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Abstract. The object of the present paper is to study three-dimensional
Lorentzian �-Sasakian manifolds which are Ricci-semisymmetry, locally �-

symmetric and have �-parallel Ricci tensor. An example of a three-dimensional

Lorentzian �-Sasakian manifold is given which verifies all the Theorems.

1. Introduction

The product of an almost contact manifold M and the real line ℝ carries a natural
almost complex structure. However if one takes M to be an almost contact metric
manifold and supposes that the product metric G on M×ℝ is Kaehlerian, then the
structure on M is cosymplectic [9] and not Sasakian. On the other hand Oubina
[13] pointed out that if the conformally related metric e2tG, t being the coordinate
on ℝ, is Kaehlerian, then M is Sasakian and conversely.

In [15], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing � is a constant, say c. He showed
that they can be divided into three classes:

(i) homogeneous normal contact Riemannian manifolds with c > 0,
(ii) global Riemannian products of a line or a circle with a Kaehler manifold of

constant holomorphic sectional curvature if c = 0,
(iii) a warped product space if c < 0.
It is known that the manifolds of class (i) are characterized by admitting a

Sasakian structure.
In the Gray-Hervella classification of almost Hermitian manifolds [7], there ap-

pears a class, W4, of Hermitian manifolds which are closely related to locally con-
formal Kaehler manifolds [4]. An almost contact metric structure on a manifold M
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is called a trans-Sasakian structure [13], [1] if the product manifold M ×ℝ belongs
to the class W4. The class C6⊕C5 [12] coincides with the class of the trans-Sasakian
structures of type (�, �). In fact, in [12], local nature of the two subclasses, namely,
C5 and C6 structures, of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type (0, 0), (0, �) and (�, 0) are cosym-
plectic [1], �-Kenmotsu [8] and �-Sasakian [8], respectively. In [17] it is proved that
trans-Sasakian structures are generalized quasi-Sasakian [8]. Thus, trans-Sasakian
structures also provide a large class of generalized quasi-Sasakian structures. Then,
in [18], Yıldız and Murathan introduced Lorentzian �-Sasakian manifolds.

Also, three-dimensional trans-Sasakian manifolds have been studied by De and
Tripathi [6], De and Sarkar [5] and many others. Also three-dimensional Lorentzian
Para-Sasakian manifolds have been studied by Shaikh and De [14].

An almost contact metric structure (�, �, �, g) on M is called a trans-Sasakian
structure [13] if (M × ℝ, J, G) belongs to the class W4 [7], where J is the almost
complex structure on M × ℝ defined by

J(X, fd/dt) = (�X − f�, �(X)d/dt),

for all vector fields X on M and smooth functions f on M × ℝ , and G is the
product metric on M × ℝ . This may be expressed by the condition [2]

(∇X�)Y = �(g(X,Y )� − �(Y )X) + �(g(�X, Y )� − �(Y )�X), (1.1)

for some smooth functions � and � on M , and we say that the trans-Sasakian
structure is of type (�, �). From the formula (1.1) it follows that

∇X� = −��X + �(X − �(X)�), (1.2)

(∇X�)Y = −�g(�X, Y ) + �g(�X, �Y ). (1.3)

More generally one has the notion of an �-Sasakian structure [8] which may be
defined by

(∇X�)Y = �(g(X,Y )� − �(Y )X), (1.4)

where � is a non-zero constant. From the condition one may readily deduce that

∇X� = −��X, (1.5)

(∇X�)Y = −�g(�X, Y ). (1.6)

Thus � = 0 and therefore a trans-Sasakian structure of type (�, �) with � a non-
zero constant is always �-Sasakian [8]. If � = 1, then �-Sasakian manifold is a
Sasakian manifold.

Let (x, y, z) be Cartesian coordinates in ℝ3, then (�, �, �, g) given by

� = ∂/∂z, � = dz − ydx,

� =

⎛⎝ 0 −1 0
1 0 0
0 −y 0

⎞⎠ , g =

⎛⎝ ez + y2 0 −y
0 ez 0
−y 0 1

⎞⎠
is a trans-Sasakian structure of type (−1/(2ez), 1/2) in ℝ3 [2]. In general, in a
three-dimensional K-contact manifold with structure tensors (�, �, �, g) for a non-

constant function f , if we define g
′

= fg + (1 − f)� ⊗ �; then (�, �, �, g
′
) is a

trans-Sasakian structure of type (1/f, (1/2)�(ln f)) ([3], [8], [11]).
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The relation between trans-Sasakian, �-Sasakian and �-Kenmotsu structures
was discussed by Marrero [11].

Proposition 1.1. [11] A trans-Sasakian manifold of dimension ≥ 5 is either �-
Sasakian, �-Kenmotsu or cosymplectic.

The paper is organized as follows: After intoroduction in section 2, we intro-
duce the notion of Lorentzian �-Sasakian manifolds. In section 3, we study three-
dimensional Lorentzian �-Sasakian manifolds. In the next section we prove that a
three-dimensional Ricci -semisymmetric Lorentzian �-Sasakian manifold is a mani-
fold of constant curvature and in section 5, it is shown that such a manifold is locally
�-symmetric. In section 6, we prove that three-dimensional Lorentzian �-Sasakian
manifold with �-parallel Ricci tensor is also locally �-symmetric. In the last sec-
tion, we give an example of a locally �-symmetric three-dimensional Lorentzian
�-Sasakian manifold.

