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Abstract. For a manifold M , the k’th order tangent bundle T kM of M
consists of all equivalence classes of curves in M which agree up to their
accelerations of order k. It is proved that at the presence of linear con-
nection on M , T kM admits a vector bundle structure over M and every
Riemannian metric on M can be lifted to a Riemannian metric on T kM
[22]. In this paper, we construct the principal bundle of orthogonal frames
OkM of the Riemannian vector bundle T kM over M and we prove that it
is the associated bundle to T kM with respect to the identity representa-
tion of O(Ek). Then, we develop a generalized principal bundle structure
for O∞M associated with T∞M = lim←−T

kM by a radical change of the
notion of the classical bundle of orthogonal frames and replacing O(F)
by a generalized Fréchet Lie group. Moreover, for 1 ≤ k ≤ ∞, the re-
lation between connections on T kM and principal connections on OkM
and GLkM is revealed. Furthermore, using the concept of higher order
differential of a diffeomorphism (or an isometry), we classify higher order
frame bundles up to isomorphism. Finally we will apply our results to two
infinite dimensional Hilbert manifolds.
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Key words: Hilbert manifold; bundle of orthogonal frames; connection; Fréchet
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1 Introduction

Higher order tangent bundle T kM of a smooth, possibly infinite dimensional, manifold
M consists of all equivalence classes of curves which agree up to their acceleration of
order k. The bundle T kM is a natural extension of the usual tangent bundle.
Geometry of higher order tangent bundles and prolongations have witnessed a wide
interest due to the works of Dodson and Galanis [4, 5], Morimoto [19], Miron and
Bucataru [18, 3], León [15] etc.

Existence of a natural vector bundle structure for T kM over M , even for the case
k = 2, is not as evident as in the case of tangent bundle [5, 6, 21]. The author in his
previous work [22] proved that for 2 ≤ k ≤ ∞, T kM admits a vector bundle structure
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overM if and only ifM is endowed with a linear connection. Moreover, applying this
vector bundle structure one can lift a Riemannian metric g from M to a Riemannian
metric Gk on T kM .

On the other hand, it is known that a large number of geometric properties of a
vector bundle can be carried out to the reacher framework of its bundle of orthogonal
(or linear) frames. Motivated by the preceding facts, in this paper for a smooth
Riemannian manifold M modeled on the Hilbert space (E, ⟨, ⟩), we introduce its k-th
order, k <∞, orthogonal frame bundle OkM by

OkM =
∪

x∈M

O(Ek, T k
xM),

where O(Ek, T k
xM) stands for the space of all continuous linear unitary maps from

(Ek, ⟨, ⟩k) to (T k
xM, gk(x)). As a first step, we prove that OkM is a principal bundle

over M with the orthogonal group

O(Ek) = {g ∈ L(Ek); ⟨gv, gw⟩k = ⟨v, w⟩k for all v, w ∈ Ek}

as its structure group. Moreover, we will see that OkM is a subbundle of GLkM ,
where

GLkM =
∪

x∈M

GL(Ek, T k
xM)

and GL(Ek, T k
xM) is the space of all continuous and linear maps from Ek −→ T k

xM
with continuous inverse.

Afterward, considering the right action of O(Ek) on OkM × Ek, we show that
(πk, T

kM,M) is the associated vector bundle with OkM .
In the sequel , for k ∈ N, we briefly outline the relation between connections (and

horizontal lift) on (pk,GLkM,M), (pk,OkM,M) and (πk, T
kM,M) mainly due to

[14] chapter VIII, [12] chapter II and [26].
Then, in the light of [23], we will try to classify the principal bundle structures on

(pk,GLkM,M) and (pk,OkM,M).
However, in the case of k = ∞, even for a finite dimensional manifold M , (π∞,

T∞M,M) becomes a generalized vector bundle with fibres isomorphic to the non-
Banach Fréchet space F = RN = lim←−Rk [22]. Due to the pathology of O(F), for the
Fréchet space F, the definition of O∞M is under question.

Nevertheless, we will overcome this obstacle by a radical change of the notion of
the classical bundle of orthogonal frames and replacing O(F) by a generalized Fréchet
Lie group in the sense of Galanis [9]. More precisely, following the formalism of [25],
we will propose an auxiliary projective (inverse) system of principal bundles such that
O∞M becomes the projective limit of this system.
In this way O∞M becomes a Fréchet principal bundle over M with the projective
limit Lie group O(F) as its structure group.

Considering a suitable representation for O(F) we will prove that T∞M is the
associated vector bundle with the Fréchet principal bundle O∞M .

Then, we present some of the results about connections and horizontal lift on
O∞M andGL∞M mainly due to [10] and [25] and section 3.1. Moreover, we introduce
the induced principal bundle morphisms on infinite order frame bundles in order to
declare the isomorphism classes of these bundles.
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Finally we propose two examples to support our theory. In fact we will apply
our results to the Hilbert manifold of H1 loops on a finite dimensional Riemannian
manifold and an infinite dimensional symplectic group.

Throughout this paper all the manifolds and morphisms are assumed to be smooth
but before the last section, a lesser degree of differentiability can be assumed.

2 Preliminaries

Let M be a manifold, possibly infinite dimensional, modeled on the Banach space E.
For any x0 ∈M define

Cx0 := {γ : (−ϵ, ϵ) −→M ; γ(0) = x0 and γ is smooth }.

As a natural extension of the tangent bundle TM define the following equivalence

relation. For γ ∈ Cx0 , set γ
(1)(t) = γ′(t) and γ(k)(t) = γ(k−1)′(t), where k ∈ N and

k ≥ 2. Two curves γ1, γ2 ∈ Cx0 are said to be k-equivalent, denoted by γ1 ≈k
x0
γ2,

if and only if γ
(j)
1 (0) = γ

(j)
2 (0) for all 1 ≤ j ≤ k. Define T k

x0
M := Cx0/ ≈k

x0
and

the tangent bundle of order k or k-osculating bundle of M to be T kM :=∪
x∈M T k

xM . Denote by [γ, x0]k the representative of the equivalent class containing

γ and define the canonical projections πk : T kM −→ M which projects [γ, x0]k onto
x0.

