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1 Introduction

The smooth spaces studied by Alfred Frölicher in several works in the 1980s (see
among others [12], [13], [14], [15], [16]) were called Frölicher spaces by P. Michor and
A. Kriegl ([17]), as well as in the basic paper Frölicher versus Differential Spaces: A
Prelude to Cosmology by P. Cherenack ([9]), and subsequent ones by the same author.

The differential geometry on these spaces is the latest generalization of the well-
known geometry of smooth manifolds. It is built on a smooth structure that originates
from monoids. The most usual monoid is C∞(R,R), even though one can consider
more generally C∞(S,R) with S and R being arbitrary topological spaces. We recall
this construction as follows.

Let P(MR) := Cc, P(RM ) := Cf be small categories and C∞(R,R), where M is
a nonempty set. A Frölicher structure on M is a pair (CM ,FM ), where CM ∈ P(MR)
and FM ∈ P(RM ). The duality conditions ΓFM = CM , ΦCM = FM holds, with
inclusion reversing (contravariant) functors, at set level, Γ and Φ given by Γ : Cf −→
Cc and Φ : Cc −→ Cf such that

ΓF={c : R →M | f ◦c∈C∞(R) :=C∞(R,R), for all f ∈F}

ΦC={f :M → R | f ◦c∈C∞(R) :=C∞(R,R), for all c∈C}.

This implies that any set F of scalar functions on M determines a set ΓF of curves.
Similarly, any set C of contours determines a set ΦC of functions and since P(MR)
and P(RM ) have Galois connection property, one gets a unique pair (CM ,FM ) for the
smooth structure. As such, a Frölicher structure on a set turns out to be a diffeology
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with only 1-plots. For more details on these properties, we refer the reader to the
literature [6, 18, 24] and [2, 23].

There are two topologies and geometries underlying a Frölicher structure, which
might be different from one another. In ([5]) it is proved that Frölicher smooth
mappings are continuous in both the topologies induced by structure curves as well
as the one induced by structure functions, the fact which is rephrased in Lemma 1.1
below.

We recall that a Frölicher space is a triple (M, CM ,FM ), where M is a nonempty
set and (CM ,FM ) is a Frölicher structure on M . A map φ between Frölicher spaces
(M, CM ,FM ) and (N, CN ,FN ) is said to be smooth if φ∗(C) := {φ◦ c; c ∈ CM} ⊂ CN ,
or equivalently, φ∗(FN ) := {f ◦ φ; f ∈ FM}. Consequently, it becomes easy to see
that the maps c ∈ ΓF and f ∈ ΦC are smooth in the sense of Frölicher on an arbitrary
Frölicher space (see [5]).

Frölicher spaces and smooth maps between them form a category called the cate-
gory of Frölicher spaces, which we denote by Frl. In their studies, Frölicher and Kriegl
([15]), Kriegl and Michor ([17]) as well as Cherenack ([9]) proved how interesting the
properties of the category Frl are. That is, it is complete, cocomplete, Cartesian
closed, and topological over sets in the sense that Frölicher spaces have a behavior
similar to topological spaces (see [2]). In this work we will consider a Frölicher space
as a topological construct provided with its weakest topology in which all structure
curves, functions and smooth maps are seen to be continuous. Next, and for further
purposes on the geometry of this type of smooth spaces, we will compare this topology
with the one induced by a Finsler metric. More on the topology of Frölicher spaces
can be found in [7] by Andreas Cap, and in [2], [3], [4], [5], [6] by the authors.

2 Frölicher topology

The topology of a Frölicher space (M, CM ,FM ) is defined to be the initial topology
generated by structure functions f ∈ FM , which we call Frölicher topology, is the
collection of all subsets O that are pre-images f−1(V ), for f ∈ FM , of open sets
V in the standard topology τR of R. It is denoted by τFM . Notice that a stronger
topology on (M, CM ,FM ), denoted by τCM , is obtained by taking the collection of all
subsets U ⊂ M such that c−1(U) ∈ τR for all curves c ∈ CM . In effect, it is clear
that τFM ⊆ τCM but for most Frölicher spaces this inclusion is just an equality, in
which case they are called balanced spaces (see [7]). The natural examples of balanced
Frölicher spaces are smooth manifolds and Euclidean spaces.

Lemma 2.1. If O ⊆ Rn such that c−1(O) is an open set in the standard topology of
R for all curves c ∈ C∞(R,Rn), then O is an open set in the standard topology of Rn.

