A class of Finsler metrics with almost vanishing
H-curvature

Xiaohuan Mo

Abstract. In this paper, we study a class of Finsler metrics with or-
thogonal invariance. We find an equation that characterizes these Finsler
metrics of almost vanishing H-curvature. As a consequence, we show that
all orthogonally invariant Finsler metrics of almost vanishing H-curvature
are of almost vanishing =-curvature and corresponding one forms are ez-
act, generalizing a result previously only known in the case of metrics with
vanishing H-curvature.
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1 Introduction

Finsler geometry is just Riemannian geometry without the quadratic restriction on
its metrics [2]. There are several non-Riemannian quantities in Finsler geometry, such
as the Cartan torsion, the S-curvature, the Z-curvature and the H-curvature. The
E-curvature is obtained from the S-curvature (see (2.1) below) and the H-curvature
is determined by the Z-curvature. In fact, we have the following [13, Lemma 2.1]

Hij =< (Bij +Eja), (1.2)

N

where B := Z;dz? and H := H,jdz'®dz’ denote the E-curvature and the H-curvature
of F' respectively, “-” denotes the vertical covariant derivative. These quantities
vanish for Riemannian metrics, hence they are said to be non-Riemannian. The H-
curvature gives a measure of failure of a Finsler metric of scalar curvature to be of
constant flag curvature. Thus the quantity H deserves further investigation.

One of the important problems in Finsler geometry is to understand geomet-
ric meaning of non-Riemannian curvature. Many Finslerian geometers have studied
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Finsler metrics with special curvature properties. See [1,8,9,14,15,13]. By (1.2), one
can see that the H-curvature almost vanishes, i.e.

n+1
H;; = Teriyj (1.3)

if the Z-curvature almost vanishes, i.e.

= =—(n+1)F? @)yj : (1.4)

where 0 is a 1-form on M and n = dimM. However, the converse might not be
true. Recently, Shen, Xia and Tang have showed that (1.3) is equivalent to (1.4) for
Randers metrics [1,14, 15, 13]. For example, the following Randers metric on B"(v)

F = /f(lDly? + w22 (1) (z, y)* + £f(j2])(z, )

has isotropic S-curvature, S = (n + 1)cF, where f is any positive differentiable func-
tion, k is a constant and [3, Theorem 1.2]

_ & 2f(z]) + || fr(|z])
4 1+ w2l f(lzl)

Thus F satisfies the following properties [1, 14, 15,13]:

(a) (almost vanishing H-curvature)

n+1
H;; = TGFyiyj,

(b) (almost vanishing Z-curvature and exact 1-form)

0
EJ:—(n—i-l)FQ () s GZdC,
F),

(c) (orthogonal invariance)
F(Az, Ay) = F(=, y), (1.5)

where z € B"(v), y € T,B"(v) and A € O(n). Orthogonally invariant (spherically
symmetric Finsler metrics form, in an alternative terminology (see [5,4,11]), a rich
class of Finsler metrics. The above example leads to the study orthogonally invariant
Finsler metrics of almost vanishing H-curvature. In this paper, we obtain the following
main result:

Theorem 1.1. On B™(v), any spherically symmetric Finsler metric

F(z, y) = |y|o (|x|, <7y1\}>) has almost vanishing H -curvature, i.e.,

n+1 .
Hij = ——0F,5, 0=0;(z)y’
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if and only if

OR;
0s

+3(r° - 52)8(;12

us |(n+1) +2(n+1DRs| =3(n+1)0(p—s¢s), 0 =0;(x)y’, (1.6)

where Ry, Ro and Ry are given in (2.2), (2.3) and (2.5) respectively, and

(@, y)

w:i=lyl, r:=lz, s:=
[yl

The proof of Theorem 1.1 is given in Section 4. As an application of Theorem 1.1,
we prove that (a) and (c) implies (b).

Corollary 1.2. Let F be a orthogonally invariant Finsler metric on B"(v). Then
the H -curvature almost vanishes given by (1.3) if and only if the Z-curvature almost
vanishes given by (1.4). In this case, the corresponding 1-form 6 is an exact form.

See Section 4 for the proof of Corollary 1.2. As a consequence of Corollary 1.2,
for 8 = 0, we get the following result

Corollary 1.3.[12] Let F' an orthogonally invariant Finsler metric on B"(v).
Then the H-curvature vanishes if and only if the Z-curvature vanishes.

A Finsler metric is said to be R-quadratic if its Riemann curvature R, is quadratic
iny e T, M [3,9]. In [9], author showed that all of R-quadratic Finsler metrics have
vanishing H-curvature. Together with Corollary 1.3, we have the following:

Corollary 1.4. Let F' an orthogonally invariant Finsler metric on B™(v). Suppose
that F' is R-quadratic, then F has vanishing Z-curvature.