Let A = {(ϕα, Uα)}α∈I be a C∞ atlas for M . For any α ∈ I define

ϕkα : πk
−1(Uα) −→ ψα(Uα)× Ek

[γ, x0]k 7−→
(
(ϕα ◦ γ)(0), (ϕα ◦ γ)′(0), ...,

1

k!
(ϕα ◦ γ)(k)(0)

)
.

Proposition 2.1. The family B = {(πk−1(Uα), ϕ
k
α)}α∈I declares a smooth fibre bun-

dle (not generally a vector bundle) structure for T kM over M [22].

A connection map on T kM is a vector bundle morphism

K = (
1

K,
2

K ...,
k

K) : TT kM −→
(
⊕k

i=1 π1,⊕k
i=1TM,⊕k

i=1M
)

for which locally on a chart (Uα, ϕ
k
α) there are maps

i

Mα: Uα × Ek −→ L(E,E),

1 ≤ i ≤ k, with K|Uα(u; y, η1, ..., ηk) =
⊕k

i=1

(
x, ηi+

1

Mα (u)ηi−1+
2

Mα (u)ηi−2 +

...+
i

Mα (u)y
)
,for any (u; y, η1, ..., ηk) ∈ TuT kM (See also [2, 22]).

Keeping the formalism of [22] we state the following theorem.

Proposition 2.2. Let ∇ be a linear connection on M . Then there exists an induced
connection map on T kM .

Proof. See [22], Remark 2.8 or [23] Proposition 2.10 with g = idM . �

For k ≥ 2, the bundle structure defined in proposition 2.1 is quite far from being
a vector bundle due to the complicated nonlinear transition functions [6, 22, 23].
However, according to [22] we have the following main theorem.
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Theorem 2.3. Let ∇ be a linear connection on M and K the induced connection
map introduced in Proposition 2.2. The following trivializations define a vector bundle
structure on πk : T kM −→M with the structure group GL(Ek).

Φk
α : π−1

k (Uα) −→ ψα(Uα)× Ek(2.1)

[γ, x]k 7−→ (γα(0), γ
′
α(0), z

2
α([γ, x]k), . . . , z

k
α([γ, x]k)),

where

z2α([γ, x]k) =
1

2

{ 1

1!
γ′′α(0)+

1

Mα [γα(0), γ
′
α(0)]γ

′
α(0)

}
,

...

zkα([γ, x]k) =
1

k

{ 1

(k − 1)!
γ(k)α (0) +

1

(k − 2)!

1

Mα [γα(0), γ
′
α(0)]γ

(k−1)
α (0) + . . .

+
k−1

M α [γα(0), γ
′
α(0), . . . ,

1

(k − 1)!
γ(k−1)
α (0)]γ′α(0)

}
.

Moreover setting Φk
αβ = Φk

α ◦ Φk
β

−1
, ϕαβ = ϕα ◦ ϕ−1

β and Uαβ = Uα ∩ Uβ, then

the transition map Φk
αβ : Uαβ −→ GL(Ek) is given by Φk

αβ(x)(ξ1, ξ2, . . . , ξk) =(
ϕαβ(x), dϕαβ(x)ξ1, ..., dϕαβ(x)ξk

)
.

The converse of the above theorem is also true i.e. if πk : T kM −→ M , k ≥ 2,
admits a vector bundle structure isomorphic to ⊕k

i=1TM , then a linear connection on
M can be defined [22].

At the presence of a linear connection on M , for any i < k,

πk,i : T
kM −→ T iM ; [γ, x]k 7−→ [γ, x]i

also admits a vector bundle structure [22].

Definition 2.1. Let (E, ⟨, ⟩) and (E′, ⟨, ⟩′) be two Hilbert spaces and h ∈ L(E,E′)
(i.e. h is a linear and continuous map). The operator h is called an orthogonal
transformation (or a Hilbert morphism [16]) if

⟨hv, hw⟩′ = ⟨v, w⟩ ; v, w ∈ E.

The space of all orthogonal transformations is denoted by O(E,E′). If E = E′ then
O(E) := O(E,E) is a closed subgroup of

GL(E) = {h ∈ L(E);h is invertible}.

Prolongation of the Riemannian structures from a (finite dimensional) manifoldM
to its higher order tangent bundles was introduced and studied by Miron and Atanasiu
in [17]. However, applying the vector bundle structure of πk : T kM −→M for lifting
a Riemannian metric from M to its higher order tangent bundles is proposed in [6]
for k = 2 and in [22] for k ∈ N.
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Remark 2.2. Suppose that g is a Riemannian metric on M which on the chart
(Uα, ϕα) is represented by gα. Then, theorem 2.3 proposes the Riemannian metric
Gk on T kM , where

Gk
α : π−1

k (Uα)× π−1
k (Uα) −→ R

maps
(
[γ1, x]k, [γ2, x]k

)
to

∑k
i=1 gα(x)

(
proji ◦ Φk

α([γ1, x]k), proji ◦ Φk
α([γ2, x]k)

)
and

proji, 1 ≤ i ≤ k, stands for the projection to the (i+ 1)’th factor [22].
Moreover as a result of theorem 2.3 and theorem 3.1, chapter VII [16] we can as-

sume without loss of generality that a system of local trivializations {(Φk
α, π

−1
k (Uα))}α∈I

consists only orthogonal trivializations and the transition maps take values in the or-
thogonal (or Hilbert) group O(Ek).