Proof. Boman’s theorem on Rn states that f ∈ C∞(Rn,R) iff f ◦ c ∈ C∞(R,R), for
all C∞ curves c : R −→ Rn. This turns Rn into a Frölicher space with the standard
smooth structure being (C,F), where C = C∞(R,Rn) and F = C∞(Rn,R). It follows
that Rn carries the standard topology which we denote by τRn , as well as the two
topologies resulting from the Frölicher structure. These are

τF = {U ⊆ Rn/ U = f−1(I), I ∈ τR}
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generated by the structure functions f ∈ F , and

τC = {O ⊆ Rn/ J = c−1(O) ∈ τR},

generated by the structure curves c ∈ C. From the latter, if O ⊆ Rn such that
c−1(O) ∈ τR for all smooth curve c, then O ∈ τC .(∗)

Now, we recall that c ∈ C in the standard Frölicher structure on Rn if and only if
c ∈ C∞(R,Rn) by Boman’s Theorem. And as such, it is continuous in the standard
topology on Rn. But c is smooth in the Frölicher structure (C,F). It follows from
the Lemma above that c is continuous in both the topologies τC and τF underlying
the Frölicher structure.

Next, f ◦c ∈ C∞(R,R) is therefore continuous for τR, so that one can assume that
(f ◦ c)−1(I) = c−1(f−1(I)) = c−1(O) for some I ∈ τR and f ∈ F . Again, f ∈ F if
and only if f ∈ C∞(Rn,R) by Boman’s Theorem. So, we have both f−1(I) ∈ τF and
f−1(I) ∈ τRn . But τF ⊆ τC generally. Thus, f−1(I) ∈ τC . It follows (see (∗)) that
τC ⊆ τRn . In other words, we have proved that an open set in τC is open in τRn . That
is, O is open in the standard topology of Rn. �

Lemma 2.2. The functor τ : Frl −→ Top leaves Frl-morphisms unchanged on the
level of sets in the sense that for any Frl-morphism φ of M into N , τ(φ) is a Top-
morphism. That is, τ(φ) is continuous in the underlying topology.

Proof. Let φ be a morphism between Frölicher spaces (M, CM ,FM ) and (N, CN ,FN )
provided each with its pair of underlying topologies (τCM , τFM ) and (τCN , τFN ). We
need to show that φ is both (τCM , τCN ) and (τCM , τCN )-continuous.

First, we know that for all c ∈ CM , φ ◦ c ∈ CN . Now let U ∈ τCN . Hence,
(φ ◦ c)−1(U) ∈ τR. But (φ ◦ c)−1(U) = c−1(φ−1(U)), which is c−1(V ) ∈ τR, where
V = φ−1(U). Therefore, φ−1(U) ∈ τCM . Thus, φ is (τCM , τCN )-continuous.

Next, let O ∈ τFN . Recall that f ◦ φ ∈ FM for all f ∈ FN . Now assume that
O = f−1(I). We have φ−1(f−1(I)) = (f ◦ φ)−1(I) ∈ τFM . But f−1(I) ∈ τFN as by
definition of τFN . Thus, φ is (τFM , τFN )-continuous. �

A Frl-object M is called a base space when it is a compact Hausdorff balanced
F-space (see [7]). Note thatM is Hausdorff if τFM and τCM are both Hausdorff. From
the inclusion above, the topology of a Frölicher spaceM shall be its weakest topology
τFM induced by structure functions, unless otherwise specified. Therefore, τCM is
Hausdorff if τFM is Hausdorff.

3 Finsler metric topology

3.1 Finsler structure on a Frölicher space

In what follows we assume that the reader is familiar with the concept of tangent
spaces and bundles described in the relevant literature (see [2, 9, 20, 21, 22]) which
are similar to those of n-dimensional smooth manifolds (see [20]) for the Frölicher of
constant dimension, which we are interested in here.

Definition 3.1. Let M be an n-F-space and p is running through M . Let the set

denoted by TM :=
⨿
p∈M

{p}×TpM=M×(
⨿
p∈M

TpM)={(p, vp) | p∈M, vp∈TpM}. That
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is, TM ⊆M×Der(M)⊆M×C∞(FM ,R). Let T ∗M = {(p, θp) | p ∈M, θp ∈ T ∗
pM}=⨿

p∈M

{p}×T ∗
pM =M×(

⨿
p∈M

T ∗
pM). Then TM is called the operational tangent bundle

on M , and T ∗M is called the operational cotangent bundle on M .

