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ON GENERALIZED �-RECURRENT SASAKIAN MANIFOLDS

(DEDICATED IN OCCASION OF THE 65-YEARS OF

PROFESSOR R.K. RAINA)

D. A. PATIL, D. G. PRAKASHA AND C. S. BAGEWADI

Abstract. The object of the present paper is to study generalized �-recurrent

Sasakian manifolds. Here it is proved that a generalized �-recurrent Sasakian
manifold is an Einstein manifold. We also find a relation between the associ-

ated 1-forms A and B for a generalized � -recurrent and generalized concircular
�-recurrent Sasakian manifolds. Finally, we proved that a three dimensional

locally generalized �-recurrent Sasakian manifold is of constant curvature.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakened by
many authors in several ways to a different extent. As a weaker version of lo-
cal symmetry, T. Takahashi[10] introduced the notion of local �-symmetry on a
Sasakian manifold. Generalizing the notion of �-symmetry, the authors U.C. De,
A.A. Shaikh and Sudipta Biswas introduced the notion of �-recurrent Sasakian
manifolds in[4]. This notion has been studied by many authors for different types
of Riemannain manifolds([7, 6, 5, 11]).

A Sasakian manifold is said to be a �−recurrent manifold if there exists a nonzero
1−form A such that

�2((∇XR)(Y,Z)W ) = A(X)R(Y,Z)W

for arbitrary vector fields X, Y , Z, W .
If the 1−form A vanishes, then the manifold reduces to a �−symmetric manifold.

The notion of generalized recurrent manifolds was introduced by U.C.De and
N.Guha[3]. A Riemannian manifold (M2n+1, g) is called generalized recurrrent if
its curvature tensor R satisfies the condition

(∇XR)(Y,Z)W = A(X)R(Y, Z)W +B(X)[g(Z,W )Y − g(Y,W )Z]
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where, A and B are two 1-forms, B is non-zero and these are defined by

A(X) = g(X, �1), B(X) = g(X, �2),

�1 and �2 are vector fields associated with 1-froms A and B, respectively.
Generalizing the notion of �-recurrency, the authors A. Basari and C. Murathan[1]

introduced the notion of generalized �-recurrency to Kenmotsu manifolds. Moti-
vated by the above studies, in this paper we extend the study of generalized �-
recurrency to Sasakian manifolds and obtain some interesting results.

A Sasakian manifold (M2n+1, g) is said to be an Einstein manifold is its Ricci
tensor S is of the form

S(X,Y ) = kg(X,Y ) (1.1)

for any vector fields X, Y and where k is any constant.
The paper is organized as follows. In preliminaries, we give a brief account

of Sasakian manifolds. In section 3, it is proved that a generalized �-recurrent
Sasakian manifold is an Einstein manifold. We also find some relations between
the associated 1-forms A and B for a generalized �-recurrent and genralized con-
circular �-recurrent sasakian manifolds. In the last section, we proved that a three
dimensional locally generalized �-recurrent Sasakian manifold is of constant curva-
ture.

2. Sasakian manifolds

Let (M2n+1, g) be a contact Riemannian manifold with a contact form �, the
associated vector field �, (1−1) tensor field � and the associated Riemannian metric
g. If � is a killing vector field, then M2n+1 is called a K-contact Riemannian
manifold([2], [9]). A K-contact Riemannian manifold is called a sasakian manifold
if

(∇X�)(X,Y ) = g(X,Y )� − �(Y )X (2.1)

holds, where ∇ denotes the operator of covariant differentiation with respect to g.
Let S and r denote, the Ricci tensors of type (0, 2) and of type (1, 1) of M2n+1

respectively. It is known that in a Sasakian manifold M2n+1, besides the relation
(2.1), the following relations also hold (see [2], [9]):

�2 = −I + � ⊗ �, (2.2)

(a)�(�) = 1, (b)�� = 0, (c)� ∘ � = 0, (d)g(X, �) = �(X), (2.3)

g(�X, �Y ) = g(X,Y )− �(X)�(Y ), (2.4)

(a)∇X� = −�X, (b)(∇X�)Y = g(X,�Y ), (2.5)

R(�,X)Y = (∇X�)Y = g(X,Y )� − �(Y )X, (2.6)

R(X,Y )� = �(Y )X − �(X)Y, (2.7)

R(X, �)Y = �(Y )X − g(X,Y )�, (2.8)

�(R(X,Y )Z) = g(Y, Z)�(X)− g(X,Z)�(Y ), (2.9)

S(X, �) = 2n�(X), (2.10)

S(�X, �Y ) = S(X,Y )− 2n�(X)�(Y ), (2.11)

for all vector fields X, Y , Z.
The above results will be used in the next sections.



44 D. A. PATIL, D. G. PRAKASHA AND C. S. BAGEWADI

3. ON GENERALIZED �-RECURRENT SASAKIAN MANIFOLDS

Definition 3.1. Sasakian manifold (M2n+1, g) is called generalized �-recurrent if
its curvature tensor R satisfies the condition

�2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )[g(Y, Z)X − g(X,Z)Y ] (3.1)

where A and B are two 1-forms, B is non-zero and these are defined by:

�(W ) = g(W,�1), �(W ) = g(W,�2) (3.2)

and �1, �2 are vector fields associated with 1-forms A and B,respectively.