3 Higher order frame bundles

Let (M, g) be a Riemannian manifold and Gk be the induced Riemannian metric on
T kM . With the vector bundle (πk, T

kM,M) in mind, set

OkM :=
∪

x∈M

O(Ek, T k
xM),

where O(Ek, T k
xM) stands for the space of all continuous and linear orthogonal trans-

formations from (Ek, ⟨, ⟩) to (T k
xM,Gk(x)).

Consider the triple (pk,OkM,M), where pk : Ok(M) −→M maps the orthogo-
nal k-frame (or k-frame for abbreviation) h : Ek −→ T k

xM onto x. In this section,
we will study some geometric properties of this fibration.

With the orthogonal bundle atlas of remark 2.2 and following the formalism of [5]
we have:

Theorem 3.1. (pk,OkM,M) is a smooth principal O(Ek)-bundle over M .

Proof. All we need is a O(Ek)-bundle structure on (pk,OkM,M) with a right action
which acts on fibres by the right translation [14]. The right action of O(Ek) on OkM ,
for any pair (h, g) ∈ Ok(M)×O(Ek), is given by h.g := h ◦ g. Moreover for any α ∈ I
define

Ψk
α : p−1

k (Uα) −→ Uα ×O(Ek) ; h 7−→ (x,Φk
α,x ◦ h),(3.1)

where (Uα, ϕα) is a local chart for M and Φk
α,x is the restriction of Φk

α (defined by

(2.1)) to the fibre T k
xM . Clearly Ψk

α is smooth and for any g ∈ O(Ek), Φk
α,x(h.g) =

Φk
α.x ◦ h ◦ g = Φk

α,x(h) ◦ g which means that the last component of (3.1) is O(Ek)-

equivariant. For (x, g) ∈ Uα×O(Ek) set h = Φk
α,x

−1 ◦ g. Then Ψk
α(h) = (x, g) i.e. Ψk

α

is surjective. The injectivity of Ψk
α is a direct consequence of the invertibility of Φk

α,x

for any x ∈M .
Finally if Uαβ = Uα ∩ Uβ ̸= f� , then

Ψk
α ◦Ψk

β

−1
:= Ψk

αβ : Uαβ ×O(Ek) −→ Uαβ ×O(Ek)

(x, g) 7−→ (x,Φk
αβ(x) ◦ g)
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which clearly satisfies the cocycle condition. As a consequence {
(
Ψα

k , p
−1
k (Uα)

)
}α∈I

is a bundle atlas which makes the triple (pk,OkM,M) into a principal O(Ek)-bundle.
�

Remark 3.1. One can replace O(Ek, T k
xM) with GL(Ek, T k

xM) and prove that OkM
is a subbundle of the principal GL(Ek)-bundle

GLkM =
∪

x∈M

GL(Ek, T k
xM).

Remark 3.2. For k > i and the vector bundle (πk,i, T
kM,T iM), by repeating this

procedure with appropriate modifications, one can show that

Ok,iM :=
∪

x∈T iM

O(Ek−i, T k,i
x M)

is an O(Ek−i)-principal bundle over T iM , where T k,i
x M = π−1

k,i (T
i
xM). This bundle

will be denoted by (pk,i,Ok,iM , T iM).

Remark 3.3. Since the vector bundle structures proposed by theorem 2.3 or remark
2.2 depend crucially on the connection or the original Riemannian metric, then the
bundle structures on GLkM and OkM change if we change the connection or metric.
In section 3.2 we ask about the extent of this dependence.

Consider the right action of O(Ek) on the product OkM × Ek defined by(
OkM × Ek

)
×O(Ek) −→ OkM × Ek ; ((h, v), g) 7−→ (h ◦ g, g−1v).

Denote the quotient OkM×Ek/O(Ek) by OkM×O(Ek)Ek equipped with the quotient

topology. Note that the equivalence classes [h, v] and [h̄, v̄] are equal if and only if
there exists a g ∈ O(Ek) such that h◦g = h̄ and g−1v = v̄. The proof of the following
theorem is a modified version of theorem 3.3 of [5].

Theorem 3.2. OkM ×O(Ek) Ek admits a vector bundle structure on M isomorphic

to (πk, T
kM,M).

Proof. Define π̃k : OkM ×O(Ek) Ek −→ M by π̃k([h, v]) = pk(h) = x, where h is a
k-frame at x. Clearly π̃k is well defined. Our main task is to construct local (vector
bundle) trivializations for this bundle. To this end, let (ϕa, Uα) be a local chart of M
and Ψk

α : p−1
k (Uα) −→ Uα × O(Ek) be the corresponding trivialization (3.1) for the

principal bundle (pk,OkM,M). Define

Θk
α : π̃−1

k (Uα) −→ Uα × Ek ; [h, v] 7−→ (x,Φk
α,x ◦ h(v)).

If [h◦g, g−1v] is another representative for the class [h, v] then, Θk
α([h◦g, g−1v]) =

(x,Φk
α,x ◦ h ◦ g(g−1v)) = (x,Φk

α,x ◦ h(v)) which means that Θk
α is well defined.

Θk
α is also surjective since for any (x, v) ∈ Uα × Ek, we have Θk

α([Φ
k
α,x

−1
, v])

= (x, v). Moreover if Θk
α([h, v]) = Θk

α([h̄, v̄]), then h and h̄ are k-frames at pk(h) = x
and

Φk
α,x ◦ h(v) = Φk

α,x ◦ h(g ◦ g−1)(v) = Φk
α,x ◦ h̄(v̄)
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that is h(v) = h̄(v̄). By considering g = h−1 ◦ h̄ we see that [h, v] = [h ◦ g, g−1v] =

[h̄, h̄−1 ◦ h(v)] = [h̄, v̄] i.e. Θk
α is also injective. If Uαβ ̸= f� , then the overlap map

Θk
αβ := Θk

α ◦Θk
β

−1
is given by

Θk
αβ : Uαβ × Ek −→ Uαβ × Ek

(x, v) 7−→ (x,Φk
α,x ◦ Φk

β,x

−1
v) = (x,Φk

αβ(x)v).