Remark 3.2. There exist natural projections defined as follows: π :TM→M, (p, vp) 7→
p and τ : T ∗M →M , (p, θp) 7→ p. The final structure, on the coproduct spaces given
above, are here generated by the families (ιp)p∈M and (ι̃p)p∈M of canonical inclusion
maps ιp :TpM ↪→TM and ι̃p :T

∗
pM ↪→T ∗M. At each point p∈M , d :FM→FM induces

a map dp :FM→R such that, for all f ∈FM , dp(f)=(df)p=evp(df)=(evp◦d)(f) with
evp the evaluation map at p. It follows that dp=evp◦d is a smooth linear map and a
derivation. As (df)p is defined for each p∈M , it determines globally a smooth map
df :TM→R such that (df)|TpM =(df)p=dp(f). Also, π−1(p)={v∈TM |π(v)=p}=
TpM is the fiber of TM at p and τ−1(p)=T ∗

pM is the fiber of T ∗M at p.
Let M be an n-F-space and p ∈ M , and (U , φ) a local chart at p. The sets TpM
and T ∗

pM are linear n-F-spaces diffeomorphic to Rn with respective bases { ∂
∂xi

} and
{dxi}, where (xi) are local coordinates of p∈U ⊂M such that φ(p) = (x1, . . . , xn).
The pair (x, v) ∈ TM is given in local coordinates by (xi,

∂
∂xi

), and (x, θ) ∈ T ∗M
is given by (xi, dxi). Thus, TM and T ∗M are both 2n-F-spaces. The F-structure
on TM is generated by the set of functions Fo = {df | f ∈ FM}∪{f ◦π | f ∈ FM}.
Thus, (TM,ΓFo,ΦΓFo) := (TM,TCM , TFM ). Now, the cotangent bundle T ∗M
on M has the natural structure generated by the set of functions Go = {χ∗ | χ ∈
X(M)}∪{f◦τ | f ∈τM}, where X(M) is the set of all smooth vector fields on M . Let

φ :M →N be a diffeomorphism of F-spaces. Thus, T ∗φ :=
(
(φ)−1

)∗
=
(
φ∗)−1

and

φ∗=(T ∗φ)−1 such that φ∗(θ) :=θ◦φ∗=α if, and only if (φ∗)
−1

(α) :=α◦φ−1
∗ =θ.

Obviously, from Definition 3.1 and Remark 3.2, (TM, π,M) and (T ∗M, τ,M) are
F-bundles.

Definition 3.3. LetM be an Frl-object. A set S={f1, . . . , fn} of structure functions
on M is called functionally independent in the neighbourhood of a point p ∈ M if
{(df1)(p), . . . , (dfn)(p)} is a linearly independent set in the tangent space TpM to M
at p.

Lemma 3.1. [2, 20] Let (M, CM ,FM ) be a Frölicher space. Let f1, . . . , fn be some
smooth functions defined in an open neighbourhood U of p∈M such that one of them
is injective. Then the map ψ := (f1, . . . , fn) is a diffeomorphism of (U , CU ,FU ) onto
(ψ(U), Cψ(U),Fψ(U ))

Remark 3.4. [2, 20] Let (M, CM ,FM ) be an n-F-space. Let {f1, . . . , fn} be a gen-
erating set of F-structure on M such that the map given by ψ(p)=(f1(p), . . . , fn(p))
for all p∈M is one-to-one. Then the associated tangent map ψ∗p :TpM→Tψ(p)ψ(M)
is an isomorphism of linear spaces. It is known from linear algebra that the map
φ : TpM → Rn defined by φ(v) := (v1, . . . , vn), where the vi are the coordinates
of v ∈ TpM , is an isomorphism. Recall that the canonical F-structure on Rn
is generated by {π1, . . . , πn} and ψ(M) is an n-F-subspace of Rn, generated by
the restrictions π̂i = πi|ψ(M)

while each fi = πi|ψ(M)
◦ψ for i = 1, . . . , n. Thus,

n = dimRn = dimψ(M) = dimTpM = dimTψ(p)ψ(M) = dimX(U), where U is an
open neighbourhood of p.
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Let (M, CM ,FM ) be an n-F-space and p∈M . Assume that F-structure on M is
generated by the set {f1, · · · , fn} ⊂ FM , such that φ(p) := (f1(p), · · · , fn(p)) is an
F-diffeomorphism on a neighbourhood of p onto an F-subspace of Rn endowed with
the canonical F-structure.

