
Ricci and Riemann solitons

Iulia Elena Hirică, Constantin Udrişte

Abstract. Geometric flows (Ricci flow, Riemann flow, mean curvature
flow etc), as a class of important geometric PDEs, have been highlighted
in many fields of theoretical research and practical applications. They
are very useful tool in understanding the topology of arbitrary Rieman-
nian manifolds and have had a profound influence on modern geometric
analysis.

The aim of this paper is quadruple: (i) to introduce in usage the ex-
tended name ”moving scaled tensorial image Ricci soliton” and to define
the ”moving graph Ricci soliton” (like those in the context of PDEs), (ii)
to introduce in usage the extended name ”moving scaled tensorial image
Riemann soliton” and to define the ”moving graph Riemann soliton” (like
those in the context of PDEs), (iii) to characterize the gradient Sasaki-
Riemann solitons with harmonic potential function; (iv) to introduce the
posynomial Ricci or Riemann flows.

M.S.C. 2010: 53C44, 53C21.
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1 Introduction

During the last years, geometric evolution equations have been used to study geomet-
ric questions like isoperimetric inequalities, the Schönfliess conjecture, the Poincaré
conjecture, Thurston’s geometrization conjecture, the 1/4-pinching theorem, or Yau’s
uniformization conjecture. Particularly, the geometric flows is enjoying rapid growth
providing new techniques of investigations in different directions of study in differen-
tial geometry, analysis and theoretical physics.

In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process
that deforms the metric of a Riemannian manifold in a way formally analogous to
the diffusion of heat, smoothing out irregularities in the metric. The most important
recent application is Perelman’s proof of Thurston’s conjecture [20].

Lately, increasingly more papers discuss Ricci solitons, but some authors hollowed
this notion of content, losing the kinematic character of the soliton. Moreover, the
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concept of Ricci soliton seems to bypass the concept of soliton met in significant PDE
(Korteweg-de Vries PDE, Wave PDE, reaction-diffusion PDE etc). We report a point
of view that overcomes these impediments.

Firstly, let us explain our intention by considering: (i) the extended name ”mov-
ing scaled tensorial image Ricci soliton” which reflects the kinematic sense of ”Ricci
soliton”; (ii) the new name ”moving graph Ricci soliton” which is used to describe
”another type of Ricci soliton” similar to solitons in the context of PDEs; (iii) the
extended name ”moving scaled tensorial image Riemann soliton” which is proper for
”Riemann soliton”; (iv) the new name ”moving graph Riemann soliton” which is used
to introduce ”another type of Riemann soliton”, like solitons in PDEs.

Secondly, we study the Sasaki-Riemann flow and Sasaki-Riemann soliton.

2 Ricci flows. Ricci solitons

Let (M, g(x)) be a Riemannian manifold. The Riemannian metric g(x) = (gij(x)))
and its inverse g−1(x) = (gij(x))) determine: (i) the Christoffel symbols of the second
kind

Γm
ij =

1

2
gmk

(

∂gki
∂xj

+
∂gkj
∂xi

−
∂gij
∂xk

)

;

(ii) the Riemann tensor field R(g) of components

Rijkl =
1

2

(

∂2gik
∂xj∂xl

+
∂2gjl
∂xi∂xk

−
∂2gjk
∂xi∂xl

−
∂2gil

∂xj∂xk

)

+gmn (Γ
m

jkΓ
n
il − Γm

jlΓ
n
ik) ;

(iii) the Ricci tensor field S(g) of components

Sij =
∂Γl

ij

∂xl
− Γm

ilΓ
l
jm −

∂

∂xj

(

∂

∂xi

(

ln
√

det(g)
)

)

.

Definition 2.1. A solution g(x, t) of the nonlinear evolution PDE

(2.1)
∂g

∂t
(x, t) = −2S(g)(x, t), t ∈ [0, T ]

is called Ricci flow.