Consequently, (π̃k,OkM ×O(Ek) Ek,M) admits a vector bundle structure with the

fibres isomorphic to Ek and

{Φk
αβ : Uαβ −→ O(Ek); α, β ∈ I and Uαβ ̸= ∅}

as its transition functions.
The next step is to establish an isomorphism between Ok(M)×O(Ek)Ek and T kM .

We claim that

Υ : Ok(M)×O(Ek) Ek −→ T kM ; [h, v] 7−→ (x, h(v))

is a vector bundle isomorphism. Υ is well defined because for another representative
[h◦g, g−1v], g ∈ O(Ek), of the class [h, v] we have Υ([h◦g, g−1v]) =

(
x, h◦g(g−1(v))

)
=

Υ([h, v]). Moreover Υ is injective since Υ([h, v]) = Υ([h̄, v̄]) implies that h and h̄
are frames at the same point x and h(v) = h̄(v̄). Taking g = h−1 ◦ h̄ ∈ O(Ek)
we get [h, v] = [h ◦ g, g−1v] = [h̄, v̄] as desired. Υ is also surjective since, locally,

(x, v) ∈ T kM is the image of [Φk
α,x

−1
, v] via Υ. Finally let [h, v] be an arbitrary

element of Ok(M)×O(Ek) Ek, π̃k([h, v]) = x and (ϕα, Uα) be a chart of M around x.

Considering the trivializations
(
Θk

α, π̃k
−1(Uα)

)
and

(
Φk

α, πk
−1(Uα)

)
we observe that

Φk
α ◦Υ ◦Θk

α

−1
: Uα × Ek −→ Uα × Ek ; (x, v) 7−→ (x, v)

which means that Υ and its inverse are differentiable vector bundle morphisms. �

Remark 3.4. In a similar way one can show that GLkM ×GL(Ek) Ek ≃ T kM . More-

over for k > i, a similar result holds true forOk,iM×O(Ek−i)Ek−i and (πk,i, T
kM,T iM).

3.1 Connections on higher order frame bundles

In this section, for k ∈ N, we briefly outline the relation between connections on
(pk,GLkM,M), (pk,OkM,M) and (πk, T

kM,M) mainly due to [14] chapter VIII,
[12] chapter II and [26].

Let G be a Lie group and p : P −→ M be a principal G-bundle . A principal
connection Γ on p : P −→M is a smooth assignment of a subspace HxP of TxP , for
each x ∈ P , such that
1. TxP = HxP ⊕ VxP , where VxP = ker(dxp) : TxP −→ Tp(x)M ,
2. Rg∗Hx = Hgx for any g ∈ G.

Moreover, given a principal connection one can define the (Lie Algebra) g-valued
1-form ω on P which annihilates the horizontal distribution [12, 26].

Let V be a vector space and ρ : G −→ GL(V ) be a representation of G on V .
Then any principal connection on P gives rise to a connection on the associated vector
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bundle P ×G V with the horizontal distribution H[x,v] = κv∗(HxP ) and κv : P −→
P ×G V ; x 7−→ [x, v].

In our case, since (pk,OkM,M) is a subbundle of (pk,GLkM,M), under certain
conditions a principal connection Γ on (pk,GLkM,M) can be reduced to a principal
connection Γ′ on the bundle of orthogonal frames. More precisely Γ on GLkM can
be reduced to Γ′ on OkM if and only if the parallel translation with respect to Γ
preserves the inner product on the fibres. In this case we say that Γ is a metric
connection [12].

On the other hand, a connection Γ′ on OkM can be extended to a metric con-
nection Γ on GLkM by the right action. Indeed for any x ∈ GLkM there exists g ∈
GL(Ek) such that y := xg−1 ∈ OkM . Then we define HxGLkM := Rg∗(HyOkM).

We note that, for a metric connection Γ on GLkM , given a curve γ in M its
horizontal lift started form an orthogonal k-frame remains in OkM and it is the same
as the horizontal lift with respect to the (reduced) connection Γ′.

More precisely let x ∈ OkM (the initial condition) and γ : (−ϵ, ϵ) −→ M be a
differentiable curve. Then there exists a unique curve γ̃ in GLkM such that pk ◦ γ̃ = γ
and the tangent to γ̃ is always horizontal (For the local conditions see [12] and [14]).
Since γ̃(0) is an orthogonal frame and Γ is metric then γ̃(t) remain in OkM for all
t ∈ (−ϵ, ϵ).

Finally, a linear connection on (πk, T
kM,M) induces a principal connection on

GLkM as follows. Suppose that ∇ is a linear connection on πk with the family of
Christoffel symbols Γα : Uα −→ L(Ek,L(E,Ek)), α ∈ I. Then one can associate a
unique connection Γ with the form ω ∈ Λ1

(
LkM , L(Ek,Ek)

)
and the local connection

forms

(3.2) Γα(x)(y, v) = [ϕ−1
α

∗
ωα(x)y]v

for any x ∈ ϕa(Uα), y ∈ E and v ∈ Ek (for more details see [26]; Corollary 2.3). If
parallel translation with respect to Γ preserves the inner product, then the connection
form ω takes its values in the Lie algebra o(Ek) of O(Ek).

3.2 Higher order differentials and the induced
principal bundle morphisms

In this section, in the light of [23], we will try to classify the principal bundle structures
on (pk,GLkM,M) and (pk,OkM,M) up to isomorphism.

For a differentiable map f : M −→ N , the k’th order differential of f is defined
by

T kf : T kM −→ T kN ; [γ, x]k 7−→ [f ◦ γ, f(x)]k.

