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Abstract. We consider the cyclic parallel Ricci tensor condition, which is
a necessary condition for an affine manifold to be Szabó. We show that,
in three dimension, there are affine manifolds which satisfy the cyclic
parallel Ricci tensor but are not Szabó. Conversely, it is known that in
two dimension, the cyclic parallel Ricci tensor forces the affine manifold
to be Szabó. Examples of 3-dimensional affine Szabo manifolds are also
given. We prove that an affine surface with skew-symmetric Ricci tensor
is affine Szabó. Finally, we give some properties of Riemann extensions
defined on the cotangent bundle over an affine Szabó manifold.
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1 Introduction

The theory of connection is a classical topic in differential geometry. It was initially
developed to solve pure geometrical problems. It provides an extremely important
tool to study geometric structures on manifolds and, as such, has been applied with
great success in many different settings. For instance, Opozda in [15] classified locally
homogeneous connection on 2-dimensional manifolds equipped with torsion free affine
connection. Arias-Marco and Kowalski [1] classified locally homogeneous connections
with arbitrary torsion on 2-dimensional manifolds. Garćıa-Rio et al. [8] introduced
the notion of the affine Osserman connections. The affine Osserman connections are
well understood in two dimension (see [5, 8] for more details and references therein).

A (pseudo-)Riemannian manifold (M, g) is said to be Szabó if the eigenvalues of
the Szabó operator given by

S(X) : Y → (∇XR)(Y,X)X,

are constants on the unit (pseudo-)sphere bundle, where R denoting the curvature
tensor (see [2] and [9] for details). The Szabó operator is a self adjoint operator with
S(X)X = 0. It plays an important role in the study of totally isotropic manifolds
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[10]. Szabó in [17] used techniques from algebraic topology to show, in the Riemannian
setting, that any such a metric is locally symmetric. He used this observation to prove
that any two point homogeneous space is either flat or is a rank one symmetric space.
Subsequently Gilkey and Stravrov [11] extended this result to show that any Szabó
Lorentzian manifold has constant sectional curvature. However, for metrics of higher
signature the situation is different. Indeed it was showed in [10] the existence of Szabó
Pseudo-Riemannian manifolds endowed with metrics of signature (p, q) with p ≥ 2
and q ≥ 2 which are not locally symmetric .

In [6], the authors introduced the so-called affine Szabó connections. They proved,
in two dimension, that an affine connection ∇ is affine Szabó if and only if the Ricci
tensor of ∇ is cyclic parallel while in dimension 3 the concept seems to be very
challenging by giving only partial results.

The aim of this paper is to give an explicit form of two families of affine connections
which are affine Szabó on 3-dimensional manifolds. Moreover, although both results
provide examples of affine Szabó connections, they are essentially different in nature
since, in the first family, the affine Szabó condition coincides with the cyclic parallelism
of the Ricci tensor, whereas the second one is not. For any affine connection ∇ on
M , there exist a technique called Riemann extension, which relates affine and pseudo-
Riemannian geometries. This technique is very powerful in constructing new examples
of pseudo-Riemannian metrics. The relation between affine Szabó manifolds and
pseudo-Riemannian Szabó manifolds are investigated by using Riemann extensions.

The paper is organized as follows. In section 2, we recall some basic definitions and
geometric objects, namely, torsion tensor, curvature tensor, Ricci tensor and affine
Szabó operator on an affine manifold. In section 3, we study the cyclic parallelism of
the Ricci tensor for two particular cases of affine connections in 3-dimensional affine
manifolds. We establish geometrical configurations of affine manifolds admitting a
cyclic parallel Ricci tensor (Propositions 3.2 and 3.4). In section 4, we study the
Szabó condition on two particular affine connections (Theorems 4.5 and 4.7). Affine
surfaces with skew symmetric Ricci tensor are also studied. Finally, we end the paper
in section 5 by investigating the Riemann extensions defined on the cotangent bundle
over an affine Szabó manifold.

2 Preliminaries

Let M be an n-dimensional smooth manifold and ∇ be an affine connection on M .
We consider a system of coordinates (x1, x2, · · · , xn) in a neighborhood U of a point
p in M . In U the affine connection is given by

(2.1) ∇∂i∂j = fk
ij∂k,

where {∂i = ∂
∂xi

}1≤i≤n is a basis of the tangent space TpM and the functions

fk
ij (i, j, k = 1, 2, 3, · · · , n) are called the Christoffel symbols of the affine connection.
We shall call the pair (M,∇) affine manifold. Some tensor fields associated with the
given affine connection ∇ are defined below.

The torsion tensor field T∇ is defined by

(2.2) T∇(X,Y ) = ∇XY −∇Y X −∇[X,Y ],
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for any vector fields X and Y on M . The components of the torsion tensor T∇ in
local coordinates are

(2.3) T k
ij = fk

ij − fk
ji.

If the torsion tensor of a given affine connection ∇ vanishes, we say that ∇ is torsion-
free. The curvature tensor field R∇ is defined by

(2.4) R∇(X,Y ) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

for any vector field X,Y and Z on M . The components in local coordinates are

(2.5) R∇(∂k, ∂l) =
∑
i

Ri
jkl∂i.