For recent results of («, 8)-metrics of almost vanishing H-curvature, we refer the
reader to [17].

2 Preliminaries

Let F' = F(z, y) be a Finsler metric on a manifold M. Let v(¢) be the geodesic with
~7(0) = x and 4(0) = y. Let

d .
S(e, 1) = 2 [r21), A (D]1cy
where 7(z, y) is the distortion of F. S(z, y) is called the S-curvature [1,3,13]. We
consider the following non-Riemannian quantity, 2 = Z;dz’, on the tangent bundle
TM:
Ej = SJ‘,yZ — S|j, (21)

where denotes the horizontal covariant derivative. = is called the Z=-curvature of
F [13] (x-curvature in an alternative terminology in [1]).

“|77
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The H-curvature H, = H;;dz’ ® dz? is defined in (1.2). Let F' be a Finsler metric
on B"(v) := {x € R™; || <v}. F is said to be spherically symmetric if it satisfies
F(Axz, Ay) = F(z, y) for all z € B"(v), y € T,B"(v) and A € O(n). Let |, | and ()
be the standard Euclidean norm and inner product on R™. In [5], Huang-Mo showed
the following:

Lemma 2.1. A Finsler metric F' on B"(v) is orthogonally invariant if and only
if there is a function ¢ : [0, v) Xx R = R such that

)

Let us recall a formula for the Riemann curvature of an orthogonally invariant
Finsler metric F' = |y|¢ (|x| T )
Let

F(z,y) = |y|¢(

where (x, y) € TB"(v) := TB"(v)\{0}.

1
Ry = P2 — ~(sP, + rP.) + 2Q[1 + sP + (r* — s*)P,] (2:2)
T

Ry := QQ(QQ - SQS) + %(QQT —5Qps — ’I“st) (’I“ - S )(QQQSS - Qg) (23)

R3 = —SRQ (24)
2
R = 7P Qs 99 rs+2Q(P75P(9)+2(7‘2752)QP99 SPQ‘; (T —S )PSQS*PP
(2.5)
R5 = —R1 — Sff47 (26)
WhereP _%1537PT = 37‘7Q5 = 8S7QT = aerSs = 6527T _|1'|) = <1‘;J"‘/>,P

and @ are given by

Q= i TQss — Gr + SPrs P = ros + 5o, . Q

2r ¢ - s¢s + (TQ - 32)¢ss, 2T¢) ¢
We have the following (7, 4]

(59 + (r? — 5%)os] -

Lemma 2.2. Let F = |y|¢ (\x| o

on B™(v). Then the Riemann curvature of F' is given by

) be an orthogonally invariant Finsler metric

R;- = u’R16Y + u?Rox's? + uRsx'y’ + uRsz’y' + Rsy'y/?, (2.7)

where u = |y|.

3 =-curvature and H-curvature

In this section, we are going to give expressions of non-Riemannian quantities H and
= of orthogonally invariant Finsler metrics (see (3.15) and (3.16) below).
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By (2.4), (2.6) and Lemma 2.2, we can easily get a formula for the Ricci curvature
Ric=377" | R}.

Ric = nu®Ry + v*|z|*Ry + u(z, y)Rs + ulz, y) Ry + |y|*Rs = u’R, (3.1)

where

R:=(n—1)R; + (r* — s*)Ry. (3.2)
We have

o . 0 , 5
TijZC = Tyj(u R)

ou? OR ; ,

(3.3) = @R + u2gsy]~ = uRsz’ + (2R — sRy)y’,

where Ry := % and we have used

o 2y, sy = = (3.4)
By simple calculations, we have
2 _ 2
sy =0, szt = r-s (3.5)
U
We denote aé? by Rjs j =1,---,5. By using (2.7), we obtain

8R§' k i 2 i k i 2 i
W = 2y R15j +u Rlssykéj + 2y " Roz'x? + u”Rogsyrx’e

k .
—|—%R3xzy3 + uRsss,rx'y’ + uRsx'o),
+ZR4xJ Y+ uRyssyp 0’y + uRyx? oy,
+R558yk yiyj + R55,iyj + R5y’§i

It follows that

OR:
2

ayg = u[Rys + 25Ry + (r? — s%)Ros + R3 + (n + 1) Ryla?

(3.6) +[2Ry — sRys + sR3 + (r* — s*)R3s + (n + 1) Rs]y’,

where we have used (3.5) and the second equation of (3.4). By (2.4), we have
Rss = —Ry — sRa,.

Taking this together with (2.3), (2.5) and (3.6), we obtain

Z 8R;- = udMa? + Ny’ (3.7)
ooy ’
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where
M= Ris+sRy + (7"2 - 82)R25 + (n+ 1)Ry,

and

MN:=(1—-n)R; — sRis — r*Ry — 5(r? — s*)Ras — (n + 1)sRy.

