down the optimality condition. Let us recall the definition of the domain

derivative, see for instance [22] and [17]. Since the minimum Ω of the functional
J is of class C2. Let us consider a deformation field V ∈ C2

(
RN ;RN

)
and set

Ωt = {x+ tV (x), x ∈ Ω}, t > 0. The application Id + tV is a perturbation of the
identity which is a Lipschitz diffeomorphism for t small enough. By definition, the
derivative of J at Ω in the direction V is

dJ(Ω, V ) = lim
t→0

J(Ωt)− J(Ω)

t
.
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As the functional J depends on the domain Ω through the solution of the Dirichlet
problem P (Ω, f), we need to define also the domain derivative of uΩ. If u

′
Ω denotes

the domain derivative of uΩ, then

u′
Ω = lim

t→0

uΩt − uΩ

t
.

Recall that the shape derivative of the volume is
∫
∂Ω

V.ν dσ
Now for F (Ω) =

∫
Ω
h(uΩ)dx, the Hadamard formula gives

dF (Ω, V ) =

∫
Ω

h′ (uΩ)u
′
Ωdx+

∫
∂Ω

h(uΩ)V · ν dσ.

Furthermore, we can prove ([22], [17]) that u′
Ω is a solution of some linear Dirichlet

problem with

u′
Ω = −∂uΩ

∂ν
V · ν on ∂Ω.

This, together with uΩ = 0 on ∂Ω implies

dF (Ω, V ) =

∫
∂Ω

h(uΩ)V · ν dσ.

Now by Green formula

J(Ω) = −1

p

∫
Ω

|∇uΩ|p +
1

p
kp

∫
Ω

dx.

So if we put h(uΩ) = |∇uΩ|p, according to what precedes we obtain

(3.1) dJ(Ω;V ) =
1

p

∫
∂Ω

(kp − |∇uΩ(x)|p)V.ν dσ.

where ν is the outward normal vector to ∂Ω.

Now since Ω is the minimum for the functional J , dJ(Ω;V ) ≥ 0 for every admis-
sible direction V. Therefore∫

∂Ω

(kp − |∇uΩ(x)|p)V.ν dσ ≥ 0 for every admissible direction V.

We mean by admissible displacement the one which allows us to keep the C-GNP
or the C-SP (according to Proposition 2.4 from above). Since Ω has the C-GNP, it
satisfies the C-SP. Then

∀ x ∈ ∂Ω \ C Kx ∩ Ω = f� .

For t sufficiently small, let Ωt = Ω+ tV (Ω) be the deformation of Ω in the direction
V. Let xt ∈ ∂Ωt. There exists x ∈ ∂Ω s.t xt = x + tV (x). Using the definition of
Kxt and the equality above, it is obvious to get (for t small enough and for every
displacement V ) :

∀ xt ∈ ∂Ωt \ C Kxt ∩ Ωt = f� ,
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which means that Ωt satisfies the C-SP (and so the C-GNP) for every displacement
V when t is sufficiently small. Then, using V and −V, and the fact that the set of
the functions V · ν is dense in L2(∂Ω), we deduce

(3.2) |∇uΩ(x)| = k on ∂Ω \ ∂C.

On the other hand, the admissible directions V on ∂Ω ∩ ∂C must satisfy V (x) ·
ν(x) ≥ 0, and one gets

(3.3) |∇uΩ(x)| ≤ k on ∂Ω ∩ ∂C.

Now, thanks to Hadamard formula, the shape derivative of j on Ω∗ is

dj(Ω∗;V ) =

∫
∂Ω∗

(NkH∂Ω∗ − f)V.ν dσ ≥ 0 for every admissible direction V.

Arguing as above and using the fact that int(C) ⊂ Ω∗, we get

(3.4)

{
H∂Ω∗ = 0 on ∂Ω∗ \ ∂C

H∂Ω∗ ≥ f
Nk on ∂Ω∗ ∩ ∂C.

4 Auxiliary results

In this section, we will state and prove some propositions which we will use in the
Section 5. Let Ω (resp. Ω∗) be the minimum of J (resp. j). The two first propositions
are given for p ̸= 2. For p = 2, the proof is done if we replace The Hopf’s comparison
principle by the maximum principle.

