Subgradient estimates for a nonlinear subparabolic
equation on pseudo-Hermitian manifold

Yingbo Han

Abstract. Let (M, J, 0) be a closed pseudo-Hermintian (2n+ 1)-manifold.
In this paper, we derive the subgradient estimate for positive solutions to a

nonlinear subparabolic equation % = Npu+taulogu+bu on M x[0,00),

where a,b are two real constants.
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1 Introduction

In the seminal paper of [4], P. Li and S.-T. Yau established the parabolic Li-Yau
gradient estimate and Harnack inequality for the positive solution of the heat equation

ou
ot
in a complete Riemannian [-manifold with nonnegative Ricci curvature. Here A is the

Laplace-Beltrami operator. Along this line with method of Li-Yau gradient estimate,
it is the very first paper of H.-D. Can and S.-T. Yau [3] to consider the heat equation

(z,t) = Au(x,t)

(1.1) %(m,t} = Lu(x,t)

in a closed I-manifold with a positive measure and a subelliptic operator with respect
to the sum squares of vector fields

h h
L= X?-Y, Y=Y cX,
=1 =1

where X1, -+, X} are smooth vector fields which satisfy Hormander’s condition: the
vector fields together with their commutators up to finite order span the tangent
space at every point of M. Suppose that [X;, [X;, Xi]] can be expressed as linear
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combinations of X1, ---, X}, and their brackets [X1, Xs], -+ ,[X;—1,zp]. they showed
that for the positive solution u(x,t) of (1.1) on M x [0,00), there exist constants
C’,C",C" and % <A< %, such that for any § > 1, f = log u satisfies the following
gradient estimate

li
SO IX = et S Yl PIA -8V < S 0 e

with {Y,} = {[X;, Xj]}. In [1], S.-C. Chang, T.-J. Kuo and S.-H. Lai established the
CR Cao-Yau type Harmack estimate

A(logw)

4815

— |V logul|* — %t[(logu)o]2 + 115—6 >0,
for the positive solution u of the CR heat equation %7; = /Ayu in a closed pseudo-
Hermitian 3-manifold (M, J, ) with nonnegative Tanaka-webster curvature and van-
ishing torsion. Here A\, is the time-independent sub-Laplacian, V, is the subgradient
and g = T for a smooth function .

Recently, S.-C. Chang, T.-J. Kuo and S.-H. Lai established the CR Cao-Yau type
Harmack estimate

d(logu)

3
(1 + n) ———— — |V, logu\2 — %t[(logu)o]2 +

24+6+n
>0
ot

P Z

for the positive solution u of the CR heat equation

in a closed pseudo-Hermitian (2n + 1)-manifold (M, J,#) with 2Ric — (n — 2)Tor > 0
and [A, T] = 0.

On the other hand, for Riemannian case, there are many papers (such as [8, 7]
and references therein) to investigate the following nonlinear parabolic equation

0
(1.2) 8—1: = Au+ aulogu + bu
on M x [0,00), where (M, g) is a Riemannian manifold, a,b are two real constants.
They obtained the gradient estimate for the positive solution of the equation (1.2).
In this paper, we consider the following nonlinear subparabolic equation

ou

(1.3) o

Apu + aulogu + bu

in a closed pseudohermintian (2n + 1)-manifold (M, J,6). We obtain the following
results:

Theorem 1.1. (c¢f. Theorem 3.1) Let (M, J,0) be a closed pseudo-Hermitian (2n+1)
manifold. Suppose that

2Ric(X,X) — (n—2)Tor(X,X) > 0,



44 Yingbo Han

forall X € Ty o @ Tp,1. If u is the positive solution of

ou
1.4 —=A log u.
(1.4) ot pu + aulogu

with [Ay, T) =0 on M x [0,00), let f(x,t) =logu(z,t). Then we have

Vo f|? — (14—2) (ft—af)+%tf02<%(1—%t) <2+6+n>,

where a < 0 s a constant.

Remark 1.1. By replacing u by e#u, equation (1.3) reduces to equation (1.4).