Definition 3.5. Let M be an F-space. M is said to be of constant dimension n if
either

1. dimTpM =dimTqM =n for any p, q∈M , with p ̸=q and for all v∈TpM , there
exists χ∈X(M) such that χ(p)=v; or

2. for each p∈M , there exists an open neighbourhood U of p in M and a local
basis of vector fields over U making X(U) a free module on FM .

We may have different dimensions at different points of an F-space. The rest of
this paper is devoted to F-spaces of constant dimension, which we will call ”F-spaces of
dimension n” or indiscriminately ”n-F-spaces”. An n-F-space looks like Rn at both the
F-structure and the F-topology points of view. Therefore, (Rn, C∞(R,Rn), C∞(Rn,R))
is a natural model of F-spaces of constant dimension, as well as a n-dimensional
smooth manifold. [2]

Definition 3.6. [1, 8, 19] Let M be an n-F-space. The set denoted by TMo =
{(p, y)∈TM | p∈M,y∈TpM, y ̸=0} is called a slit tangent bundle over M .

Since TpMo=TpM − {0}⊂TpM ⊂TM and TM =⊔p∈M{p}×TpM , then TM is a
balanced space and the coproduct topology is equal to the underlying F-topologies,
since the coproduct of Frölicher spaces is a final object [6]. It follows that TpMo is
an open set in TpM . Thus, dimTpMo=n, TMo=⊔p∈M{p}×TpMo is an open set in
TM , and so dimTMo=2n. That is, TpMo and TMo are respectively n-F-space and
2n-F-space.

Let (x, y), (x̄, ȳ) ∈ TMo. We define a relation on TMo by (x, y) ∼ (x̄, ȳ) if, and
only if there exists a real λ > 0 such that x = x̄ and y = λȳ. The relation ∼ is
an equivalence relation on TMo. The equivalence class of (x, y) ∈ TMo is of the
form (x, [y]) := {(x, λy) |λ > 0, (x, y) ∈ TMo}, where [y] = {ȳ = λy |λ > 0}. It is
called a ray or a direction. The quotient F-space TMo/∼ is called the projective
sphere bundle denoted by TMo/∼ := SM = {(x, [y]) | (x, y)∈ TMo}. Note that each
TxM is partitioned by the equivalence classes. SM is a (2n−1)-F-subspace of TM .
The fibers at (x, [y]) ∈ SM , denoted by SxM := τ−1(x) and S∗

xM := Γ−1(x), where
Γ : S∗M → M is the canonical projection, are diffeomorphic to (n−1)-F-subspaces
in TxM and T ∗

xM respectively. Thus, SxM and S∗
xM are diffeomorphic to Sn−1, and

are called projective spheres at x.
Now, we assume that the reader is familiar with the basic concepts of Minkowski

spaces (see [1, 11, 19]). Recall that each Euclidean space is a special Minkowski
space. Also, let (Rn, F ) be a Minkowski space. The set {y∈Rn |F (y)=1} is a closed
hypersurface strictly convex around 0∈Rn, but never passing through the origin. It
is called the indicatrix of F and is diffeomorphic to the standard sphere Sn−1⊂Rn.

Definition 3.7. Let M be an n-F-space. A function F : TM → [0,+∞) is called a
Finsler structure (or a Finsler metric) on M if it has the following properties: F is
F-smooth on TMo, and Fx(y) :=F (x, y) is a Minkowski norm on TxM for any x∈M ,
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where Fx : TxM → [0,+∞). The function F is also called a fundamental function
while the pair (M,F ) is called a Finsler F-space (or Finsler space, for short).

We can define the Finsler structure using local coordinates system (xi, yi) of TM
by setting F (x, y)=F (yi ∂

∂xi |x) in the following way:

Definition 3.8. Let M be an n-F-space. A function F : TM → [0,+∞) is called a
Finsler structure onM if it satisfies the following: F is F-smooth on TMo; F (x, ay)=
aF (x, y) for a>0, that is, F is homogeneous in y of degree 1; and the n×n Hessian
matrix (gij) := ([ 12F

2]yiyj ) is positive-definite at every point (x, y) ∈ TMo. That is,
for any y ∈ TxMo = TxM−{0}, the bilinear symmetric form gy : TxM × TxM → R,
defined by gy(u, v)=

1
2
∂2

∂s∂t [F
2(x, y + su+ tv)]|s=t=0

=giju
ivj , is an inner product on

TxM .