Let us consider a generalized �-recurrent Sasakian manifold. Then by virtue of
(2.2) and (3.1) we have

−(∇WR)(X,Y )Z + �((∇WR)(X,Y )Z)� (3.3)

= A(W )R(X,Y )Z +B(W )[g(Y, Z)X − g(X,Z)Y ].

From which it follows that

−g((∇WR)(X,Y )Z,U) + �((∇WR)(X,Y )Z)�(U) (3.4)

= A(W )g(R(X,Y )Z,U) +B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y,U)].

Let {ei}, i = 1, 2, ..., 2n + 1 be an orthonormal basis of the tangent space at any
point of the manifold. Then putting X = U = ei in (3.4) and taking summation
over i, 1 ≤ i ≤ 2n+ 1, we get

−(∇WS)(Y,Z) +

2n+1∑
i=1

�((∇WR)(ei, Y )Z)�(ei) (3.5)

= A(W )S(Y, Z) + 2nB(W )g(Y,Z).

The second term of left hand side of (3.5) by putting Z = � takes the form
g((∇WR)(ei, Y )�, �), which is zero in this case. So, by replacing Z by � in (3.5)
and using (2.10) we get

(∇WS)(Y, �) = −A(W )2n�(Y )− 2nB(W )�(Y ). (3.6)

Now we have

(∇WS)(Y, �) = ∇WS(Y, �)− S(∇WY, �)− S(Y,∇W �).
Using (2.5)(a) and (2.9) in the above relation, then it follows that

(∇WS)(Y, �) = −2ng(�W, Y ) + S(Y, �W ). (3.7)

From (3.6) and (3.7) we obtain

− 2ng(�W, Y ) + S(Y, �W ) = −2n�(Y )(A(W ) +B(W )). (3.8)

Replacing Y = � in (3.8) then using (2.9) and (2.2) we get

A(W ) = −B(W ). (3.9)

Thus the 1-forms A and B are related as �+ � = 0.
Next using (3.9) in (3.8), we obtain

S(Y, �W ) = 2ng(Y, �W ). (3.10)

That is, the manifold is an Einstein manifold. This leads to the following result:

Theorem 3.2. A generalized �-recurrent Sasakian manifold (M2n+1, g) is an Ein-
stein manifold and moreover; the 1-forms A and B are related as A+B = 0.
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Now from (3.1) we have

(∇WR)(X,Y )Z = �((∇WR)(X,Y )Z)� (3.11)

−A(W )R(X,Y )Z −B(W )[g((Y,Z)X − g(X,Z)Y ].

Changing W , X, Y cyclically in (3.11) and then adding the results, we obtain

(∇WR)(X,Y )Z + (∇XR)(Y,W )Z + (∇YR)(W,X)Z (3.12)

= �((∇WR)(X,Y )Z)� + �((∇XR)(Y,W )Z)� + �((∇YR)(W,X)Z)�

−A(W )R(X,Y )Z −B(W )[g((Y, Z)X − g(X,Z)Y ]

−A(X)R(Y,W )Z −B(X)[g((W,Z)Y − g(Y,Z)W ]

−A(Y )R(W,X)Z −B(Y )[g((X,Z)W − g(W,Z)X] = 0.

Then by the use of second Bianchi identity and (3.9) we have

A(W )R(X,Y )Z −B(W )[g((Y, Z)X − g(X,Z)Y ]

+A(X)R(Y,W )Z −B(X)[g((W,Z)Y − g(Y,Z)W ]

+A(Y )R(W,X)Z −B(Y )[g((X,Z)W − g(W,Z)X] = 0.

so by a suitable contraction from (3.12) we get

A(W )S(X,U)− 2nA(W )g(X,U)−A(X)S(W,U) + 2nA(X)g(W,U)(3.13)

−A(R(W,X)U)−A(X)g(W,U) +A(W )g(X,U) = 0.

Using (3.10) in above, we get

− g(R(W,X)U, �1)−A(X)g(W,U) +A(W )g(X,U) = 0. (3.14)

Replacing X = U = ei in (3.14) we get

S(W,�1) = 2nA(W ). (3.15)

This leads to the following result:

Theorem 3.3. In a generalized �-recurrent Sasakian manifold (M2n+1, g), 2n is
the eigen value of the ricci tensor corresponding to the eigen vector �1, where �1 is
the associated vector field of the 1-form A.

Definition 3.4. A Sasakian manifold (M2n+1, g) is called generalized concircular
�-recurrent if its concircular curvature tensor C (Yano, K., Kon, M., 1984)

C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ] (3.16)

satisfies the condition [8]

�2(∇WC(X,Y )Z) = A(W )C(X,Y )Z +B(W )[g(Y,Z)X − g(X,Z)Y ] (3.17)

where A(W ) and B(W ) are defined as in (3.2) and r is the scalar curvature of the
manifold (M2n+1, g).