In harmonic local coordinates around a point p, the Ricci flow is a heat flow
evolution since the Ricci tensor is reduced to Sij(p) = − 1

2∆(gij)(p). Similarly, we
can introduce a complex evolutive PDE which mimics a Schrodinger equation, for the
Riemannian metric.

Definition 2.2. (Moving scaled tensorial image Ricci soliton) Let ϕt(x) : M →
M, t ∈ [0, T ], ϕ0(x) = id, be a family of diffeomorphisms and σ(t), σ(0) = 1, be a
positive scale. Let g(x, 0) be a fixed Riemannian metric. The Ricci flow g(x, t) =
σ(t)ϕ∗

t (x)g(x, 0) is called moving scaled tensorial image Ricci soliton. The initial
Riemannian metric g(x, 0) is called the profile of the soliton.
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Theorem 2.1. Let us suppose that the family of diffeomorphisms ϕt(x) is generated

by the vector field X(x). The evolutive metric g(x, t) = σ(t)ϕ∗
t (x)g(x, 0) is a Ricci

soliton iff the profile metric g(x, 0) = g(x) is a solution of the nonlinear stationary

PDE

S(g) +
1

2
LX g + λg = 0.

The profile metrics of Ricci solitons are natural generalizations of Einstein metrics.
A Ricci soliton is called: (i) shrinking, when the profile is associated to λ < 0; (ii)
steady, when λ = 0 and (iii) expanding, when λ > 0.

In case X = ∇f, the PDE whose unknown is the profile g(x) can also be written
as S(g) +Hessf + λg = 0 and the profile g determines a gradient Ricci soliton. The
function f is called potential function of the Ricci soliton.

Remark 2.3. Some authors define the Ricci soliton only by the above PDEs. One
should mention that the kinematic character is missing, in this way.

Remark 2.4. Perelman [20] proved that a Ricci soliton on a compact n-dimensional
manifold is a gradient Ricci soliton.

On a compact manifold Mn, a gradient steady or expanding Ricci soliton is gen-
erated by an Einstein metric profile ([10], [16]).

In dimension three or less all compact shrinking solitons are produced by positive
constant curvature profiles ([11],[16],[20]).

Definition 2.5. (Moving graph Ricci soliton) A Ricci flow g(x, t) = φ(f(x) − ωt),
gij(x, t) = φij(f(x) − ωt), is called moving graph Ricci soliton. The Riemannian
metric φ(f(x)) = (φij(f(x))) is called the profile of the soliton.

Having in mind the soliton solutions in PDEs, the function f should be geodesic
affine, i.e., the co-vector field df must be parallel.

To find a moving graph Ricci soliton we follow the following steps: (i) we give the
function f ; (ii) we compute df = (fi) and

(2.2)
∂gij
∂t

= −φ′

ij ω,
∂gij
∂xl

= φ′

ijfl, Γm
ij =

1

2
φmk

(

φ′

kifj + φ′

kjfi − φ′

ijfk
)

;

(iii) replacing in the PDE (2.1), it follows the profile ODEs as a second order Riccati
ODEs system in the unknown profile matrix function φ(f(x)) = (φij(f(x))).

3 Riemann flows. Riemann solitons

Problem ([21], [22]) Extend in a natural way the concept of Ricci flow to a nonlinear

PDE which involve the Riemann curvature tensor and interpret the metric g(x, t)
as solution of previous PDE. The notion of Ricci soliton is replaced by Riemann

soliton as a kinematic solution of Riemann flow, whose profile generalizes the space

of constant sectional curvature.

Let Gijkl = gikgjl − gilgjk and Rijkl be the components of the curvature tensor
field.
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Definition 3.1. A solution g(x, t) of the nonlinear evolution PDE

(3.1)
∂Gijkl

∂t
(x, t) = −2Rijkl(g)(x, t), t ∈ [0, T ]

is called Riemann flow.