We shall assume that ∇ is torsion-free. If R∇ = 0 on M , we say that ∇ is flat affine
connection. It is known that ∇ is flat if and only if around a point p there exist a
local coordinate system such that fk

ij = 0 for all i, j, k.

We define Ricci tensor Ric∇ by

(2.6) Ric∇(X,Y ) = trace{Z 7→ R∇(Z,X)Y }.

The components in local coordinates are given by

Ric∇(∂j , ∂k) =
∑
i

Ri
kij .(2.7)

It is known that in Riemannian geometry the Levi-Civita connection of a Riemannian
metric has symmetric Ricci tensor, that is Ric∇(X,Y ) = R∇(Y,X). But this property
is not true for an arbitrary torsion-free affine connection. In fact, the property is
closely related to the concept of parallel volume element. (See [14] for more details).

The covariant derivative of the curvature tensor R∇ is given by

(∇XR∇)(Y,Z)W = ∇XR∇(Y, Z)W −R∇(∇XY, Z)W

−R∇(Y,∇XZ)W −R∇(Y, Z)∇XW.

The covariant derivative of the Ricci tensor Ric∇ is defined by

(2.8) (∇XRic∇)(Z,W ) = X(Ric∇(Z,W ))−Ric∇(∇XZ,W )−Ric∇(Z,∇XW ).

For X ∈ Γ(TpM), we define the affine Szabó operator S∇(X) : TpM → TpM with
respect to X by

(2.9) S∇(X)Y := (∇XR∇)(Y,X)X,

for any vector field Y . The affine Szabó operator satisfies S∇(X)X = 0 and S∇(βX) =
β3S∇(X) for β ∈ R − {0} and X ∈ TpM . If Y = ∂m, for m = 1, 2, · · · , n and
X =

∑
i αi∂i, one gets

(2.10) S∇(X)∂m =
n∑

i,j,k=1

αiαjαk(∇∂iR∇)(∂m, ∂j)∂k.

Note that, by definition of the Ricci tensor, one has

(2.11) trace(Y 7→ (∇XR∇)(Y,X)X) = (∇XRic∇)(X,X).
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3 Affine connections with cyclic parallel Ricci
tensor

In this section, we investigate affine connections whose Ricci tensors are cyclic parallel.
We shall consider two cases of 3-dimensional smooth manifolds with specific affine
connections. We start with a formal definition.

Definition 3.1. The Ricci tensor Ric∇ of an affine manifold (M,∇) is cyclic parallel
if

(3.1) (∇XRic∇)(X,X) = 0,

for any vector field X tangent to M or, equivalently, if

GX,Y,Z(∇XRic∇)(Y,Z) = 0,

for any vector fields X,Y, and Z tangent to M , where GX,Y,Z denotes the cyclic sum
with respect to X,Y and Z.

Locally, the equation (3.1) takes the form

(3.2) (∇∂i
Ric∇)jk = 0,

or can be written out without the symmetrizing brackets

(3.3) (∇∂iRic∇)jk + (∇∂jRic∇)ki + (∇∂k
Ric∇)ij = 0.

For X =
∑

i αi∂i , it is easy to show that

(3.4) (∇XRic∇)(X,X) =
∑
i,j,k

αiαjαk(∇∂iRic∇)jk.

Now, we are going to present two cases of affine connections in which we investigate
the cyclic parallelism of the Ricci tensor.

Case 1: Let M be a 3-dimensional smooth manifold and ∇ be an affine torsion-free
connection. Suppose that the action of the affine connection ∇ on the basis {∂i}1≤i≤3

is given by

(3.5) ∇∂1∂1 = f1∂1, ∇∂1∂2 = f2∂1 and ∇∂1∂3 = f3∂1,

where the smooth functionsfi = fi(x1, x2, x3) are the Christoffel symbols. The non-
zero components of the curvature tensor R∇ of the affine connection (3.5) are given
by

R∇(∂1, ∂2)∂1 = (∂1f2 − ∂2f1)∂1, R∇(∂1, ∂2)∂2 = −(∂2f2 + f2
2 )∂1,

R∇(∂1, ∂2)∂3 = −(∂2f3 + f2f3)∂1, R∇(∂1, ∂3)∂1 = (∂1f3 − ∂3f1)∂1,

R∇(∂1, ∂3)∂2 = −(∂3f2 + f2f3)∂1, R∇(∂1, ∂3)∂3 = −(∂3f3 + f2
3 )∂1,

R∇(∂2, ∂3)∂1 = (∂2f3 − ∂3f2)∂1.



On three dimensional affine Szabó manifolds 25

From (2.7), the non-zero components of the Ricci tensor Ric∇ of the affine connection
(3.5) are given by

Ric∇(∂2, ∂1) = ∂1f2 − ∂2f1, Ric∇(∂2, ∂2) = −(∂2f2 + f2
2 ),

Ric∇(∂2, ∂3) = −(∂2f3 + f2f3), Ric∇(∂3, ∂1) = ∂1f3 − ∂3f1,

Ric∇(∂3, ∂2) = −(∂3f2 + f2f3), Ric∇(∂3, ∂3) = −(∂3f3 + f2
3 ).