From [11], we note that the matrix (gij) is of constant rank n−1 in every point
(x, y)∈TMo. When n=2, gy(u, v)=giju

ivj is understood as

(u1, u2)

(
g11 g12
g21 g22

)(
v1

v2

)
and is equal to g11u

1v1+g12u
1v2+g21u

2v1+g22u
2v2. In the literature, sometimes

gij(x, y)dx
i⊗dxj stands for g :=gij(x, y)yiyj , where (xi) is a local coordinates system

on M . The fundamental tensor of F denoted by g := gij(x, y)dx
i ⊗ dxj , where

gij :=
1
2F

2
yiyj =FFyiyj+FyiFyj , is the symmetric covariant 2-tensor defined on TM ,

also called a smooth tensor field of type (0, 2) on M .

Definition 3.9. Let (M,F ) be a Finsler F-space. The Finsler function F on M is
said to be Riemannian if its restriction Fx(y)=F (x, y) to TxM , for any x ∈ M , is a
Euclidean norm. That is, F 2

x (y)= ⟨x, y⟩x= gij(x)y
iyj , where gij(x)= g( ∂∂x ,

∂
∂xj ) has

no y dependence but is a smooth function of x only.

From [19], the Finsler n-F-space (M,F ) is locally Minkowski n-F-space if for an
arbitrary chart (U, xi) of M , the fundamental tensor satisfies gij(x, y) = gij(y).
That is, F (also g) has no dependence on the xi. Such a coordinate system (xi) is
called adapted. Furthermore, (M,F ) is globally Minkowski n-F-space ifM is a vector
space. The difference between the foundations of Riemannian geometry and Finsler
geometry lies in the following: F 2=ds2=gij(u)du

iduj (Riemannian quadratic form)
and F (u, du) = ds (Finsler non-quadratic restriction). Note that Finsler geometry
is the study of geometric properties of Finsler metrics on the underlying structure.
It is the Riemannian geometry without the quadratic restriction, since, according to
Definition 3.9, the particular Finsler metric F where the restriction Fx(y) of F
obeys the relation F 2

x (y) = ⟨x, y⟩x. A Riemannian structure on a F-space extends
the construction of the Euclidean norm on Rn. Thus, a Riemannian structure F is a
reversible Finsler structure. Recall that each TxM is a linear space F-diffeomorphic
to Rn. Thus all properties of F and g on Rn extend to TxM .

3.2 Finsler metric topology

Below, we introduce the concept of distance on a Finsler F-space as well as we define
the topology induced by it, so-called the Finsler metric topology on M in order to
compare the latter to the Frölicher topology.
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Definition 3.10. Let B and B′ be two bases in M , a topological space. B is equiv-
alent to B′ if the topologies they generate are equal.

Lemma 3.2. Let B and B′ be two bases in M with respective topology τ , τ ′. The base
B is said to be equivalent to B′ if the following hold: For each U ∈B and each x∈U ,
there exists U ′∈B′ such that x∈U ′⊂U , that is, τ⊂τ ′; and, for each U ′∈B′ and each
x∈U ′, there exists U ∈B such that x∈U⊂U ′, that is, τ ′⊂τ.

Example 3.11. In R2 each open ball can be inscribed in an open regular polygon.
The converse also holds. The family B of all open balls forms a base for the usual
topology on R2, say τB. But τB= τFR2

= τCR2
. Thus, the base B is equivalent to the

base {f−1(0,+∞) | f ∈FR2}, since the topologies they generate are equal. Let P be
the family of all open regular polygons of the same kind (that is equilateral triangles,
or squares, or pentagons, or hexagons, etc.). Thus, P is a subbase generating a certain
topology τP . Hence, P is a base for the topology τP . Now, since each U ∈ τB is a
union of some open balls, it follows that for each x∈U , there exists V ∈P such that
x ∈ V ⊂ U . That is, x also belongs to an open ball centered at x, which contains
the polygon V and is one of the factors of the union which yields U . Therefore,
τB⊂τP . From the first statement in this example, we can say that τP ⊂τB . Therefore,
τB = τP = τFR2

= τCR2
. Hence, P,B and {f−1(0,+∞) | f ∈FR2} are equivalent bases.

These concepts can be generalized, for any n to Rn, with open balls and open regular
polytopes.