2. Lorentzian �-Sasakian manifolds

A differentiable manifold of dimension (2n+1) is called a Lorentzian �-Sasakian
manifold if it admits a (1, 1)-tensor field �, a contravariant vector field �, a covariant
vector field � and the Lorentzian metric g which satisfy

�(�) = −1, (2.1)

�2 = I + � ⊗ �, (2.2)

g(�X, �Y ) = g(X,Y ) + �(X)�(Y ), (2.3)

g(X, �) = �(X), (2.4)

�� = 0, �(�X) = 0, (2.5)

(∇X�)Y = �(g(X,Y )� + �(Y )X), (2.6)

for all X,Y ∈ TM.
Also a Lorentzian �-Sasakian manifold M satisfies

∇X� = ��X, (2.7)

(∇X�)Y = �g(X,�Y ), (2.8)

where∇ denotes the operator of covariant differentation with respect to the Lorentzian
metric g and � is constant.

On the other hand, on a Lorentzian �-Sasakian manifold M the following rela-
tions hold [18]:

R(�,X)Y = �2(g(X,Y )� − �(Y )X), (2.9)

R(X,Y )� = �2(�(Y )X − �(X)Y ), (2.10)

R(�,X)� = �2(�(X)� +X), (2.11)

S(X, �) = 2n�2�(X), (2.12)



ON THREE-DIMENSIONAL LORENTZIAN �-SASAKIAN MANIFOLDS 93

Q� = 2n�2�, (2.13)

S(�, �) = −2n�2, (2.14)

for any vector fields X,Y, Z, where S is the Ricci curvature and Q is the Ricci
operator given by S(X,Y ) = g(QX,Y ).

A Lorentzian �-Sasakian manifold M is said to be �-Einstein if its Ricci tensor
S is of the form

S(X,Y ) = ag(X,Y ) + b�(X)�(Y ),

for any vector fields X, Y , where a, b are functions on Mn.

3. Three-dimensional Lorentzian �-Sasakian manifolds

In a three-dimensional Lorentzian �-Sasakian manifold the curvature tensor
satifies

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y (3.1)

−�
2

[g(Y, Z)X − g(X,Z)Y ] ,

where � is the scalar curvature.
Then putting Z = � in (3.1) and using (2.4) and (2.12), we have

R(X,Y )� = �(Y )QX − �(X)QY − [
�

2
− 2�2][�(Y )X − �(X)Y ]. (3.2)

Using (2.10) in (3.2), we get

�(Y )QX − �(X)QY = [
�

2
− �2][�(Y )X − �(X)Y ]. (3.3)

Putting Y = � in (3.3), we obtain

QX = [
�

2
− �2]X + [

�

2
− 3�2]�(X)�. (3.4)

Then from (3.4), we get

S(X,Y ) = [
�

2
− �2]g(X,Y ) + [

�

2
− 3�2]�(X)�(Y ). (3.5)

From (3.5), it follows that a Lorentzian �-Sasakian manifold is an �-Einstein man-
ifold.

Lemma 3.1. A three-dimensional Lorentzian �-Sasakian manifold is a manifold
of constant curvature if and only if the scalar curvature is 6�2.

Proof. Using (3.4) and (3.5) in (3.1), we get

R(X,Y )Z = [
�

2
− 2�2][g(Y, Z)X − g(X,Z)Y ]

+[
�

2
− 3�2][g(Y, Z)�(X)� − g(X,Z)�(Y )� (3.6)

+�(Y )�(Z)X − �(X)�(Z)Y ].

□
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From (3.6) the Lemma 3.1 is obvious.

4. Three-dimensional Ricci-Semisymmetric Lorentzian �-Sasakian
manifolds

Definition 4.1. A Lorentzian �-Sasakian manifold is said to be Ricci-semisymmetric
if the Ricci tensor S satisfies

R(X,Y ) ⋅ S = 0, (4.1)

where R(X,Y ) denotes the derivation of the tensor algebra at each point of the
manifold.

Let us consider a three-dimensional Lorentzian �-Sasakian manifold which sat-
isfies the condition (4.1). Hence, we can write

(R(X,Y ) ⋅ S)(U, V ) = R(X,Y )S(U, V ) (4.2)

−S(R(X,Y )U, V )− S(U,R(X,Y )V ) = 0.