Proposition 3.1. On R3, the affine connection ∇ defined in (3.5) satisfies the re-
lation (3.1) if the functions fi = fi(x1, x2, x3), for i = 1, 2, 3, satisfy the following
partial differential equations:

∂2
3f3 + 2f3∂3f3 = 0,

∂2
2f2 + 2f2∂2f2 = 0,

∂2
3f1 + 4f3∂1f3 − 2f3∂3f1 = 0,

∂2
2f1 + 4f2∂1f2 − 2f2∂2f1 = 0,

∂2
1f3 − ∂1∂3f1 − f1∂1f3 + f1∂3f1 = 0,

∂2
1f2 − ∂1∂2f1 − f1∂1f2 + f1∂2f1 = 0,

∂2
2f3 + 2∂3∂2f2 + 2f2∂3f2 + 2f3∂2f2 + 2f2∂2f3 = 0,

∂2
3f2 + 2∂3∂2f3 + 2f3∂2f3 + 2f3∂3f2 + 2f2∂3f3 = 0,

4f3∂1f2 + 4f2∂1f3 − 2f3∂2f1 − 2f2∂3f1 + 2∂3∂2f1 = 0.(3.6)

Proof. The proof follows straightforward from (2.8) and (3.4). �

As an example to the Proposition 3.1, we have the following.

Example 3.2. The Ricci tensors of the affine connections defined in (3.5) on R3 with
(1) f1 = 0, f2 = −x3 and f3 = x2; (2) f1 = x1, f2 = 2x3 and f3 = −2x2 are cyclic
parallel.

Case 2: Let M be a 3-dimensional smooth manifold and ∇ be an affine torsion-free
connection. Suppose that the action of the affine connection ∇ on the basis {∂i}1≤i≤3

is given by

(3.7) ∇∂1∂1 = f1∂2, ∇∂2∂2 = f2∂3 and ∇∂3∂3 = f3∂1,

where the smooth functions fi = fi(x1, x2, x3) are the Christoffel symbols. The non-
zero components of the curvature tensor R∇ of the affine connection (3.7) are given
by

R∇(∂1, ∂2)∂1 = −(∂2f1∂2 + f1f2∂3), R∇(∂1, ∂2)∂2 = ∂1f2∂3,

R∇(∂1, ∂3)∂1 = −∂3f1∂2, R∇(∂1, ∂3)∂3 = ∂1f3∂1 + f1f3∂2,

R∇(∂2, ∂3)∂2 = −(∂3f2∂3 + f3f2∂1), R∇(∂2, ∂3)∂3 = ∂2f3∂1.

From (2.7), the non-zero components of the Ricci tensor Ric∇ of the affine connection
(3.7) are given by Ric∇(∂1, ∂1) = ∂2f1, Ric∇(∂2, ∂2) = ∂3f2, Ric∇(∂3, ∂3) = ∂1f3.
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Proposition 3.2. The affine connection ∇ defined on R3 by (3.7) satisfies (3.1)
if the functions fi = fi(x1, x2, x3), for i = 1, 2, 3, have the following forms: f1 =
f(x1) + g(x3), f2 = h(x1) + u(x2), f3 = v(x2) + t(x3), where f , g, h, u, v and t are
smooth functions on R3.

Proof. From a straightforward calculation, using (2.8) and (3.4), one obtains the
following partial differential equations: ∂1∂2f1 = 0, ∂3∂2f1 = 0, ∂1∂3f2 = 0, ∂2∂3f2 =
0, ∂2∂1f3 = 0, ∂3∂1f3 = 0, ∂2

2f1−2f1∂3f2 = 0, ∂2
1f3−2f3∂2f1 = 0, ∂2

3f2−2f2∂1f3 = 0,
and the result follows. �

As an application to this proposition, we have:

Example 3.3. The Ricci tensor of the following affine connection defined on R3 by
∇∂1∂1 = x2

1∂2, ∇∂2∂2 = (x1 + x2)∂3 and ∇∂3∂3 = (x2 + x2
3)∂1 is cyclic parallel.

The manifolds with cyclic parallel Ricci tensor, known as L3-spaces, are well-
developed in Riemannian geometry. The cyclic parallelism of the Ricci tensor is
sometime called the “First Ledger condition” [16]. In [18], for instance, the author
proved that a smooth Riemannian manifold satisfying the first Ledger condition is
real analytic. These Riemannian manifolds were introduced by A. Gray in ( [12]) as
a special subclass of (connected) Riemannian manifolds (M, g), called Einstein-like
spaces, all of which have constant scalar curvature. Also, Riemannian manifolds of
three dimension with cyclic parallel Ricci tensor are locally homogeneous naturally
reductive ( [16]). Tod in [19] used the same condition to characterize the 4-dimensional
Kähler manifolds which are not Einstein. It has also enriched the D’Atri spaces (see
[13, 16] for more details).

4 The affine Szabó manifolds

Let (M,∇) be an n-dimensional affine manifold, i.e., ∇ is a torsion free connection on
the tangent bundle of a smooth manifold M of n-dimension. Let R∇ be the associated
curvature operator. We define the affine Szabó operator S∇(X) : TpM → TpM with
respect to a vector X ∈ TpM by

S∇(X)Y := (∇XR∇)(Y,X)X.

Definition 4.1. Let (M,∇) be a smooth affine manifold and p ∈ M .

(1) (M,∇) is called affine Szabó at p ∈ M if the affine Szabó operator S∇(X) has
the same characteristic polynomial for every vector field X on M .