Proposition 4.1. Suppose that C is of class C2 and |∇uC | ≥ γ in int(C) (for some
γ > 0) and C satisfies the interior sphere condition. Then

1. either ∂Ω ∩ ∂C ̸= f� and |∇uC(x)| ≤ k on ∂Ω ∩ ∂C

2. or C is strictly contained in Ω.

Proof. Let ∂Ω ∩ ∂C ̸= f� and suppose by contradiction there exists x ∈ ∂Ω ∩ ∂C
such that |∇uΩ(x)| > k. This together with (3) implies that ∂Ω ̸= ∂C.
Now, since

∆puΩ = −f = ∆puC inint(C) and uΩ ≥ 0 = uC on ∂C,

part 1. of Lemma 2.5 implies that

uΩ ≥ uC in int(C).

But uΩ ̸= uC in int(C), then

uΩ > uC in int(C).

Now, since C satisfies the interior sphere condition, |∇uC | > γ on int(C) and

uΩ = uC on ∂Ω ∩ ∂C,



Existence of free boundaries using the mean curvature 23

part 2. of Lemma 2.5, gives
∂uΩ

∂ν
(x) <

∂uC

∂ν
(x)

or again, since |∇uΩ(x)| = −∂uΩ(x)

∂ν(x)
,

|∇uC(x)| < |∇uΩ(x)| .

So |∇uΩ(x)| > k which contradicts (3.3).
�

If we replace, in the preceding proposition, int(C) by Ω∗, we can obtain

Proposition 4.2. Suppose that |∇uΩ∗ | ≥ γ in Ω∗ (for some γ > 0) and Ω∗ satisfies
the interior sphere condition. Then

1. either ∂Ω∗ ∩ ∂Ω ̸= f� and |∇uΩ∗(x)| ≤ k on ∂Ω ∩ ∂Ω∗

2. or Ω∗ is strictly contained in Ω.

Proposition 4.3. Suppose that C is of class C2, then

1. either ∂Ω∗ ∩ ∂C ̸= f� and H∂Ω∗ ≥ f
Nk on ∂Ω∗ ∩ ∂C

2. or C is strictly contained in Ω∗.

Proof. Suppose there exists x ∈ ∂Ω∗ ∩ ∂C such that H∂C(x) <
f(x)
Nk . Since int(C) ⊂

Ω∗, x ∈ ∂Ω∗ ∩ ∂C and C and Ω∗ are of class C2, then

f(x)

Nk
≤ H∂Ω∗ ≤ H∂C <

f(x)

Nk

which is absurd. �

5 Existence of free boundaries

Theorem 5.1. Suppose p ̸= 2 and let Ω and Ω∗ be as in Theorems 3.1 and 3.2.
If |∇uΩ∗ | > k on Ω∗ then Ω is a solution of (FB) which strictly contains Ω∗.

Remark 5.1. For p = 2, we can obtain the same result if we replace the condition
stated above by the following:

|∇uΩ∗ | > k on ∂Ω∗

Proof. This result is an immediate consequence of Proposition 4.1. �

Theorem 5.2. Let Ω and Ω∗ be as in Theorems 3.1 and 3.2.

1. If C is of class C2 and H∂C <
f

Nk
on ∂C then

(a) C is strictly contained in Ω∗
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(b) Ω∗ is a minimal surface

(c) Ω is a solution of (FB) which contains Ω∗

2. Furthermore, if |∇uΩ∗ | ≤ k on ∂Ω∗ or if k|∂Ω∗| ≥
∫
C
f then Ω is a minimum

of j and so it is a minimal surface.

Proof. (1)

• (a) is an immediate consequence of Proposition 4.3.

• (b) The optimality condition (4) gives H∂Ω∗ = 0 which implies that Ω∗ is a
minimal surface.