Let us consider a generalized concircular �-recurrent Sasakian manifold. Then
by virtue of (2.2) we have

−(∇WC(X,Y )Z) + �((∇WC(X,Y )Z))� (3.18)

= A(W )C(X,Y )Z +B(W )[g(Y, Z)X − g(X,Z)Y ].

From which, it follows that
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−g((∇WC(X,Y )Z), U) + �((∇WC(X,Y )Z))�(U) (3.19)

= A(W )g(C(X,Y )Z,U) +B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].

Let {ei}, i = 1, 2, ..., 2n + 1, be an orthonormal basis of the tangent space at any
point of the manifold. Then putting Y = Z = ei in (3.19) and taking summation
over i, 1 ≤ i ≤ 2n+ 1, we get

−(∇WS)(X,U) +
∇W r

(2n+ 1)
g(X,U) + (∇WS)(X, �)�(U)− ∇W r

2n+ 1
�(X)�(U)(3.20)

= A(W )

[
S(X,U)− r

2n+ 1
g(X,U)

]
+ 2nB(W )g(X,U).

Replacing U by � in (3.20) and using (2.3d) and (2.10), we have

A(W )

[
2n− r

2n+ 1

]
�(X) + 2nB(W )�(X) = 0. (3.21)

Putting X = � in (3.21), we obtain

B(W ) =

(
r

2n(2n+ 1)
− 1

)
A(W ). (3.22)

This leads to the following result:

Theorem 3.5. In a generalized concircular �-recurrent Sasakian manifold (M2n+1, g),
the 1-forms A and B are related as in (3.22).

4. Three Dimensional Locally Generalized �-recurrent Sasakian
Manifolds

In a three-dimensional Riemannian manifold (M3, g), we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X (4.1)

−S(X,Z)Y +
r

2
[g(X,Z)Y − g(Y, Z)X],

where Q is the Ricci operator, that is, S(X, Y) = g(QX, Y) and r is the scalar
curvature of the manifold. Now putting Z = � in (4.1) and using (2.10), we get

R(X,Y )� = �(Y )QX − �(X)QY (4.2)

+2[�(Y )X − �(X)Y ] +
r

2
[�(X)Y − �(Y )X].

Using (2.7) in (4.2), we have(
1− r

2

)
[�(Y )X − �(X)Y ] = �(X)QY − �(Y )QX. (4.3)

Putting Y = � in (4.3) and using (2.10), we get

QX =
(r

2
− 1
)
X +

(
3− r

2

)
�(X)�. (4.4)

Therefore, it follows from (4.4) that

S(X,Y ) =
(r

2
− 1
)
g(X,Y ) +

(
3− r

2

)
�(X)�(Y ). (4.5)
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Thus from (4.1), (4.4) and (4.5), we get

R(X,Y )Z =
(r

2
− 2
)

[g(Y, Z)X − g(X,Z)Y ] (4.6)

+
(

3− r

2

)
[g(Y,Z)�(X)� − g(X,Z)�(Y )�

+�(Y )�(Z)X − �(X)�(Z)Y ].

Taking the covariant differentiation to the both sides of the equation (4.6), we get

(∇WR)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y − g(Y,Z)�(X)� (4.7)

+g(X,Z)�(Y )� − �(Y )�(Z)X + �(X)�(Z)Y ]

+
(

3− r

2

)
[g(Y, Z)�(X)− g(X,Z)�(Y )]∇W �

+
(

3− r

2

)
[�(Y )X − �(X)Y ](∇W �)(Z)

+
(

3− r

2

)
[g(Y, Z)� − �(Z)Y ](∇W �)(X)

−
(

3− r

2

)
[g(X,Z)� − �(Z)X](∇W �)(Y ).

Noting that we may assume that all vector fields X,Y, Z,W are orthogonal to �
and using (2.2), we get

(∇WR)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y ] (4.8)

+
(

3− r

2

)
[g(Y, Z)(∇W �)(X)− g(X,Z)(∇W �)(Y )]�.

Applying �2 to the both sides of (4.8) and using (2.2) and (2.3), we get

�2((∇WR)(X,Y )Z) =
dr(W )

2
[g(Y, Z)X − g(X,Z)X]. (4.9)

By (3.1) the equation (4.9) reduces to

A(W )R(X,Y )Z =

[
dr(W )

2
−B(W )

]
[g(Y,Z)X − g(X,Z)X].

Putting W = {ei}, where {ei}, i = 1, 2, 3, is an orthonormal basis of the tangent
space at any point of the manifold and taking summation over i, 1 ≤ i ≤ 3, we
obtain

R(X,Y )Z = �[g(Y, Z)X − g(X,Z)X].

where � =
[
dr(ei)
2A(ei)

− Bei
A(ei)

]
is a scalar, since A is a non-zero 1-form. Then by Schur’s

theorem � will be a constant on the manifold. Therefore, (M3, g) is of constant
curvature �. Thus we get the following theorem:

Theorem 4.1. A three dimensional locally generalized �-recurrent Sasakian man-
ifold (M3, g) is of constant curvature.
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