We have the following main theorem from [23].

Theorem 3.3. i. If ∇M and ∇N are f -related, then T kf : T kM −→ T kN becomes
a vector bundle morphism.
ii. LetM and N be two (Riemannian) manifolds. If f is a diffeomorphism (isometry),
then T kf is an isomorphism between (isometry between Riemannian) vector bundles.
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We remind that a principal bundle morphism between (p, P,G,M) and (p′, P ′, G′,
N) is a triple (f ′′, f ′, f), where f ′′ : P −→ P ′ is a fibre preserving map above
f : M −→ N , that is, p′ ◦ f ′′ = f ◦ p. Furthermore, for any g ∈ G and x ∈ P ,
f ′′(xg) = f ′′(x)f ′(g) [12, 14].

Now, suppose that f : M −→ N is a diffeomorphism and ∇M and ∇N be two
f -related connections on M and N respectively. Since M and N are diffeomorphic,
then we assume that the model space for M and N is E. With the above facts in
mind, we have the following proposition.

Proposition 3.4. i. The vector bundle morphism T kf induces the principal bundle
isomorphism (Tkf, idGL(Ek), f) where

Tkf : GLkM −→ GLkN ; b 7−→ T k
x f ◦ b

and x = pk(b).
ii. If f is an isometry, then (Tkf, idO(Ek), f) given by Tkf(b) = T k

x f ◦ b, b ∈ OkM is
a principal bundle isomorphism.

Now, suppose thatM = N . As a consequence of proposition 3.4, if we replace ∇M

with a g-related connection where g is a diffeomorphism (isometry), then the bundle
structures on GLkM (and OkM) remain isomorphic.

4 Infinite order frame bundles

In order to introduce O∞M we will consider it as an appropriate limit (projective or
inverse limit) of the finite factors OkM . To make our exposition as self-contained as
possible, we state some preliminaries about projective limit of sets, topological vector
spaces, manifolds and bundles from [24], [8], [9], [10], [20] and [1].

Consider the familyM = {Mi, φji}i,j∈N, whereMi, i ∈ N, is a manifold modeled
on the Banach space Ei and φji :Mj −→Mi, j ≥ i, is a differentiable map. Moreover
we need to
i) the model spaces {Ei, ρji}i,j∈N form a projective system of vector spaces,
ii) for any x = (xi) ∈M = lim←−Mi there exists a projective family of charts {(ϕi, Ui)}
such that xi ∈ Ui ⊆Mi and for j ≥ i, ρji ◦ ϕj = ϕi ◦ φji.
In this caseM = lim←−Mi may be considered as a generalized Fréchet manifold modeled
on the Fréchet space E = lim←−Ei. If in addition the manifolds {Mi}i∈N have Lie group
structures thenM := lim←−Mi is called a Projective Limit Banach (PLB) Lie group [9].

Note that in the case of non-Banach Fréchet spaces E and F, L(E,F) does not
remain in the category of Fréchet spaces and GL(E) and hence O(Ek) does not even
admit a reasonable topological group structure (see also [23], Remark 4.1).

In what follows, the indices i, j are natural numbers with j ≥ i unless otherwise
stated.

Let {Ei, ρji} and {Fi, νji} be two projective systems of Hilbert spaces with the
limits E and F respectively. For any i ∈ N, set

Hi(E,F) := {(f1, . . . , fi) ∈
∏

1≤k≤i

L(Ek,Fk) ; νkl ◦ fk = fl ◦ ρkl for i ≥ k ≥ l},
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and

Oi(E,F) := {(f1, . . . , fi) ∈
∏

1≤k≤i

O(Ek,Fk) ; νkl ◦ fk = fl ◦ ρkl for i ≥ k ≥ l}.

Notice thatHi(E,F) is a Banach space since it is a closed subspace of
∏

1≤k≤i L(Ek,Fk).
Moreover Oi(E,F) is a Lie group because Oi(E,F) = GLi(E,F) ∩

∏
1≤k≤i O(Ek,Fk)

and Oi(E,F) is closed in

GLi(E,F) := {(f1, . . . , fi) ∈
∏

1≤k≤i

GL(Ek,Fk) s.t νkl ◦ fk = fl ◦ ρkl for i ≥ k ≥ l}.

Furthermore it is easy to check that {Hi(E,F), hji}, {GLi(E,F), hji} and {Oi(E,
F), hji} are projective systems ([8]) with the connecting morphisms hji(f1, . . . , fj) =
(f1, . . . , fi).

For our purposes we will consider the Fréchet space H(E,F) = lim←−Hi(E,F) and
the generalized Lie groups GL(E,F) = lim←−GLi(E,F) and O(E,F) = lim←−Oi(E,F). In
the case of Ei = Fi, i ∈ N, we write H(E), GL(E) and O(E) rather than H(E,E),
GL(E,E) and O(E,E), respectively.

Finally suppose we are given a sequence of Banach vector bundles (principal
bundles) {πi : Ei −→ M}i∈N. This system is called a projective system of vector
(resp. principal) bundles if (i) the total spaces form a projective systems of Hilbert
(resp. Banach) manifolds, (ii) the fibres form a projective system of vector spaces
(Lie groups) and (iii) for any x ∈ M the exists a projective system of trivializations
{(τi, Ui)}i∈N of {(πi, Ei,M)}i∈N respectively ([8], [10] and [25]).

The following theorem is a modified version of theorem 3.4 from [22].

Theorem 4.1. At the presence of a linear connection on the Hilbert manifold M ,
T∞M = lim←−T

iM , admits a generalized vector bundle structure over M with fibres

isomorphic to E∞ = lim←−Ei and the structure group O(E∞).