2 Preliminaries

We first introduced some basic materials in a pseudo-Hermitian (2n + 1)-manifold
(see [5], [6] for more details). Let (M, &) be a (2n + 1)-dimensional, orientable, con-
tact manifold with contract structure £&. A CR structure compatible with £ is an
endomorphism .J : £ — ¢ such that J? = —1. We also assume that .J satisfies the
following integrability condition: If X and Y are in £, then so are [JX,Y] + [X, JY]
and J([JX,Y]+ [X,JY]) = [JX,Y] - [X,Y].

Let {T,Z,,Zs} be a frame of TM ® C, where Z, is any local frame of 17,
Za = Zo € Toa and T is the characteristic vector field. Then {6,6%,0%}, which is
the coframe dual to {7, Z,, Z5}, satisfies df = ihag0% A 67 for some positive definite
hermitian matrix of function (h,z). Actually we can always choose Z, such that
h,z = dap; hence, through this note, we assume h,z = dags-

The Levi form (, ), is the Hermitian form on 77 o defined by (Z, W), = —i(df, ZA
W). We can extend (, )1, to Tp 1 by defining (Z, W), = (Z,W)r,, for all Z, W inT, ;.
The Levi form induces naturally a Hermitian form on the dual bundle of T} o, denoted
by (,)z;, and hence on all the induced tensor bundles. Integrating the Hermitian form
over M with respect to the volume form dy = 6 A (df)™, we get an inner product
on the space of sections of each tensor bundle. We denote the inner product by the
notation {, ).

The pseudo-Hermitian connection of (J,8) is the connection V on TM ® C (and
extended to tensors) given in terms of a local frame Z, € T ¢ by

VZ=00® 75 VZs=0207Z5 VT =0,

where 62 are the 1-forms uniquely determined by the following equations:

do® = 602NO°+OonTP
0 = 7, N0%
0 = 67+065.

We can write (by Cartan lemma) 7, = An,07 with An, = A,q. The curvature of
Tanaka-Webster connection, expressed in terms of the coframe {6 = 0°, 0%, 0%}, is

5=11;

I =19 =TI = 15 = 11§ = 0.

:dwgfwg/\wf:
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Webster showed that Hg can be written

114 = R§,,0” NG + Wg,0° NO — Wﬂaﬁﬁﬁ NO+ibg AT —iTg N G°,

a

where the coefficients satisfy

Rpaps = Rojop = Rapsp = Rpaps,  Wpay = Wyag.

Here R] . is the pseudo-Hermitian curvature tensor, R,z = R’ - is the pseudo-
daf3 af

yapB
Hermitian Ricci curvature tensor and A,g is the torsion tensor. We define Ric and

Tor by
Ric(X,Y) = RygX°Y?, Tor(X,Y)=i(A;5XYP — AgsX°Y?),

for X = X%Z,,Y =YPZg on T 0.

We will denote components of covariant derivatives with indices preceded by
comma,; thus write A, . The indices {0, ,a} indices derivatives with respect to
{T, Zy, Z5}. For derivatives of a scalar function, we will often omit the comma, for
instance, uq = ZoU, Uy = ZzZat — wg(ZB)Zvu. For a real function u, the subgra-
dient V, is defined by Vyu € € and (Z, Vyu) = du(Z), for all vector fields Z tangent
to contact plane. Locally Vyu = Za Uz Lo + Za uUnZ5. We can use the connection
to define the subhessian as the complex linear map (VH)Qu Tho®To1 = Tio®To
by

(VE2u(Z) = V4 Vyu.

In particular, |Vyul? = 2uyug, |Viul? = 2(Uapusg + Uggtap) and Apu = (taa +
U@a).
We need the following Lemmas.

Lemma 2.1. [2] For a smooth real-valued function w and any v > 0, we have

Np|Voul* > = (Ayu)? + nud + 2(Vyu, Vi Ayu)

1

n
2

(2.1) +2(2Ric — (n — 2)Tor)((Vyu)c, (Veu)c) — 20| Vyue|? — ;|Vbu|2.

where (Vyu)o = ugZy is the corresponding complex (1,0)-vector of Vyu.