Definition 3.12. Let F be a Finsler structure on an n-F-space M . Let C be a
smooth curve parametrized by a map c :=c(t) arising from p to q in M , with c(a)=p
and c(b) = q, that is, c : [a, b] −→ M. The length of C is defined by: lF (C) :=∫ b
a
F (c(t), ċ(t))dt, where a, b, c(a)=p and c(b) = q are given such that a<b. That

is, c=c(t) is a map parametrizing the curve C.

The curve C can be represented by another map x : [ã, b̃] −→M such that, given
a transformation φ : [a, b] −→ [ã, b̃] defined by φ(t) := t̃>0, with φ(a)= ã and φ(b)= b̃,

then x=x(t̃), x(ã)=p and x(b̃)=q. So, c=x◦φ. Therefore, dφ(t)= ˙φ(t)dt and ẋ(t̃)=

ẋ(φ(t))= ẋ(φ(t)) ˙φ(t). In the sequel lF (C)=
∫ b
a
F (c(t), ċ(t))dt=

∫ b̃
ã
F (c(t)), ċ(t)dt. We

have shown that lF (C) is well defined, that is, it is independent of the choice of a
parametrization.

Definition 3.13. Let F be a Finsler structure on an n-F-spaceM . Let C be a smooth
curve passing through the pair p, q in M . Let dF : M×M −→ R be the function
defined by: dF (p, q) := inf

C
lF (C), where the infimum is taken over all arcs ensuing

from p to q. The function dF is called a Finsler distance function. Furthermore,
(M,dF ) is called a Finsler metric space (F-space).

Given a Finsler structure F on an n-F-space M , we have constructed a distance
function dF using the length of a smooth curve C on M . Conversely, dF deter-

mines uniquely the Finsler structure on M by F (p, y) := lim
ϵ→0+

dF (p, q)

ϵ
, where p∈M ,

y∈TpM , and C(t) is an arbitrary smooth curve such that C(0)=p and Ċ(0)=y. F
is reversible if, and only if dF is reversible. That is, F (p,−y)=F (p, y) if, and only if
dF (p, q)= dF (q, p) for all pairs of points p, q ∈M . In [1, p161− 163] the smoothness
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of F is studied for manifolds, and the study is based on the relationship between F
and dF given in Definitions 3.12 and 3.13 above. Thus, we can extend this method
to the F-spaces setting. To avoid a cumbersome notation, we will note d :=dF in the
rest of this section. Thus, (M,d) :=(M,dF ).
Let (M,d) be a Finsler metric space and A,B⊂M , where A,B are nonempty. The
identity d(A,B) := inf

x∈A,y∈B
d(x, y) defines the distance between A and B. Further-

more,
d({x}, B) :=d(x,B) := inf

y∈B
d(x, y),

where x ∈M and also, d(A, {y}) :=d(A, y) := inf
x∈A

d(x, y), where y ∈M . Thus, it is

obvious that if A∩B = f� then d(A,B) = 0. The converse of this implication is
not necessarily true, since if d(A,B) = a there does not necessairily exist a pair of
x∈A, y∈B such that d(x, y)=a.

Lemma 3.3. Let (M,d) be a Finsler metric space. Let an open ball be in M denoted
by B(a, r)={x∈M | d(a, x)<r}. The following statements hold:

1. Let x ̸∈B(a, r). Then d(a, x)− r≤d(B(a, r), x)= inf
y∈B(a,r)

d(y, x).

2. Let d be symmetric. Then d(a, x)−r≤ inf
y∈B(a,r)

d(x, y).

3. Let x∈B(a, r), that is, r−d(a, x)>0. Let d(x, y)<r−d(a, x)= ϵ, where y∈M .
Then B(a, r)⊃B(x, ϵ).

Proof. 1. The given assumption x ̸∈B(a, r) is equivalent to d(a, r)≥r if, and only
if d(a, x)−r≥0. Assume that y∈B(a, r), that is, d(a, y)<r. Now, we can write
0≤d(a, x)−r≤d(a, x)−d(a, y). From the triangle inequality one gets d(a, x)≤
d(a, y)+d(y, x). Thus, d(a, x)−d(a, y)≤d(y, x). Hence, d(a, x)−r≤d(y, x) for
any y∈B(a, r). Therefore, d(a, x)−r≤ inf

y∈B(a,r)
d(y, x)=d(B(a, r), x).

2. d symmetric implies d(x, y)=d(y, x). Then 1. above becomes
d(a, x)−r≤ inf

y∈B(a,r)
d(x, y).