4.1 The bundle O∞M

In this section we focus on constructing a principal bundle, say O∞M , over the base
M (or T i0M) associated with T∞M . But if we argue as the ordinary case OkM , we
encounter a principal bundle with O(E∞) as its structure group which is not a Fréchet
Lie group. We construct a generalized principal bundle O∞M associated with T∞M
by a radical change of the notion of the classical bundle of orthogonal frames and
replacing O(E∞) by the generalized Fréchet Lie group O(E∞) (see also [9, 10, 25]).

In order to define the infinite order orthogonal frame bundle O∞M we consider an
auxiliary projective system of Banach principal bundles

(
p̄k, ŌkM,M

)
, k ∈ N, where

ŌkM =
∪

x∈M

Ok(E∞, T∞
x M)

and p̄k : ŌkM −→M maps (h1, . . . , hk) ∈ Ok(E∞, T∞
x M) onto x.

Lemma 4.2. (p̄k, ŌkM,M) is a principal fibre bundle with the structure group Ok(E∞).
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Proof. Let x ∈ M , (Uα, ϕα) be a chart around x in M and Φk
α, k ∈ N, be the

trivialization given by remark 2.2. The corresponding trivialization for ŌkM is defined
by

Ψ̄k
α : p̄−1

k (Uα) −→ Uα ×Ok(E∞)(4.1)

(h1, . . . , hk) 7−→ (x,Φ1
α,x ◦ h1, . . . ,Φk

α,x ◦ hk).

Similar to the proof of theorem 3.1 (and also [25]), one can deduce that Ψ̄k
α is a

bijection and Ok(E∞) has a right action on ŌkM . Moreover the transition map, for
suitable α, β ∈ I, is given by

Ψ̄k
α ◦ Ψ̄k−1

β := Ψ̄k
αβ : Uαβ ×Ok(E∞) −→ Uαβ ×Ok(E∞)

(x, g1, . . . , gk) 7−→ (x,Φ1
αβ(x) ◦ g1, . . . ,Φk

αβ(x) ◦ gk)

which clearly is a smooth map. �

We proceed by defining the connecting morphisms

rji : Ōj(M) −→ Ōi(M) ; (h1, . . . , hj) 7−→ (h1, . . . , hi)

in order to introduce O∞M .

Theorem 4.3. {(p̄i, ŌiM,M), hji, rji}i,j∈N is a projective system of Banach principal
bundles and the limit (p∞,O∞M,M) is a generalized principal bundle on M with the
structural group O(E∞).

Proof. It is clear that for any i ∈ N, rii = id and for natural numbers i ≤ j ≤ k we
have rji ◦ rkj = rki which means that O∞M := lim←− ŌkM (as a set) exists. To tell
whetherO∞M is a generalized Fréchet principal bundle, it suffices to show that for any
x ∈M and the chart (ϕα, Uα) around it in M , the trivializations {(p̄−1

i (Uα), Ψ̄
i
α)}i∈N

form a projective system [25]. However for j ≥ i

(idUα × hji) ◦ Ψ̄j
α(h1, . . . , hj) = (idUα × hji)(x,Φ1

α,x ◦ h1, . . . ,Φj
α,x ◦ hj)

= (x,Φ1
α,x ◦ h1, . . . ,Φi

α,x ◦ hi)
= Ψ̄i

α ◦ rji(h1, . . . , hj).

No we define a generalized principal bundle structure by setting {
(
p̄−1
∞ (Uα), Ψ̄

∞
α

)
}α∈I

as a bundle atlas for O∞M , where Ψ̄∞
α := lim←− Ψ̄i

α and p∞ := lim←− p̄i. �

In what follows, we shall try to show that O∞M is a principal bundle associated
with the vector bundle π∞ : T∞M −→ M . To this end, we first consider the right
action of O(E∞) on O∞M × E∞ given by((

(hi), (ei)
)
, (gi)

)
i∈N
7−→

(
(hi ◦ gi), (g−1

i ei)
)
i∈N.

This action induces the quotient (O∞M × E∞)/O(E∞) := O∞M ×O(E∞) E∞.

Theorem 4.4. O∞M ×O(E∞) E∞ admits a Fréchet vector bundle structure on M
isomorphic to (π∞, T

∞M,M).
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Proof. Keeping in mind the index i ∈ N for all sequences, consider the projection
π̄ : O∞M ×O(E∞) E∞ −→ M mapping [(hi), (ei)] onto p∞

(
(hi)

)
. We will propose a

family of trivializations to endow the above-mentioned fibration with a vector bundle
structure. For any x ∈M contained in the chart (ϕa, Uα) of M define

Θ̄∞
α : π̄−1(Uα) −→ Uα × E∞

[(hi), (ei)] 7−→
(
p̄∞((hi)),Φ

∞
α,x((hiei))

)
,

where Φ∞
α,x = lim←−Φi

α,x. It is easily checked that Θ̄∞
α is well defined and bijective (e.g.

[25, 26]).
Let α and β be a pair of indices such that Uα ∩ Uβ ̸= ∅ and Θ̄∞

α and Θ̄∞
β be the

corresponding trivializations. Then,

Θ̄∞
αβ := Θ̄∞

α ◦ Θ̄∞−1

β : Uαβ × E∞ −→ Uαβ × E∞(
x, (ei)

)
7−→

(
x, (Φi

αβ(x)(ei))
)
=

(
x,Φ∞

αβ(x)((ei))
)
,

where Φi
αβ are those which are defined in remark 2.2.

Finally, the map

Ῡ : O∞(M)×O(E∞) E∞ −→ T∞M ; [(hi)i∈N, (ei)i∈N] 7−→ (hiei)i∈N

establishes the desired vector bundle isomorphism. �

Remark 4.1. The methods of theorems 4.3 and 4.4 can be adopted to prove that
O∞M is a (generalized) principal bundle associated with the vector bundle T∞M on
T i0M , i0 ∈ N.