Lemma 2.2. Let (M, J,0) be a pseudo-Hermitian (2n+1)-manifold with [Ny, T] = 0.
If u(x, t) is the positive solution of % = Apu + aulogu, then f =logu satisfies

(2.2) Dy fo = for = —afo = 2(Vifo, Vo f).
Proof. Since u is the solution of (2.2), we have
0
(23) (84— 5)f = —af — [V
From [Ap,T] = 0 and (2.3), we have
Dpfo— for = (Dof)o — fro = [Dof — filo = —afo — 2(V fo, Vi f).
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3 Subgradient estimates for a nonlinear subparabolic
equation
In this section, we obtain the following results:

Theorem 3.1. Let (M, J,0) be a closed pseudo-Hermitian (2n+1) manifold. Suppose
that

(3.1) 2Ric(X,X) — (n—2)Tor(X,X) >0,
forall X € Th o ® Tp,1. If u is the positive solution of

ou
2 —=A log u.
(3.2) ot pu + aulogu

with [Ny, T] =0 on M x [0,00), let f(z,t) =logu(z,t). Then we have

Vo fI* = (1+ %)(ft —af)+ gtfg < %[1 - %t}[% +6 +nl,

where a < 0 1s a constant.
Proof. Since u is the positive solution of (3.2), we have

(33) (8= V7, 0) = ~af(@,0) ~ V(2,0

Now we define a real-valued function F(z,t,a,8) : M x [0,T*] x R* x Rt — R by

(3.4) F(x,t,a,B) = t(|Vof|> + a(fi — af) + Btf2).

First we differentiate F' with respect to the t-variable.

(35)  F= T i{2(Vf, Vafi) + alfu — afd) + B3 + 28 ool

From equation (3.3), we have
(3.6) fro —afe = 2(Vo f, Vi fi) + Do fi

From (3.5) and (3.6), we have

F
(3.7) =+ t2(1 + @) (Vo f, Vi fe) + alp fo + BIG + 2Bt fo fo]
From Lemma 2.1 and the assumption (3.1), we have

ApF = tA Vo f| + (Do fr — alspf) + BtL f]

> H0f3 (B 2V T2 — 2V~ 2]V fol
+a( Do fr — also f) + 2Bt fo sy fo + 28tV fol*].



Subgradient estimates for a nonlinear subparabolic equation 47

Taking v = Bt, we have

AyF > t[nf3+%(Abf>2+2<vbf,vbabf>f%mﬁ

(3.8) + oDy fe —aly f) + 2Bt fo Dy fo)
From (3.7) and (3.8), we have
0 F 1 2
(A — a)F > -7t t{(n—B)f5 + ﬁ(Abf)z +2(Vo f, Voo f) — E|be|2

(3.9) —aalpf +28tfo(Dbfo — for) — 2(1 + @) (Vi f, Vi fe)].
From the lemma 2.2 and the definition of F', we have
2V f, VoSu f) + 2Bt fo(Dvfo — for) — 2(L + a) (Ve f, Vi fi) — aalsy f
=2V f, Volfe — af — Vo fI’]) + 2Bt fo(—af — Vs f|*)o
=21+ a) (Vo f, Vi fi) — aalsp f
= =20V f, Vo fe) = 20| Vo f|* = 2Vo f, Vo|Vi fI?) — 2aBtf3
—4Bt(Vyf, Vi fo) — aally f
I513

= 20V Vo F — VP = 2 2 s af)) — 20l 91
=2V f, Vo Vo f[?) = 2aBt f§ — 4BV, f, Vi fo) — aaly f

(3.10) = —%(be, VoF) —2(a+ 1)a|Vi f|? — 2aBtf3 — aal\p f
From (3.9) and (3.10), we have
(B = 2)F > L o9, Vo) 1l 5~ 2080) 13

+%(Abf)2 — %‘Vb,ﬂQ —aalpf — 2(a+ 1)a|be\2]

= VYL V) + (0§~ 2080)f3 +
Bt

[e%

(A f)?