3. Let y ∈ B(x, ϵ), that is, d(x, y) < ϵ. The triangle inequality yields d(a, y) ≤
d(a, x)+d(x, y)<d(a, x)+ϵ=d(a, x)+r−d(a, x)=r. Thus, d(a, y)<r if, and only
if y∈B(a, r). Hence, B(a, r)⊃B(x, ϵ).

�

M has its underlying Frölicher topology τFM . But d induces the metric topology
denoted by τd.

Now, we will define some objects in the latter topology. Also, we shall recall their
similar objects in Rn and TxM by means of the identification Rn=TxM .

On Rn, we define:

S(0, r) = {v∈ Rn | ∥v∥ = r}
= {v∈Rn | v = o⃗a and d(o, a) = r}
= Sn−1⊂Rn
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and
B(0, r) = {v∈Rn | ∥v∥ < r}

= {v∈Rn | v= o⃗a and d(o, a)<r},

the open ball with centre 0 and radius r, and B̄(o, r) = {v ∈ Rn | ∥v∥ ≤ r} = {v ∈
Rn | v = o⃗a and d(o, a)≤ r}, the closed ball with centre o and radius r. Note that
each open ball is a basic open set for the metric (Cartesian, which is also Euclidean)
topology. There is a one-to-one correspondence between open balls and boxes (cubi-
cal) as shown in Example 3.11.

On TxM , we define: the set Sx(o, r) :={y∈TxM | Fx(y)=r} called the tangent sphere
of radius r and centre o (centered at o); the set Bx(o, r) := {y ∈ TxM | Fx(y) < r}
called the open tangent ball of radius r and centre o; and also the set B̄x(o, r) :={y∈
TxM | Fx(y)≤ r} called the closed tangent ball of radius r and centre o. Each open
ball is a basic open set for the metric topology.
On M , we have the counterpart concepts denoted and defined as follows: The set
S+(p, r) := {x ∈M | d(p, x) = r} called the forward metric sphere of radius r and
centre p (centered at p); the set B+(p, r) := {x ∈ | d(p, x) < r} called the forward
metric open ball of radius r and centre p; also the set B̄+(p, r) :={x∈M | d(p, x)≤r}
called the forward metric closed ball of radius r and centre p. Each forward metric
open ball is a basic open set for the metric topology.

The above Finsler distance function d is always taken from p to each x. Never-
theless, when we decide to take d from each x to p we are defining the dual concepts
of backward metric sphere, named the open ball and closed ball. In the Finsler setting
d is not supposed to be reversible. A natural relationship arises between these three
topologies on Rn, TxM and M , since M is locally diffeomorphic to Rn, while Rn
is isometric to TxM by use of θ := φ constructed in Remark 3.4 for the latter, and
φ : U ⊂M → φ(U)⊂ Rn the local F-diffeomorphism for the former. Thus, we can
define local diffeomorphism from TxM to M , using θ locally and φ, that is,

Bp(op, r)
-θ

∼ B(o, r) -φ−1

∼ B+(p, r);

where vp :=v
i ∂
∂xi 7−→ (v1, . . . , vn) 7−→ x, such that Fp(vp)<r, ∥vp∥F <r, and d(p, x)<

r, with vp∈Bp(op, r)⊂TxM , (v1, . . . , vn)∈B(o, r)⊂Rn, and x∈B+(p, r)⊂M. From
Definition 3.5 and Example 3.11, we set φ(p)=o and φ−1(o)=p, with p∈M, o∈Rn;
θ(op)=o and θ−1(o)=op, with op∈TxM .

Lemma 3.4. [1] Let (M,F ) be a Finsler n-F-space and U an open neighbourhood
at an arbitrary point p∈M . Given any pair x0, x1∈U , then,

1. The closure of U , that is Ū , is compact, φ(p)=o and φmaps U diffeomorphically
onto an open ball φ(U)⊂Rn.

2. For all y=yi ∂
∂xi ∈TxM and x∈Ū , there exists a constant c>1 such that

1

c
∥y∥≤F (y)≤c∥y∥ and F (−y)≤c2F (y); ∥y∥ :=

√
δijyiyj=

√
(y1)2+. . .+(yn)2.