(2) Also, (M,∇) is called affine Szabó if (M,∇) is affine Szabó at each point p ∈ M .

Theorem 4.1. Let (M,∇) be an n-dimensional affine manifold and p ∈ M . Then
(M,∇) is affine Szabó at p ∈ M if and only if the characteristic polynomial of the
affine Szabó operator S∇(X) is Pλ(S

∇(X)) = λn, for every X ∈ TpM .

Corollary 4.2. We say that (M,∇) is affine Szabó if the affine Szabó operators are
nilpotent, i.e., 0 is the eigenvalue of S∇(X) on the tangent bundle.
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Corollary 4.3. If (M,∇) is affine Szabó at p ∈ M , then the Ricci tensor is cyclic
parallel.

Affine Szabó connections are well-understood in 2-dimension, due to the fact that
an affine connection is Szabó if and only if its Ricci tensor is cyclic parallel [6]. The
situation is however more involved in higher dimensions where the cyclic parallelism
is a necessary but not sufficient condition for an affine connection to be Szabó.

4.1 Affine surface with skew-symmetric Ricci tensor

The curvature of an affine surface is encoded by its Ricci tensor. Here, we investigate
affine surfaces whose Ricci tensor are skew-symmetric.

Theorem 4.4. Let ∇ be a torsion-free affine connection on a surface Σ such that the
Ricci tensor of ∇ is skew-symmetric and nonzero everywhere. Then (Σ,∇) is affine
Szabó.

Proof. Fixing coordinates (x1, x2) on Σ and let ∇ be a torsion-free affine connection
given by ∇∂i∂j = fk

ij∂k, for i, j, k = 1, 2, where fk
ij = fk

ij(x1, x2). Let X =
α1∂1 +α2∂2 be a vector field on Σ. It is easy to check that the affine Szabó operator
S(X) is expressed, with respect to the basis {∂1, ∂2}, as

(S∇(X)) =

(
A B
C D

)
.

where the coefficients A, B, C and D are given by

A = α2
1α2[∂1ρ21 − a(f1

11 + f2
12)ρ21 − f1

12ρ11 − f2
11ρ22]

+ α1α
2
2[∂2ρ21 + ∂1ρ22 − (f1

12 + f2
22)ρ21 − (ρ12 + ρ21)f

1
12 − f1

22ρ11 − 3f2
12ρ22]

+ α3
2[∂2ρ22 − 2f2

22ρ22 − (ρ12 + ρ21)f
1
22],

B = α2
1α2[−∂1ρ11 + 2f1

11ρ11 + (ρ12 + ρ21)f
2
11]

+ α1α
2
2[−∂2ρ11 − ∂1ρ12 + 3f1

12ρ11 + f2
11ρ22 + (ρ12 + ρ21)f

2
12 + (f1

11 + f2
12)ρ12]

+ α3
2[−∂2ρ12 + f1

22ρ11 + f2
12ρ22 + (f1

12 + f2
22)ρ12],

C = α3
1[−∂1ρ21 + (f1

11 + f2
12)ρ21 + f1

12ρ11]

+ α2
1α2[−∂2ρ21 − ∂1ρ22 + (f1

12 + f2
22)ρ21 + f1

22ρ11 + 3f2
12ρ22 + (ρ12 + ρ21)f

1
12]

+ α1α
2
2[−∂2ρ22 + 2f2

22ρ22 + (ρ12 + ρ21)f
1
22],

D = α3
1[∂1ρ11 − 2f1

11ρ11 − (ρ12 + ρ21)f
2
11]

+ α2
1α2[∂2ρ11 + ∂1ρ12 − 3f1

12ρ11 − f2
11ρ22 − (f1

11 + f2
12)ρ12 − (ρ12 + ρ21)f

2
12]

+ α1α
2
2[∂2ρ12 − f1

22ρ11 − f2
12ρ22 − (f1

12 + f2
22)ρ12].

Hence, the characteristic polynomial of S∇(X) is given by Pλ[S∇(X)] = λ2 − λ(A+
D) + (AD − BC). If the Ricci tensor of ∇ is skew-symmetric, that is, ρ11 = ρ22 = 0
and ρ12 = −ρ21. Then the Szabó operator is nilpotent. �

The investigation of affine connections with skew-symmetric Ricci tensor on sur-
faces has been extremely attractive and fruitful over the recent years. We refer to the
paper [4] by Derdzinski for further details. Taking into account the simplified Wong’s
theorem given in [4], we have the following.
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Theorem 4.5. If every point of an affine surface Σ has a neighborhood U with
coordinates u1, u2 in which the component functions of a torsion-free affine connection
∇ are f1

11 = −∂1φ, f
2
22 = ∂2φ, for some function φ, f l

jk = 0, unless j = k = l, then
(Σ,∇) is affine Szabó.

4.2 Affine Szabó connections on three-dimensional affine man-
ifolds

Let X =
∑3

i=1 αi∂i be a vector field on a 3-dimensional affine manifold M . Then the
affine Szabó operator is given by

S∇(X)(∂m) =

3∑
i,j,k=1

αiαjαk(∇∂iR∇)(∂m, ∂j)∂k, m = 1, 2, 3.

First Family of affine Szabó connection.