Some results in the Riemann flow resemble the case of Ricci flow (for details, see
[22]).

Theorem 3.1. (Short time existence and uniqueness) Let (M, g) be a Rie-

mannian n-dimensional manifold. Then there exists ǫ > 0 such that the initial value

problem
∂Gijkl

∂t
(x, t) = −2Rijkl(g)(x, t), g(x, 0) = g0(x)

has unique solution g(x, t) on M × [0, ǫ].

Definition 3.2. (Moving scaled tensorial image Riemann soliton) Let ϕt(x) : M →
M, t ∈ [0, T ], ϕ0(x) = id, be a family of diffeomorphisms and σ(t), σ(0) = 1, be
a positive scale. Let g(x, 0) be a fixed Riemannian metric. The Riemann flow
g(x, t) = σ(t)ϕ∗

t (x)g(x, 0) is called moving scaled tensorial image Riemann soliton.
The Riemannian metric g(x, 0) is called the profile of the Riemann soliton.

Theorem 3.2. Suppose the family of diffeomorphisms ϕt(x) is generated by the vector

field X(x). The evolutive metric g(x, t) = σ(t)ϕ∗
t (x)g(x, 0) is a Riemann soliton iff

the profile metric g(x, 0) = g(x) is a solution of the nonlinear stationary PDE

R(g) + λG+
1

2
g ∧ LXg = 0,

where λ is a constant and ∧ is the Kulkarni-Nomizu product.

Riemann profile metrics g generalize the class of metrics of constant sectional
curvature. A Riemann soliton is called shrinking when the profile corresponds to
λ < 0, steady when λ = 0 and expanding when λ > 0.

If X is a gradient, i.e., X = ∇f , then we get the notion of gradient Riemann
solitons, whose profile g(x) satisfies the PDE

R(g) + λG+ g ∧∇2f = 0,

for some smooth potential function f on M.

Remark 3.3. Some authors define the Riemann soliton only by the above PDEs. In
this way, the kinematic character is missing.

Proposition 3.3. A Riemann soliton on a compact Riemannian manifold is a gra-

dient Riemann soliton.

Definition 3.4. (Moving graph Riemann soliton) A Riemann flow g(x, t) = φ(f(x)−
ωt), gij(x, t) = φij(f(x)−ωt), is called moving graph Riemann soliton. The Rieman-
nian metric φ(f(x)) = (φij(f(x))) is called the profile of the soliton.

To determine a moving graph Riemann soliton, we fix the function f and we replace
the expressions (2.2) in the PDE (3.1). It follows the profile ODEs as a second order
Riccati ODEs system in the unknown profile matrix function φ(f(x)) = (φij(f(x))).
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4 The Sasakian case

The Sasakian geometry can be viewed as an odd-dimensional counterpart of the
Kähler geometry. Indeed, just as Kähler geometry is the natural intersection of com-
plex, symplectic, and Riemannian geometry, so Sasakian geometry is the natural
intersection of CR, contact, and Riemannian geometry.

We consider that the underlying manifold (M2m+1, g,Φ, ξ, η) is a Sasakian man-
ifold, where ξ is a unit Killing vector field (called the Reeb vector field), η is the
dual one-form of ξ, Φ is a (1, 1)-tensor defined by Φ(Y ) = ∇Y ξ and R(Y, ξ)Z =
−g(Y,Z)ξ + g(Z, ξ)Y, for any vector fields Y,Z ∈ TM.

Remark 4.1. A compact Riemannian manifold (M, g) is Sasakian if and only if its
metric cone (C(M) = R+ ×M, ḡ = dr2 + r2g) is Kähler.

This condition is equivalent with one of the followings statements:
1) There exists a unit Killing vector field ξ and the tensor field Φ(X) = ∇Xξ

satisfies

(∇Xφ)(Y ) = g(ξ, Y )X − g(X,Y )ξ,

∀X,Y vector fields on M.
2) There exists a unit Killing vector field ξ so that the Riemann curvature satisfies

R(X, ξ)Y = g(ξ, Y )X − g(X,Y )ξ,

∀X,Y vector fields on M.