3.
1

c
∥φ(x1)−φ(x0)∥≤d(x0, x1)≤c∥φ(x1)−φ(x0)∥, where φ(xi)∈φ(U).
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4.
1

c2
d(x1, x0)≤dx0, x1)≤c2d(x1, x0)

Proof. The proof is similar to that which is given in [1, p.146, Lemma 6.2.1]. It is
also a straightforward consequence of the equivalence of norms on a linear space and
of distance functions on a metric space. Recall that in a Finsler n-F-space the distance
is not reversible in general, that is, d(x1, x0) ̸= d(x0, x1). �

Now, we can show that the topologies τFM and τd are equal on M . That is,
their natural bases are equivalent with respect to Definition 3.10 and the charac-
terization in Lemma 3.2 of the equivalence of bases. To do so, we need two steps
given below. First, for every forward metric open ball (basic open set) B+(x, s)∈ τd
and for every p ∈ B+(x, s), there exists f−1(0,+∞) ∈ τFM with p ∈ f−1(0,+∞) ⊂
B+(x, s), that is, τd ⊂ τFM . Next, for every f−1(0,+∞), a basic open set in τFM ,
and for every p ∈ f−1(0,+∞), there exists B+(x, s) a basic open set in τd with
p∈B+(x, s)⊂f−1(0,+∞), that is, τFM ⊂τd.

4 The main result

Theorem 4.1. Let (M,F ) be a Finsler n-F-space with its induced Finsler distance
function d. The F-topology τFM is equal to the Finsler metric topology τd generated
by the forward metric open balls B+(x, s).

Proof. Firstly, for anyB+(x, s) and for every p∈B+(x, s)={p∈M | d(x, p)<s}, there
exists ε > 0 such that d(x, p) + ε = s. Equivalently, ε = s − d(x, p). Therefore,
B+(x, s)⊃B+(p, ε) by Lemma 3.3. Let Up be an open neighbourhood at p∈M , thus
Up = ∪f∈FMf

−1(0,+∞), for some f ∈ FM . At least one of the factors of the union
contains p. Now we refer to Lemma 3.4, (1) and (2). Let B(o, r) :=φ(Up)⊂Rn and
ε
c ≤ r, where c > 1 and φ(p) = o. Thus, B(o, εc ) ⊂ B(o, r). Furthermore, B(o, r) =

∪ ε
c≤rB(o,

ε

c
) = φ(Up) = ∪f∈FMφ(f

−1(0,+∞)) implies that φ(p) = o ∈ B(o, εc ) for a

fixed ε and p∈ f−1(0,+∞)⊂φ−1(B(o, εc )). For any q ∈ f−1(0,+∞), φ(q)∈B(o, εc ).
Hence, from Lemma 3.4, (3), where φ(p)=o and q∈Up,
we have

1

c
∥φ(q)∥≤d(p, q)≤c∥φ(q)∥<cε

c
=ε. Therefore, d(p, q) ≤ ε implies that q ∈

f−1(0,+∞) ⊂ B+(p, ε) ⊂ B+(x, s). Hence, q ∈ f−1(0,+∞) ⊂ B+(x, s). That is,
τd⊂τFM .
Conversely, for any f−1(0,+∞) ∈ τFM and for every p ∈ f−1(0,+∞), there exists
Up an open neighbourhood at p ∈ M such that φ(Up) := B(o, r), where φ(p) = o,
Up = ∪f∈FMf

−1(0,+∞), and φ a local diffeomorphism. By shrinking r, we yield
ε(r)≤ r such that B(o, ε)⊂B(o, r) and φ−1(B(o, ε))⊂ f−1(0,+∞)⊂ Up. Now, for
any q ∈ B+(p, εc ), with

ε
c ≤ ε ≤ r, c > 1, c depending on p and r. Thus, d(p, q) <

ε
c . Since q ∈ Up then Lemma 3.4, (3) yields

1

c
∥φ(q)∥≤d(p, q)≤c∥φ(q)∥. Therefore,

1

c
∥φ(q)∥≤d(p, q)< ε

c
implies that ∥φ(q)∥<ε. Hence, φ(q)∈B(o, ε). It follows that

q ∈ φ−1(B(o, ε)) ⊂ f−1(0,+∞) ⊂ Up. Thus, q ∈ B+(p, εc ) ⊂ f−1(0,+∞). That is,
τFM ⊂τd. Finally, τFM =τd because of the double inclusion proved above. �
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Corollary 4.2. Every forward metric open ball is an open set in τFM , that is, it is
expressible as a union of basic open sets of τFM . Also, every basic open set of τFM
is an open set in τd, that is, it is expressible as a union of forward metric open balls
in τd. Moreover, every τFM -open set is a τd-open set, and conversely.
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