Next, we give an example of a family of affine Szabó connection on a 3-dimensional
manifold. Let us consider the affine connection defined in (3.5), i.e.,

∇∂1∂1 = f1∂1, ∇∂1∂2 = f2∂1 and ∇∂1∂3 = f3∂1,

where the smooth functions fi = fi(x1, x2, x3) (i = 1, 2, 3) are Christoffel symbols.

For X =
∑3

i=1 αi∂i, the affine Szabó operator is given by

S∇(X)(∂1) = a11∂1, S∇(X)(∂2) = a12∂1 and S∇(X)(∂3) = a13∂1,

with

a11 = α3
3{∂2

3f3 + 2f3∂3f3}+ α3
2{∂2

2f2 + 2f2∂2f2}+ α2
3α1{∂2

3f1 + 4f3∂1f3 − 2f3∂3f1}
+ α2

2α1{∂2
2f1 + 4f2∂1f2 − 2f2∂2f1}+ α2

1α3{∂2
1f3 − ∂1∂3f1 − f1∂1f3 + f1∂3f1}

+ α2
1α2{∂2

1f2 − ∂1∂2f1 − f1∂1f2 + f1∂2f1}
+ α2

2α3{∂2
2f3 + 2∂3∂2f2 + 2f2∂3f2 + 2f3∂2f2 + 2f2∂2f3}

+ α2
3α2{∂2

3f2 + 2∂3∂2f3 + 2f3∂2f3 + 2f3∂3f2 + 2f2∂3f3}
+ α1α2α3{4f3∂1f2 + 4f2∂1f3 − 2f3∂2f1 − 2f2∂3f1 + 2∂3∂2f1},

a12 = α3
1{∂1∂2f1 − ∂2

1f2 − f1∂2f1 + 2f1∂1f2}+ α2
2α1{∂2

2f2 + 2f2∂2f2 − f3
2 }

+ α2
3α1{−∂2

3f2f3 − 2f3∂2f3 + 2f3∂3f2 + 2f2∂3f3 + 2∂3∂2f3}
+ α2

1α3{2∂1∂2f3 − 2∂1∂3f2 + ∂3∂2f1 + f2∂3f1 − 3f3∂2f1 + 4f3∂1f2}
+ α2

1α2{∂2
2f1 − 2f2∂2f1 + 4f2∂1f2}+ α1α2α3{4f2∂3f2 + 2∂2

2f3},
a13 = α3

1{∂1∂3f1 − ∂2
1f3 − f1∂3f1 + f1∂1f3}+ α2

1α3{∂2
3f1 + 3f3∂1f3 − f3∂3f1}

+ α2
1α2{∂2∂3f1 + 4f2∂1f3 − 2∂2∂1f3 − 3f2∂3f1 + f3∂2f1}

+ α2
2α1{2f3∂2f2 + 2f2∂2f3 + ∂2∂3f2}+ α2

3α1{∂2
3f3 − f3∂3f3 − f3

3 + 2f3∂3f3}
+ α2

1α3{4f3∂2f3 − 2f2∂3f3 − f3∂3f2 + 2∂2
3f2 − f2

3 f2}.
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Since the Ricci tensor of any affine Szabó connection is cyclic parallel, it follows that
a11 = 0. Thus the characteristic polynomial of the matrix associated to S∇(X) with
respect to the basis {∂1, ∂2, ∂3} is equal to:

Pλ(S
∇(X)) = −λ3.

We have the following result.

Theorem 4.6. Let M = R3 and ∇ be the torsion free affine connection, whose
nonzero coefficients of the connection are given by ∇∂1∂1 = f1∂1, ∇∂1∂2 = f2∂1 and
∇∂1∂3 = f3∂1. Then (M,∇) is affine Szabó if and only if the Ricci tensor of (M,∇)
is cyclic parallel.

From Theorem 4.6, one can construct examples of affine Szabó connections.

Example 4.2. The following affine connections on R3 whose non-zero Christoffel
symbols are given by: (1) ∇∂1∂1 = 0, ∇∂1∂2 = −x3∂1 and ∇∂1∂3 = x2∂1; (2)
∇∂1∂1 = x1∂1, ∇∂1∂2 = 2x3∂1 and ∇∂1∂3 = −2x2∂1 are affine Szabó.

Note that the result in Theorem 4.6 remains the same if the affine connection
∇ has non-zero components ∇∂1∂1, ∇∂1∂2 and ∇∂1∂3 in the same direction of the
element of the basis {∂i}i=1.2.3.

The affine manifolds in Theorem 4.6 are also called L3-spaces, and Therefore, are
d’Atri spaces. We refer to [13] for a further discussion of D’Atri spaces.