A Sasakian manifold is said to be η-Sasaki-Einstein if there are two constants λ
and ν such that S(g) = λg + νη ⊗ η.

η-Sasaki-Einstein condition is equivalent to the transverse Kähler metric gT (as-
sociated to the Reeb foliation Fξ) being Einstein, where

gT (X,Y ) =
1

2
dη(X,Φ(Y )).

Remark 4.2. If a Sasakian manifold satisfies the gradient Sasaki-Ricci soliton PDE,
then f is a constant function (i.e. trivial gradient Ricci soliton) and (M, g) is an
Einstein manifold ([12]).

Since all compact Ricci solitons are gradient ones, the previous result implies that
there is no compact non-Einstein Ricci soliton in Sasakian manifolds.

On the other hand, there exist non-gradient expanding Ricci solitons on noncom-
pact Sasakian manifolds which are not Einstein. They are left invariant metrics on
some solvable Lie groups and appear as type III singularities models of Ricci flow [1],
[17]. The one with the lowest dimension is the three dimensional Heisenberg group
with a left invariant metric.

On a Sasakian manifold (M2n+1, g,Φ, ξ, η), the concept of Riemann flow becomes
the Sasaki-Riemann flow, i.e., a solution g(x, t) of the nonlinear evolution PDE

∂Gijkl

∂t
(x, t) = −2Rijkl(g(x, t)).
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The evolutive metric g(x, t) is a Sasaki-Riemann soliton iff the profile metric g(x, 0) =
g(x) is a solution of the nonlinear stationary PDE

R(g) + λG+
1

2
g ∧ LXg = 0,

where λ is a constant.
If X is a gradient (X = ∇f), then we get the notion of gradient Sasaki-Riemann

solitons, whose profile metric g(x) satisfies the nonlinear stationary PDE

R(g) + λG+ g ∧∇2f = 0,

for some smooth potential function f on M.

5 The Sasaki-Riemann soliton

Theorem 5.1. Let (M2n+1, g,Φ, ξ, η) be a Sasakian manifold, whose metric g satis-

fies the gradient Sasaki-Riemann soliton PDE

R(g) + λG+ g ∧∇2f = 0.

Suppose that the potential function f is harmonic, then (M2n+1, g,Φ, ξ, η) is a Sasaki

space form.

Moreover the Kähler cone (C(M), ḡ) is Ricci-flat and also the transverse Kähler

structure gT associated to the Reeb foliation Fξ is Kähler-Einstein.

Proof. Let D ⊂ TM be the distribution defined by η(Y ) = g(Y, ξ) = 0. Then D is
nowhere integrable as η is a contact 1-form.

For any Y ∈ D and Z ∈ TM, we have

R(Y, ξ, Z, Y ) = −g(Y,Z)g(ξ, Y ) + g(Z, ξ)g(Y, Y ) = g(Z, ξ)|Y |2.

Therefore S(ξ, ξ) = 2n. Since ξ is a Killing vector field, from the Sasaki-Riemann
soliton equation one has

Lξ(LXg)(Y,Z) = R(ξ, Y,X,Z) + g(∇Y ∇ξX,Z) +R(ξ, Z,X, Y )+

+g(∇Z∇ξX,Y ) + g(∇Y ξ,∇ZX) + g(∇Y X,∇Zξ) = 0.

The gradient Sasaki-Riemann soliton equation leads to

2

2n− 1
{[(2n+ 1)λ+ α]g − S} = LXg

and therefore

g(∇ξX, ξ) =
−1

2n− 1
[(2n+ 1)λ+ α+ 2n],

where α = ∇iX
i = div(X).