The following lemma is well-known [13]:

Lemma 3.1.[9,13]

Plugging (3.3) and (3.7) into (3.10), we obtain
E; = —% [u(2 + R,z + (2N + 2R — sR,)y’ | .
By using (3.2) we have
Ry = (n— 1)Rys + (r* — 5*)Rys — 25Ry.
From which together with (3.8) we have
2M 4 R, = (n+ 1)Rys + 3(r* — s*)Ros + 2(n + 1)Ry := k.
By (3.2), (3.9), (3.12) and (3.13),

291+ 2R — sR, = —sk
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Substituting (3.13) and (3.14) into (3.11), we obtain the following formula for =:

—_

K . .
=5 = —g(ua? —sy’),

where k is given in (3.13). Taking this together with (3.4) yields

(1]

Y] 3 U

where ks 1= %. Plugging this into (1.2) yields

i i sk (15 i
Hy; = 6 (uxj—sy)(ux—sy)—6(u2yjy —5J>

= [smW — kex'a? '

SK . . S .
“(27y +a'y’) — = (k+ sks)Y'y
U u

) ) Jyt — iyl s .. .
=Bl — syt — sy — & (Mw Sy 5(;]1) ,

(3.15)

(3.16)



64 Xiaohuan Mo

4 Almost vanishing H-curvature
In this section, we will prove Theorem 1.1 and 1.2. Using (3.4), we obtain

2517 i,
u=0" —y'y?
oy = (4.1)

3syiyd —ux'y? — ualy® — su?d;;

S 2

yiyi = - (4.2)
Proof of Theorem 1.1. F' can be rewritten as F' = u¢(r, s), where u = |y|, r =

||, s = &9 Tt follows that

lyl -
ij = uyj¢ + u¢ssyj (4.3)
and
Fyiyr = Uyiyr @+ (Uys Syk + Uyk S5 ) Ps + USyi Syk Pss + USysyk Ps. (4.4)

Plugging (3.4), (4.1) and (4.2) into (4.4) yields

WFyy = (ud —yiy)+ [y (ua? — sy?) + 7 (ua® — sy')] s
+(uz’ — sy )(ua? — sy’)dss
+[3syly? — u(xy? + 2Iy*) — su?d;]bs (4.5)
= u2(¢ - S¢s)§ij + ’U/Q(bssxixj - ud)ss (ﬂfiil/j + xjyi)
_(¢ — 85 — 52¢ss)yiyj-

By (3.16) and (4.5), (1.3) holds if and only if

skdI — koxtad +

SKs
u

(2" + 2'y?) — 5 (k + ske)yly’

= 30D 12— )09 4 ubua's? — ubay + 2 — (6~ 56— u)0'v].
It is easy to see that (4.6) holds if and only if o)
o= 200 ), (4.7)
r= 20, (4.9
strtsn) = 20 s, ., (4.10)

By using (3.13), we obtain that (4.7) is equivalent to the first equation of (1.6). Hence
it is sufficient to show that (4.7) implies (4.8), (4.9) and (4.10). Since F is a Finsler
metric, we see that ¢ — s¢s > 0 [11]. Suppose that (4.7) holds. Note that

g ) (4.11)
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It follows that the 1-form 6 can be expressed by

T s L (12

K
Furthermore, is independent of y. In fact, it is only dependent of
3(n+1)(¢ — s0s)
|| Let
il =0 (W> (4.13)
3(n+1)(¢—s¢s) 2 )’ '
Plugging (4.13) into (4.12) yields
2
=0 <|3:2|> (z, y). (4.14)
Together with (4.11) we have
0 so @ (4.15)
u 2 ) '

By using (4.13) and (4.15), we obtain

30+ 1o (5) (6 - 0]

Ks

Thus we obtain (4.8). (4.8)x(—s) yields (4.9). Finally, (4.10) is easy to obtain from
(4.7) and (4.8).

Proof of Corollary 1.2. It suffices to show that the =-curvature almost van-
ishes given by (1.4) if the H-curvature almost vanishes given by (1.3) and in this

(=, y)
[yl

vanishing H-curvature. Then (4.7), (4.13) and (4.14) hold. By using (4.14), we have

()] - ()5 o () e

where f(t) := [o(t)dt. Hence 6 is an exact form. Plugging (3.4) into (4.3) yields

j d)_sd)s j
Fy = ¢t + E=0y)

case corresponding 1-form is exact. Suppose that F' = |y|¢ (\x|, ) has almost

Combining with (4.14) we get
||

(zi)y _ U(Fj)(qa_ ss) (uz? — sy?).

Together with (3.15) and (4.13) we obtain that the Z-curvature almost vanishes given
by (1.4).
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