Second Family of affine Szabó connection

Let us consider the affine connection defined in (3.7), i.e.,

∇∂1∂1 = f1∂2, ∇∂2∂2 = f2∂3 and ∇∂3∂3 = f3∂1,

where the smooth functions fi = fi(x1, x2, x3), for i = 1, 2, 3, are Christoffel symbols.
Since the Ricci tensor of any affine Szabó connection is cyclic parallel, it follows from
the Proposition 3.2, that the matrix associated to the affine Szabó operator with
respect to the basis {∂1, ∂2, ∂3} is reduced to

(S∇)(X) =

 0 b12 b13
b21 0 b23
b31 b32 0

 ,

with

b12 = α2
1α3(−∂1∂3f1) + α1α

2
2(f2∂3f1) + α1α

2
3(f3∂1f1 − ∂2

3f1)

+ α2
2α3(−2f2f3f1) + α2α

2
3(f1∂2f3) + α3

3(2f3∂3f1 + f1∂3f3);

b13 = α2
1α2(−2f1∂1f2 − f2∂1f1) + α1α

2
2(∂

2
1f2 − f1∂2f2)

+ α1α2α3(−2f2∂3f1) + α3
2(∂2∂1f2) + α2α

2
3(2f2f3f1);

b21 = α2
1α3(2f3f2f1) + α1α2α3(−2f3∂1f2) + α2

2α3(−2f2∂2f3 − f3∂2f2)

+ α2α
2
3(∂

2
2f3 − f2∂3f3) + α3

3(∂3∂2f3),

b23 = α3
1(2f1∂1f2 + f2∂1f1) + α2

1α2(−∂2
1f2 + f1∂2f2) + α2

1α3(f2∂3f1)

+ α1α
2
2(−∂2∂1f2) + α1α

2
3(−2f2f3f1) + α2α

2
3(f3∂1f2)
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b31 = α2
1α2(−2f1f2f3) + α2

1α3(f1∂2f3) + α1α
2
2(f3∂1f2)

+ α3
2(2f2∂2f3 + f3∂2f2) + α2

2α3(−∂2
2f3 + f2∂3f3) + α2α

2
3(−∂3∂2f3);

b32 = α3
1(∂1∂3f1) + α2

1α3(−f3∂1f1 + ∂2
3f1) + α1α

2
2(2f1f3f2)

+ α1α2α3(−2f1∂2f3) + α1α
2
3(−2f3∂3f1 − f1∂3f3).

The characteristic polynomial of the affine Szabó operator is now seen to be:

P [S∇(X)](λ) = −λ3 + (b12b21 + b23b32 + b13b31)λ+ (b12b23b31 + b13b21b32).

It follows that the affine connection given by (3.7) is affine Szabó if and only if:

b12b21 + b23b32 + b13b31 = 0 and b12b23b31 + b13b21b32 = 0.

A straightforward calculation shows that: b12b23b31+b13b21b32 = 0. Then S∇(X) has
eigenvalue zero if and only if:

(4.1) b12b21 + b23b32 + b13b31 = 0.

1. Assume f1 = 0. Then, the relation (4.1) reduces to:

b13b31 = 0.

(a) If ∂1f2 = 0, then f2 = u(x2) and f3 = v(x2) + t(x3).

(b) If ∂1f2 ̸= 0, then f3 = 0.

2. Assume f2 = 0, then we have

b12b21 = 0.

(a) If ∂2f3 = 0, then f3 = t(x3) and f1 = f(x1) + g(x3).

(b) If ∂2f3 ̸= 0, then f1 = 0.

3. Assume f3 = 0, then we have

b23b32 = 0.

(a) If ∂3f1 = 0, then f1 = f(x1) and f2 = h(x1) + k(x2).

(b) If ∂3f1 ̸= 0, then f2 = 0.

We have the following result.

Theorem 4.7. Let M = R3 and ∇ be the torsion free affine connection, whose
non-zero coefficients of the connection are given by

∇∂1∂1 = f1∂2, ∇∂2∂2 = f2∂3 and ∇∂3∂3 = f3∂1.

Then (M,∇) is affine Szabó if at least one of the following conditions holds:

(1) f1 = 0, f2 = u(x2) and f3 = v(x2) + t(x3).

(2) f2 = 0, f3 = t(x3) and f1 = f(x1) + g(x3).
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(3) f3 = 0, f1 = f(x1) and f2 = h(x1) + u(x2).

Or at least one of the following conditions holds:

(4) f1 = 0, f2 = f(x1) + g(x2) and f3 = 0.

(5) f2 = 0, f3 = v(x2) + t(x3) and f1 = 0.

(6) f3 = 0, f1 = f(x1) + g(x3) and f2 = 0.

From Theorem 4.7, one can construct examples of affine Szabó connections. As
an example, we have the following.

Example 4.3. The following connections on R3 whose non-zero Christoffel symbols
are given by: (1) ∇∂1∂1 = 0, ∇∂2∂2 = x2∂3, ∇∂3∂3 = (x2 + x2

3)∂1; (2) ∇∂1∂1 = x2
1∂2,

∇∂2∂2 = (x1 + x2)∂3, ∇∂3∂3 = 0 are affine Szabó.

Remark 4.4. The affine connection defined in Example 3.3 has a Ricci tensor which
is cyclic parallel but it is not affine Szabó. This means that the manifold defined in
Example 3.3 is an L3-space but not an affine Szabó manifold.

One has also the following observation.

Theorem 4.8. Let (M1,∇1) be an affine Szabó at p1 ∈ M1 and (M2,∇2) be an affine
Szabó at p2 ∈ M2. Then the product manifold (M,∇) := (M1×M2,∇⊕∇2) is affine
Szabó at p = (p1, p2).