If Y ∈ D and Z = ξ, then

R(X, ξ, ξ, Y ) +∇Y g(∇ξX, ξ) + g(∇ξ∇ξX,Y ) = 0.
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Hence

−
1

2n− 1
Y (α) + g(X,Y ) + g(∇ξ∇ξX,Y ) = 0.

The gradient Sasaki-Riemann soliton equation leads to

Hessf (ξ,W ) =
−1

2n− 1
[(2n+ 1)λ+ α+ 2n]g(ξ,W ).

From the last two formulas, we get

∇ξ∇f =
−1

2n− 1
[(2n+ 1)λ+ α+ 2n]ξ.

Thus we have

g(∇f, Y )−
1

2n− 1
Y (△(f)) = 0, ∀Y ∈ D.

If f is harmonic and M is compact, then f is constant and R = −λG. If M is
noncompact, then ∇f is parallel to ξ; hence ∇f = 0 as D is nowhere integrable, i.e.,
f is a constant function. Consequently, the profile of the gradient Sasaki-Riemann
soliton satisfies the equation R = −λG.

�

Theorem 5.2. Let (M2n+1, g,Φ, ξ, η), be a Sasakian manifold, whose metric g sat-

isfies the Sasaki-Riemann soliton PDE

R+ λG+
1

2
g ∧ LXg = 0.

If X is pointwise collinear to ξ, then the manifold is a Sasaki space form.

Proof. Let X = uξ, where u is a smooth function in M. The Sasaki-Riemann soliton
equation becomes

(2n− 1)Z(u)η(Y ) + (2n− 1)Y (u)η(Z) + 2S(Z, Y ) + 2[(2n+ 1)λ+ α]g(Z, Y ) = 0,

where α = ∇iX
i. If one considers Y = Z = ξ the equation leads to

(2n− 1)ξ(u) = −2n− (2n+ 1)λ− α.

From this two formulas, we obtain

Y (u) = −
(2n+ 1)λ+ α+ 2n

2n− 1
η(Y ).

This is equivalent with

du = −
(2n+ 1)λ+ α+ 2n

2n− 1
η

and, using d2u = 0 and the fact that dη is nowhere vanishing, we get du = 0. Hence
u = constant.

As ξ is Killing, the Sasaki-Riemann soliton is based on a profile satisfying the
equation R = −λG. Consequently, the manifold is a Sasaki space form. �

Open problem. Classification of Sasaki-Riemann gradient soliton for arbitrary
potential function.
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6 Posynomial Ricci or Riemann flows

Let x1, ..., xn denote n real positive variables, and x = (x1, ..., xn) the associated
vector. A real valued function of the form

f(x) = c (x1)
a1
...(xn)

an ,

where c > 0 and ai ∈ R, is called a monomial function. A sum of one or more
monomials, i.e., a function of the form

F (x) =
K
∑

k=1

ck (x1)
a1k

...(xn)
ank ,

where ck > 0, is called a posynomial function. This kind of functions are basically in
geometric programming [4].

Our belief is that what is good programming is good also in differential geometry.
This is why we impose special forms for Ricci and Riemann flows:

(i) the monomial form

gkl(x, t) = ckl(t) (x
1)a1(kl) ...(xn)an(kl) , no sum;

(ii) the posynomial form

gij(x, t) = ckij(t) (x
1)

a1k
...(xn)

ank , sum after k.

7 Examples

Example 7.1. Let us find some geometrical entities produced by a particular mono-
mial Riemannian metric.