3] = 2(a+1)a|Vu fI*]

1

"
2 F

Vel = aal = (1 DIV

at
= N VE) — aF - t(n— B — 2a0) 2 + %(Abf)2

t
— 2 Va2 —aal — (L+ DIl = Z 3] - 2+ DalVafP)

I 1
= —= —2(Vof, VoF) —aF +l(n — 8= aBt)f3 + —(Lf)?
2

(3.11) (5 +all+ )V
From the definition of F', we have

F l1+a Bt 5\°

2_ (2 _ -T% 2 _ MYV oe2
@arp = (£ - e - 253)
1 2(1+ «) 26

(3.12) > s P = S FIVufP = SFf
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From (3.11) and (3.12), we have

0 F 1
N> — —
(A 5t)F > <na2t : a> F —2(V,F,Vf)

2p

(3.13) +l(n—6—aBt— —F)jE+ (_2(1+a) 2

no?t Bt

<1+@)ﬁmﬂ%

For each fixed 7" < oo and each ¢ € [0,77], let (p(t),s(t)) € M x [0,¢] be the maximal
point of F on M x [0,t], that is,

F(p(t),s(t),a, B) = max F(x,pu,a, B).

(z,n) €M x[0,t]

Then we have

(314) va(p(t)vs(t)aaaB) =0,
(3.15) NpF(p(t), s(t),a, 8) <0
and
0
(3.16) 5L (1), 5(t), 2, 8) 2 0
From (3.13), (3.14), (3.15) and (3.16), we have at (p(t), s(t)),
F 1 26 2

> [m O alF + s(t)[(n — B — aBs(t) — —5 F)fs

(3.17) p(2ED e 2 ) VP

na?s(t) Bs(t)
Next, we claim that for each fixed T" < oo,

n

F(T'), (T, =1 5.5) < (35— 5

9
ST + 6+,
where @ = —(1+2) and 0 < 8 < %. Here (p(T”), s(T")) € M x [0,T"] is the maximal
point of F on M x [0,T"].
We prove by contradiction. Suppose not, that is

F(p(T'),s(T"), =1 — %,ﬁ) - (% - %S(T'))[% +64n] > 0.
Since F(p(t), s(t), —1—2,3)— (z5—5s(t ))[2+6+n] is continuous in the variable ¢ when
a, B are fixed and F(p(0), (0),7 —2,8) (55— 55(0)[2 +6+n] = —g5[2+6+n] <0,

by Intermdiate-value theorem there exists a ty € (0,7”] such that

F(p(to), s(to), —1 — %,6) (% — gs(to))(% +6+n)=0,
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Then we have

(3.19) nfﬁ—aﬂs(to)—%Fzgfﬁ>0,
and
F 1 1 3 . n
(3:20) naZslie)  stio) " s w735 70
From (3.17), (3.18), (3.19) and (3.20), we have
0> [ = 27 — AP + s(t)l(n = 8= afistto) — oz PSS
(2D 2y a) VP > 0.

 na2s(ty) Bs(to)
This gives a contradiction. Hence we have

s(T’))[% +6+n] < (% - %T’)[% +6+7]

3 no_a
38 2

This implies that

IV alfe = af) + 8173) < (35 - 9T’>[% 464

(x,t)emz\?f[o,T' 38 2

When we fix on the set M x {T"}, we have
9
T'(IVof? + alfe — af) + BT f2) < (5= — gT’)[g +6+n]

Since T” is arbitrary, we obtain

n_ay9

IVofl? +a(fe —af) + Btfd) < (

Finally let 3 — %, then we have

Vo f? = (1+ %)(ft —af)+ gtf(? < %[1 — %t][% +6+n].

This completes the proof. O

When a = 0, we have the following results:

Corollary 3.2. Let (M, J,6) be a closed pseudo-Hermitian (2n+1) manifold. Suppose
that

2Ric(X,X) — (n—2)Tor(X,X) > 0,
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forall X € Ty o @ Tp,1. If u is the positive solution of

d_A
ot v

with [Ny, T] =0 on M x [0,00), let f(z,t) =logu(z,t). Then we have
3 1/9
Vo fI? — <1+> ft+ntf§<(+6+n).
n 3 t \n
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