Proof. Let X = (X1, X2) ∈ T(p1,p2)(M1 × M2) with X1 ∈ Tp1M1 and X2 ∈ Tp2M2.
Then we have S∇(X) = S∇1(X1)⊕S∇2(X2). So Spect{S∇(X)} = Spect{S∇1(X1)}∪
Spect{S∇2(X2)} = {0}. This completes the proof. �

Affine Szabó connections are of interest not only in affine geometry, but also in
the study of Pseudo-Riemannian Szabó metrics since they provide some examples
without Riemannian analogue by means of the Riemann extensions.

5 Riemann extensions

Let (M,∇) be an n-dimensional affine manifold, Let T ∗M be its cotangent bundle
and let π : T ∗M → M be the natural projection defined by π(p, ω) = p ∈ M and
(p, ω) ∈ T ∗M . A system of local coordinates (U, xi), i = 1, · · · , n around p ∈ M
induces a system of local coordinates (π−1(U), xi, xi′ = ωi), i

′ = n+ i = n+1, · · · , 2n
around (p, ω) ∈ T ∗M , where xi′ = ωi are components of covectors ω in each cotangent
space T ∗

pM , p ∈ U with respect to the natural coframe {dxi}. If we use the notation

∂i =
∂

∂xi
and ∂i′ =

∂
∂ωi

, i = i, · · · , n then at each point (p, ω) ∈ T ∗M , its follows that

{(∂1)(p,ω), · · · , (∂n)(p,ω), (∂1′)(p,ω), · · · , (∂n′)(p,ω)},

is a basis for the tangent space (T ∗M)(p,ω).
For each vector field X on M , define a function ιX : T ∗M −→ R by

ιX(p, ω) = ω(Xp).
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This function is locally expressed by, ιX(xi, xi′) = xi′X
i, for all X = Xi∂i. Vector

fields on T ∗M are characterized by their actions on functions ιX. The complete lift
XC of a vector field X on M to T ∗M is characterized by the identity

XC(ιZ) = ι[X,Z], for all Z ∈ Γ(TM).

Moreover, since a (0, s)-tensor field on M is characterized by its evaluation on com-
plete lifts of vector fields on M , for each tensor field T of type (1, 1) on M , we define
a 1-form ιT on T ∗M which is characterized by the identity

ιT (XC) = ι(TX).

For more details on the geometry of cotangent bundle, we refer to the book of Yano
and Ishihara [20].

Let ∇ be a torsion free affine connection on an n-dimensional affine manifold
M . The Riemann extension g∇ is the pseudo-Riemannian metric on T ∗M of neutral
signature (n, n) characterized by the identity [2, 7]

g∇(XC , Y C) = −ι(∇XY +∇Y X).

In the locally induced coordinates (xi, xi′) on π−1(U) ⊂ T ∗M , the Riemann extension
is expressed as

g∇ =

(
−2xk′Γk

ij δji
δji 0

)
,(5.1)

with respect to {∂1, · · · , ∂n, ∂1′ , · · · , ∂n′}(i, j, k = 1, · · · , n; k′ = k + n), where Γk
ij are

the Christoffel symbols of the torsion free affine connection ∇ with respect to (U, xi)
on M . Some properties of the affine connection ∇ can be investigated by means
of the corresponding properties of the Riemann extension g∇. For instance, (M,∇)
is locally symmetric if and only if (T ∗M, g∇) is locally symmetric [7]. Furthermore
(M,∇) is projectively flat if and only if (T ∗M, g∇) is locally conformally flat (see [3]
for more details and references therein).

Let Γk
ij be the Christoffel symbols of ∇. The non-zero Christoffel symbols Γ̃γ

αβ of
the Levi-Civita connection of g∇ are given by

Γ̃k
ij = Γk

ij , Γ̃k′

i′j = −Γi
jk Γ̃k′

ij′ = −Γj
ik,

Γ̃k′

ij =
∑
r

xr′

(
∂kΓ

r
ij − ∂iΓ

r
jk − ∂jΓ

r
ik + 2

∑
l

Γr
klΓ

l
ij

)
,

where (i, j, k, l, r = 1, · · · , n) and (i′ = i+ n, j′ = j + n, k′ = k + n, r′ = r + n). The
non-zero components of the curvature tensor of (T ∗M, g∇) up to the usual symmetries
are given as follows

R̃h
kji = Rh

kji, R̃h′

kji, R̃h′

kji′ = −Ri
kjh, R̃h′

k′ji = Rk
hij ,

where Rh
kji are the components of the curvature tensor of (M,∇). Here we omit R̃h′

kji,

as it plays no role in our considerations. Let X̃ = αi∂i + αi′∂i′ and Ỹ = βi∂i + βi′∂i′
be vector fields on T ∗M . Let X = αi∂i and Y = βi∂i be the corresponding vector
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fields on M . Let S∇(X) be the matrix of the affine Szabó operator on M relative to
the basis {∂i}. Then the matrix of the Szabó operator S̃(X̃) with respect to the basis
{∂i, ∂i′} has the form

S̃(X̃) =

(
S∇(X) 0

∗ tS∇(X)

)
.

Lemma 5.1. Let (M,∇) be an n-dimensional affine manifold and (T ∗M, g∇) be the
cotangent bundle with the Riemann extension. Then, we have

Spect{S̃(X̃)} = Spect{S∇(X)}.