• (c) According to (a), C is strictly contained in Ω∗ but Ω∗ ⊂ Ω. So C is strictly
contained in Ω and the optimality conditions (2) and (3) imply |∇uΩ| = k on
∂Ω

(2) If in addition Ω∗ verifies one of the two conditions stated above, then j(Ω∗) ≥ 0.
But Ω ∈ OΩ and by (c) j(Ω) = 0 so j(Ω) ≤ j(Ω∗). Then we can conclude by (b). �

Replace in the expressions of J and j, f by 1 + f and denote by J1 and j1 the
corresponding functionals of domains. We obtain

Theorem 5.3. Let Ω1 (resp. Ω∗
1) be the minimum of J1 (resp. of j1). If C is of

class C2 and H∂C <
1 + f

Nk
on ∂C then

1. C is strictly contained in Ω∗
1

2. Ω∗
1 is a ball with radius Nk

3. Ω1 is a solution of (FB) which contains Ω∗
1

Reasoning like in Theorem 5.3, the first and the third items are immediate. For
the second item one can replace, in the optimality conditions (3.4), f by 1+ f . Then

using the fact that C is strictly contained in Ω∗
1, one can obtain H∂Ω∗

1
=

1

Nk
which

says that Ω∗
1 is a ball with radius Nk thanking to the Alexandrov result [1].

Remark 5.2. A simple calculation shows that we cannot put conditions on Ω∗
1 (as

in (2) of Theorem 5.3) and so Ω1 cannot be a minimum of j1.

Remark 5.3. In one hand Ω∗
1 is a ball, so it satisfies the Geometric Normal Property

w.r.t its center. In the other hand Ω∗
1 has the C-GNP. Therefore, the center of Ω∗

1

belongs to C.

6 Concluding remarks

Remark 6.1. The aim of Theorem 2.8 is to give the C2 regularity of the minimum
Ω (resp. Ω∗) of J (resp. j). This in order to use the shape derivative and so to resolve
Problem (FB). The proof of this theorem uses the following Lemma (see [2]):
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Lemma 6.1. Let L be a compact subset of RN . Let fn be a sequence of functions
defined as Theorem 2.8. Suppose that Ω is an open subset of L such that

Ω = {x ∈ L : h(x) > 0} and

∂Ω = {x ∈ L : h(x) = 0} ,

where h is a continuous function defined in L. If the fn converge uniformly to h in
L, then the Ωn converge in the compact sense, to Ω.

Remark 6.2. a) The hypothesis in Theorem 2.8 about the local regularity is not too
restrictive because of, for instance, results due to E. DiBenditto [10], J.L .Lewis [15]
and G.M. Lieberman [16].

b) When p = 2 Proposition 4.1 and Theorem 5.1 can be extended to the divergence
operator div(a(x)∇u). For this kind of operator the continuity result is a simple
consequence of Mosco convergence (see for instance [7]).

c) According to the results obtained by Bucur and Trebeschi in [7], Proposition 4.3
and Theorem 5.3 can be extended to other divergence operators like div(a(x,Du)).

d) Let f = aχBR where a > 0, BR ⊂ R2 is some ball of radius R and χBR is
its characteristic function. The condition stated in Theorem 5.3 becomes aR > 2k.
Now if Ω is a regular solution of (FB), then Green formula implies aR > 2k, i.e this
condition is necessary and sufficient for solving (FB) in this case.

e) Consider the case of (FB) where µ is the uniform density δ[−1,1]×{0}. Let C be
the ball of radius 1 and of center 0. According to the preceding remark, a > 2k is
a necessary and sufficient condition of existence for a free boundary which contains
strictly the segment line [−1, 1]×{0}. Notice that in [12], the authors gave a > 24πk
as sufficient condition of existence for this problem while in [5], the author proposes
a > 3.92k.

f) Let Ω be a solution of (FB) in the case where µ ≡ 1. Using the same arguments
as in Theorem 3.2, we can prove the existence of a minimum Ω∗ of j on some class of
admissible domains (for instance the domains which are contained in Ω and satisfy the
ε-cone property). If both Ω and Ω∗ are of class C2 then by the optimality condition,
Ω∗ is a ball with radius Nk and j(Ω∗) = 0 = j(Ω). Therefore Ω is a minimum of j and
so Ω = BNk, i.e it is the solution of Serrin’s problem [19]. Now according to Remark
e), this result can be extended to other divergence operators like div(a(x,Du)) and
according to Remark e), it cannot be obtained when µ is nonconstant.
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