On (1,∞)× [0,∞)× [0,∞), we consider a Riemannian monomial metric g whose
non-zero components are given by g11 = c1(t), g22 = xc2(t), g33 = yc3(t), g12 = c4(t),
with c1(t) > 0, c2(t) > 0, c3(t) > 0, c1(t)c2(t)− c4(t)

2 ≥ 0.
The non-zero components of Christoffel symbols are

Γ1
12 = −

0.5c2(t)c4(t)

xc1(t)c2(t)− c4(t)2
, Γ1

22 = −
0.5xc2(t)

2

xc1(t)c2(t)− c4(t)2
, Γ1

33 =
0.5c3(t)c4(t)

xc1(t)c2(t)− c4(t)2
,

Γ2
12 =

0.5c1(t)c2(t)

xc1(t)c2(t)− c4(t)2
, Γ2

22 =
0.5c2(t)c4(t)

xc1(t)c2(t)− c4(t)2
, Γ2

33 = −
0.5c1(t)c3(t)

xc1(t)c2(t)− c4(t)2
.

It follows the equations of geodesics

d2z

ds2
+

1

y

dy

ds

dz

ds
= 0,

d2x

ds2
−

c2(t)c4(t)

xc1(t)c2(t)− c4(t)2
dx

ds

dy

ds

−
1

2

xc2(t)
2

xc1(t)c2(t)− c4(t)2

(

dy

ds

)2

+
1

2

c3(t)c4(t)

xc1(t)c2(t)− c4(t)2

(

dz

ds

)2

= 0,
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d2y

ds2
+

c1(t)c2(t)

xc1(t)c2(t)− c4(t)2
dx

ds

dy

ds

+
1

2

c2(t)c4(t)

xc1(t)c2(t)− c4(t)2

(

dy

ds

)2

−
1

2

c1(t)c3(t)

xc1(t)c2(t)− c4(t)2

(

dz

ds

)2

= 0.

The straight line x(t) = as+ b, y(s) = c, z(s) = d is a geodesic.
The foregoing metric is not a Ricci flow. Indeed, the non-zero components of the

Ricci tensor,

S11 = −
1

4

c1(t)
2c2(t)

2

(xc1(t)c2(t)− c4(t)2)2
,

S12 = −S33 = −
1

4

c1(t)c2(t)(xc1(t)c2(t) + yc2(t)c4(t)− c4(t)
2)

y(xc1(t)c2(t)− c4(t)2)2
,

S22 = −
1

4

xy2c1(t)c2(t)
3 + xyc1(t)c2(t)

2c4(t) + x2c1(t)
2c2(t)

2

(xc1(t)c2(t)− c4(t)2)2y2

−
1

4

−yc2(t)c4(t)
3 − 2xc1(t)c2(t)c4(t)

2 + c4(t)
4

(xc1(t)c2(t)− c4(t)2)2y2
,

do not lead to PDEs (2.1) independent with respect to x, y.

Example 7.2. Let us give a Ricci flat monomial pseudo-Riemannian metric. On
R

3, we consider the family of monomial pseudo-Riemannian metrics g with non-zero
components g11 = xc1(t), g33 = zc2(t), g12 = 2c3(t). These produce a Ricci flat
manifold, i.e., Sij(g) = 0.

Example 7.3. Let us give a Ricci flow using a fundamental non-degenerate tensor g
whose non-zero components are g11 = f(x, t), g22 = k2f(x, t), g12 = k1f(x, t), g33 =
h(z, t). Since the non-zero components of Ricci tensor S(g) are

S11 = −
1

2

(fxx − f2
x)k2

f2(k21 − k2)
, S22 = −

1

2

(fxx − f2
x)k

2
2

f2(k21 − k2)
, S12 = −

1

2

(fxx − f2
x)k1k2

f2(k21 − k2)
,

the PDEs of the Ricci flow are reduced to ft =
(fxx−f2

x
)k2

f2(k2
1−k2)

, ht = 0. The Ricci flow is

generated by five families of functions (if and only if k21 = 2k2, k > 0)

f(x, t) =
2c2(t+ c1)e

±kx

(1− c2e±kx)2
; f(x, t) =

2(t+ c1)

(x+ c2)2
; f(x, t) = k(t+ c1)(2k ± tan(kx+ c2)).
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