Proof. Let X̃ = αi∂i+αi′∂i′ be a vector field on T ∗M . Then the matrix of the Szabó
operator S̃(X̃) with respect to the basis {∂i, ∂i′} is of the form

S̃(X̃) =

(
S∇(X) 0

∗ tS∇(X)

)
.(5.2)

where S∇(X) is the matrix of the affine Szabó operator on M relative to the basis
{∂i}. It is easy to see that the characteristic polynomial Pλ[S̃(X̃)] of S̃(X̃) and
Pλ[S∇(X)] of S∇(X) are related by Pλ[S̃(X̃)] = Pλ[S∇(X)] · Pλ[

tS∇(X)] �

We have the following results.

Theorem 5.2. Let (M,∇) be a smooth torsion-free affine manifold. Then the fol-
lowing statements are equivalent:

(i) (M,∇) is affine Szabó.

(ii) The Riemann extension (T ∗M, g∇) of (M,∇) is a pseudo-Riemannian Szabó
manifold.

Proof. Now, if the affine manifold (M,∇) is assumed to be affine Szabó, then S∇(X)
has zero eigenvalues for each vector field X on M . Therefore, it follows from (5.2) that
the eigenvalues of S̃(X̃) vanish for every vector field X̃ on T ∗M . Thus (T ∗M, g∇) is
pseudo-Riemannian Szabó manifold.
Conversely, assume that (T ∗M, g∇) is a pseudo-Riemannian Szabó manifold. If X =
αi∂i with αi ̸= 0, for any i, is a vector field on M , then X̃ = αi∂i +

1
2αi

∂i′ is a unit
vector field at every point of the zero section on T ∗M . Then from (5.2), we see that,
the characteristic polynomial Pλ[S̃(X̃)] of S̃(X̃) is the square of the characteristic
polynomial Pλ[S∇(X)] of S∇(X). Since for every unit vector field X̃ on T ∗M the
characteristic polynomial Pλ[S̃(X̃)] should be the same, it follows that for every vector
field X on M the characteristic polynomial Pλ[S∇(X)] is the same. Hence (M,∇) is
affine Szabó. �

5.1 Six-dimensional Riemann extensions

Let (M,∇) be an 3-dimensional affine manifold. Let (x1, x2, x3) be local coordinates
on M . We expand ∇∂i∂j =

∑
k Γ

k
ij∂k for i, j, k = 1, 2, 3 to define the Christof-

fel symbols Γk
ijof ∇. If ω ∈ T ∗M , we expand ω = x4dxi + x5dx2 + x6dx3 to de-

fine the dual fiber coordinates (x4, x5, x6) thereby obtain canonical local coordinates
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(x1, x2, x3, x4, x5, x6) on T ∗M . The Riemann extension in the metric of neutral sig-
nature (3, 3) on the cotangent bundle T ∗M is given locally by

g∇(∂1, ∂4) = g∇(∂2, ∂5) = g∇(∂3, ∂6) = 1,

g∇(∂1, ∂1) = −2x4Γ
1
11 − 2x5Γ

2
11 − 2x6Γ

3
11,

g∇(∂1, ∂2) = −2x4Γ
1
12 − 2x5Γ

2
12 − 2x6Γ

3
12,

g∇(∂1, ∂3) = −2x4Γ
1
13 − 2x5Γ

2
13 − 2x6Γ

3
13,

g∇(∂2, ∂2) = −2x4Γ
1
22 − 2x5Γ

2
22 − 2x6Γ

3
22,

g∇(∂2, ∂3) = −2x4Γ
1
23 − 2x5Γ

2
23 − 2x6Γ

3
23,

g∇(∂3, ∂3) = −2x4Γ
1
33 − 2x5Γ

2
33 − 2x6Γ

3
33.

As an example, we have the following. The Riemann extension of the affine Szabó
connection on R3 defined by

∇∂1∂1 = x1∂1, ∇∂1∂2 = 2x3∂1, ∇∂1∂3 = −2x2∂1,

is the pseudo-Riemannian metric of signature (3, 3) given by

g∇ = 2dx1 ⊗ dx4 + 2dx2 ⊗ dx5 + 2dx3 ⊗ dx6

− 2x1x4dx1 ⊗ dx1 − 4x3x4dx1 ⊗ dx2 + 4x2x4dx1 ⊗ dx3.

After, a straightforward calculation, it easy to see that this metric is Szabó.
The Riemann extensions provide a link between affine and pseudo-Riemannian

geometries. Some properties of the affine connection ∇ can be investigated by means
of the corresponding properties of the Riemann extension g∇. For more details and
information about Riemann extensions, see [2, 3, 7, 8] and references therein. For
instance, it is known, in [2, 3] and references therein, that a Walker metric is a triple
(M, g,D), where M is an n-dimensional manifold, g is a pseudo-Riemannian metric
on M and D is an r-dimensional parallel null distribution (r > 0). In [3], the authors
showed that any 4-dimensional Riemann extension is necessarily a self-dual Walker
manifold, but for some particular cases, they proved that the converse holds.
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[7] E. Garćıa-Ŕıo, P. Gilkey, S. Nikcević, R. Vázquez-Lorenzo, Applications of Affine
and Weyl Geometry, Synthesis Lectures on Mathematics and Statistics, 13. Mor-
gan and Claypool Publishers, 2013.
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