Remark 4.2. One can replace O(E∞) with GL(E∞) and prove the same results for

GL∞M = lim←−GLk
M , where

GLk
M =

∪
x∈M

GLk(E∞, T∞
x M).

In fact (p∞,GL∞M,M) is a (generalized) principal bundle with the structure group
GL(E∞).

4.2 Connections on O∞M

The purpose of this section is to present some of the results about connections on
O∞M and GL∞M mainly due to [10] and [25] and section 3.1.

Since the structure groups of O∞M and GL∞M , that is O(E∞) and GL(E∞)
respectively, are obtained as projective limits of Banach Lie groups, then we have:

Theorem 4.5. i. Any connection on (p∞,O∞M,M) or (p∞,GL∞M,M) can be
considered as the limit of a projective system of connections (Theorem 3.7, [10]).
ii. There is a bijective correspondence between linear connections ∇ = lim←−∇i on
(π∞, T

∞M,M) and connection forms ω on (p∞,GL∞M , M) (Corollary 3.4, [25]).
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Moreover, since O(E∞) = lim←−Oi(E∞) and GL(E∞) = lim←−GLi(E∞) are projective
limit Lie groups, then according to [9], for the corresponding Lie algebras we have
o(E∞) = lim←− oi(E∞) and gl(E∞) = lim←− gli(E∞). Now, suppose that for any i ∈ N, ωi is

the connection form a metric connection on (p̄i,GLiM,M) with the limit ω = lim←−ωi.

Then, ωi can be reduced to a connection on (p̄i,OiM,M) and the limit ω = lim←−ωi is
a connection form on O∞M with values in o(E∞).

As a consequence of theorem 3.8 of [10], for any connection on (p∞,O∞M, M) or
(p∞,GL∞M,M), and a given initial condition, the horizontal lift of γ : (−ϵ, ϵ) −→M
exists and it is unique. This curve is of the form γ = lim←− γi, where for any i ∈ N, γi
is the horizontal lift of γ with respect to ωi. As a consequence, the horizontal lift of
γ with respect to any connection on O(E∞) (or any metric connection on GL(E∞))
exists and for a given initial condition it is unique. Finally, any connection on O(E∞)
can be extended to a connection on GL(E∞) in the obvious way.

4.3 Induced morphisms on infinite order frame bundles

Let g : M −→ N be a diffeomorphism (isometry). As we have seen in section 3.2, at
the presence of g-related connections on M and N for any k ∈ N, (Tkg, idGL(Ek), g)

(respectively (Tkg, idO(Ek), g)) becomes a principal bundle morphism.
According to [23], theorem 4.2 and example 5.1,

Proposition 4.6. The pair (T∞g, g) : (T∞M,π∞
M ,M) −→ (T∞N, π∞

N , N) is a gen-
eralized vector bundle isomorphism. Moreover, ∇M and ∇N are Riemannian connec-
tions on M and N respectively and g is an isometry, then (T∞g, g) is a projective
limit of vector bundle isometries.

Now, we take one step further and we observe that (T∞g, idGL(Ek), g) and (T∞g,
idGL(Ek), g) are generalized principal bundle morphisms. More precisely

T∞g : GL∞M −→ GL∞N ; (hi)i∈N 7−→ (hi ◦ T i
xg)i∈N

x = pi(hi), is a limit map and T∞g = lim←−Tig. In the same way we define T∞g :
O∞M −→ O∞N .

Now, suppose thatM = N . As a consequence of the last proposition, if we replace
∇M with a g-related connection, where g is a diffeomorphism (an isometry), then the
bundle structures on GL∞M (and O∞M) remain invariant.

5 Examples

In this section we propose two examples to support our theory. First we apply our
results to the Hilbert manifold of H1 loops on a finite dimensional Riemannian mani-
fold. Then we describe another infinite dimensional example by employing the infinite
dimensional symplectic group Sp2(H).

Example 5.1. An H1 loop c : I = [0, 1] −→ Rn is an absolutely continuous curve
for which ċ(t) exists almost everywhere and∫

[0,1]

⟨c(t), c(t)⟩dt+
∫
[0,1]

⟨ċ(t), ċ(t)⟩dt <∞
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and c(0) = c(1). We recall that c : I −→ Rn is absolutely continuous if for any ϵ > 0

there exists δ > 0 such that 0 ≤ t0 < t1 < · · · < t2k+1 ≤ 1 and
∑k

i=0 |t2i+1 − t2i| < δ,

imply
∑k

i=0 |c(t2i+1)− c(t2i)| < ϵ ([13], p. 159).
Now suppose that (M, g) is an n-dimensional Riemannian manifold. A loop c :

I −→ M is called of class H1 if, for any chart (U, ϕ) of M the mapping ϕ ◦ c : I ′ ⊆
c−1(U) −→ Rn is H1. Then H1(M), formed by the loops c : I −→ M of class H1,
admits a Hilbert manifold structure modeled on the Hilbert space H := H1(c∗TM)
[7, 13].

The space of vector fields along c is isomorphic with the space of sections Γ(c∗TM)
of the pullback c∗TM and it is identified with the tangent space TcH

1(M). The scalar
product on TcH

1(M) is given by

H1(g)(u, v)c :=

∫
I

gc(t)(u(t), v(t))dt+

∫
I

gc(t)
(D
dt
u(t),

D

dt
v(t)

)
dt

for any u, v ∈ TcH
1(M). (For a detailed study about the geometry of H1(M) we

refer to [13] and [7].) In this case (H1(M),H1(g)) becomes an infinite dimensional
Riemannian manifold. Let ∇H1(M) be the Levi-Civita connection of H1(M). Then,

according to theorem 2.3, πk : T kH1(M) −→ H1(M) admits a Riemannian vector
bundle structure and the induced Riemannian metric is given by remark 2.2.

As a consequence (pk,OkH1(M),M) is an O(Hk) principal fiber bundle associated
with the vector bundle (πk, T

kH1(M),M).
Moreover, according to section 3.1, the Levi-Civita connection on the vector bundle

πk : T kH1(M) −→ H1(M) induces a principal connection on pk : OkH1(M) −→
H1(M) which can be extended to a principal connection on pk : GLkH1(M) −→
H1(M).

The existence of a generalized principal bundle structure for p∞ : O∞H1(M) −→
H1M and p∞ : GL∞H1(M) −→ H1M is a result of theorem 4.3.

Now, suppose that (M, g) and (N,h) are two finite dimensional Riemannian man-
ifolds and f :M −→ N is an isometry. Then T kf : T kM −→ T kN is a vector bundle
morphism over f :M −→ N ([23], example 5.1). Moreover

H1(f) :
(
H1(M), H1(g)

)
−→

(
H1(N),H1(h)

)
; c 7−→ f ◦ c

is also an isometry ([7], p. 97). Again example 5.1 of [23] implies that

(T kH1(f),H1f) :
(
πM
k , T kH1(M),H1(M)

)
−→

(
πN
k , T

kH1(N),H1(N)
)

is also a vector bundle isometry. As a consequence of section 3.2, the induced map(
TkH1(f), idO(Hk),H

1f
)
is a principal bundle isomorphism from

(
OkH1(M),O(Hk),

H1M
)
to

(
OkH1(N),O(Hk), H1N

)
.

Note that we can rephrase the last result for the k’th order frame bundlesGLkH1(M)
and GLkH1(N).

Finally, as a result of section 4.3, the isometry f :M −→ N induces the principal

bundle isomorphism
(
T∞H1(f), idO(H∞),H

1f
)
from

(
O∞H1(M),O(H∞),H1M

)
to(

O∞H1(N),O(H∞), H1N
)
.
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Example 5.2. We begin this example with a detailed analysis of the restricted sym-
plectic group Sp2(H) based on [11]. Let (H, ⟨, ⟩) be an infinite dimensional real
Hilbert space. Moreover suppose that J is a complex structure on H that is J is a
linear isometry on H with J2 = −1 and J∗ = −J . The symplectic group Sp(H) is
defined by

Sp(H) = {g ∈ GL(H) : g∗Jg = J}.

and its Lie algebra sp(H) is the set of all bounded linear operators for which xJ =
−Jx∗. Denote by B2(H) the Hilbert-Schmidt class B2(H) = {g ∈ B(H) : Tr(g∗g) <
∞}, where Tr is the usual trace and B(H) is the set of all bounded linear operators
on H. Define the restricted symplectic group to be

Sp2(H) = {g ∈ Sp(H) : g − 1 ∈ B2(H)}

Then the Lie algebra of Sp2(H) is sp2(H) = {x ∈ B2(H) : xJ = −Jx∗} which
is a closed subspaces of B2(H) and hence a Hilbert space [11]. Moreover, for any
g ∈ Sp2(H),

(TSp2(H))g = gsp2(H) ⊂ B2(H)

is an inner product space endowed with the left invariant Riemannian metric

(5.1) ⟨v, w⟩g = ⟨g−1v, g−1w⟩ = Tr((gg∗)−1vw∗) ; v, w ∈ TgSp2(H)

However, the Riemannian connection on Sp2(H) is given by the local form (Christoffel
symbol)

2g−1Γg(gx, gy) = xy + yx+ x∗y + y∗x− xy∗ − yx∗

for any g ∈ Sp2(H) and x, y ∈ sp2(H).
Now, theorems 3.1, 4.3, 3.2 and 4.4 guarantee that for any k ∈ N ∪ {∞}, pk :

OkSp2(H) −→ Sp2(H) is a principal bundle associated with the vector bundle πk :
T kSp2(H) −→ Sp2(H).

Finally, since the metric 5.1 is left invariant it follows that for any f ∈ Sp2(H)
the mapping f : Sp2(H) −→ Sp2(H) ; g :7−→ f ◦ g is an isometry of Hilbert Lie
groups. Therefore, for any k ∈ N ∪ {∞}, T kf : T kSp2(H) −→ T kSp2(H) is a vector
bundle isomorphism and Tkf : OkSp2(H) −→ OkSp2(H) becomes a principal bundle
isomorphism.
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17, 2 (2012), 6–21.

[5] C.T.J. Dodson and G.N. Galanis, Bundle of acceleration on Banach manifolds,
Nonlinear Anal. 63 (2005), 465–471.



Higher order frame bundles 117

[6] C.T.J. Dodson and M.S. Radivoiovici, Tangent and frame bundles of order two,
Analele St. Univ. ”Al. I. Cuza”, 28, 1 (1982), 63–71.

[7] P. Flaschel and W. Klingenberg, Riemannsche Hilbertmannigfaltigkeiten. Peri-
odische Geodätische, Lecture Notes in Mathematics 282, Berlin-Heidelberg-New
York, Springer-Verlag, 1972.

[8] G.N. Galanis, Projective limits of Banach vector bundles, Portugaliae Mathemat-
ica, 55, 1 (1998), 11–24.

[9] G.N. Galanis, Projective limits of Banach Lie groups, Period. Math. Hungar. 32,
3 (1996), 179–191.
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bundles and linear connections, Tokyo. J. Math. 20, 1 (1997), 129–137.

[26] E. Vassiliou, Transformations on linear connections, Period. Math. Hungar. 13,
4 (1982), 289–308.

Author’s address:

Ali Suri
Department of Mathematics, Faculty of Sciences,
Bu-Ali Sina University, Hamedan 65178, Iran.
E-mail: ali.suri@gmail.com , a.suri@math.iut.ac.ir , a.suri@basu.ac.ir.