Then from (4.2), we have

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0. (4.3)

Putting X = � in (4.3) and using (2.9) and (2.12), we get

S(R(�, Y )U, V ) = 2�4g(Y, U)�(V )− �2S(Y, V )�(U), (4.4)

and

S(U,R(�, Y )V ) = 2�4g(Y, V )�(U)− �2S(Y, U)�(V ). (4.5)

Using (4.4) and (4.5) in (4.3),we get

2�2g(Y,U)�(V )− S(Y, V )�(U) (4.6)

+2�2g(Y, V )�(U)− S(Y,U)�(V ) = 0, � ∕= 0

Let {e1, e2, �} be an orthonormal basis of the tangent space at each point of the
three-dimensional Lorentzian �-Sasakian manifold. Then we can write⎧⎨⎩ g(ei, ej) = �ij , i, j = 1, 2

g(�, �) = �(�) = −1,
�(ei) = 0, i = 1, 2

. (4.7)

Putting Y = U = ei in (4.6) and using (4.7), we obtain

�(V )[2�2g(ei, ei)− S(ei, ei)] = 0,

where since S(ei, ei) = [ �2 − �
2]g(ei, ei), we get

[3�2 − �

2
]g(ei, ei) = 0.

This gives

� = 6�2, since g(ei, ei) ∕= 0

which implies by Lemma 3.1 that the manifold is of constant curvature.
Hence we can state the following:
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Theorem 4.2. A three-dimensional Ricci-semisymmetric Lorentzian �-Sasakian
manifold is a manifold of constant curvature.

5. Locally �-symmetric three-dimensional Lorentzian �-Sasakian
manifolds

Definition 5.1. A Lorentzian �-Sasakian manifold is said to be locally �-symmetric
if

�2(∇WR)(X,Y )Z = 0, (5.1)

for all vector fields W,X, Y, Z orthogonal to �.

This notion was introduced by Takahashi for Sasakian manifolds [16].
Let us consider a three-dimensional Lorentzian �-Sasakian manifold. Firstly,

differentiating (3.6) covariantly with respect to W , we get

(∇WR)(X,Y )Z =
d�(W )

2
[g(Y,Z)X − g(X,Z)Y ]

+
d�(W )

2
[g(Y,Z)�(X)� − g(X,Z)�(Y )� + �(Y )�(Z)X − �(X)�(Z)Y ]

+[
�

2
− 3�2][g(Y, Z)(∇W �)(X)� − g(X,Z)(∇W �)(Y )�

+g(Y,Z)�(X)∇W � − g(X,Z)�(Y )∇W � + (∇W �)(Y )�(Z)X

+�(Y )(∇W �)(Z)X − (∇W �)X�(Z)Y − �(X)(∇W �)(Z)Y )].

Taking X,Y, Z,W orthogonal to � in the above equation, we have

(∇WR)(X,Y )Z =
d�(W )

2
[g(Y,Z)X − g(X,Z)Y ] (5.2)

+[
�

2
− 3�2][g(Y,Z)(∇W �)(X)� − g(X,Z)(∇W �)(Y )�].

Using the equation (2.8) in (5.2), we obtain

(∇WR)(X,Y )Z =
d�(W )

2
[g(Y,Z)X − g(X,Z)Y ] (5.3)

+[
�

2
− 3�2][g(Y, Z)g(W,X)� + g(X,Z)g(W,Y )�].

From (5.3), it follows that

�2(∇WR)(X,Y )Z =
d�(W )

2
[g(Y, Z)X − g(X,Z)Y ]. (5.4)

Thus, we obtain the following:

Theorem 5.2. A three-dimensional Lorentzian �-Sasakian manifold is locally �-
symmetric if and only if the scalar curvature � is constant.

Again if the manifold is Ricci-semisymmetric, then we have seen that � = 6�2,
i.e., � =constant and hence from Theorem 5.2, we can state the following:

Theorem 5.3. A three-dimensional Ricci-semisymmetric Lorentzian �-Sasakian
manifold is locally �-symmetric.
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6. Three-dimensional Lorentzian �-Sasakian manifolds with
�-parallel Ricci Tensor

Definition 6.1. The Ricci tensor S of a Lorentzian �-Sasakian manifold M is
called �-parallel if it is satisfies

(∇XS)(�Y, �Z) = 0, (6.1)

for all vector fields X,Y and Z.

The notion of Ricci �-parallelity for Sasakian manifolds was introduced by Kon
[10].

Now let us consider three-dimensional Lorentzian �-Sasakian manifold with �-
parallel Ricci tensor. Then from (3.5), we have

S(�X, �Y ) = [
�

2
− �2]g(�X, �Y ), (6.2)

where, using (2.3), we get

S(�X, �Y ) = [
�

2
− �2](g(X,Y ) + �(X)�(Y )). (6.3)

Differentiating (6.3) covariantly along Z, we obtain

(∇ZS)(�X, �Y ) =
d�(Z)

2
(g(X,Y ) + �(X)�(Y )) (6.4)

+(
�

2
− �2)(�(Y )(∇Z�)(X) + �(X)(∇Z�)(Y )).

Using (6.1) in (6.4), yields

1

2
[d�(Z)(g(X,Y ) + �(X)�(Y )) (6.5)

+(� − 2�2)(�(Y )(∇Z�)(X) + �(X)(∇Z�)(Y ))] = 0.

Taking a frame field, we get from (6.5), d�(Z) = 0, for all Z.

Proposition 6.2. If a three-dimensional Lorentzian �-Sasakian manifold has �-
parallel Ricci tensor, then the scalar curvature � is constant.

From Theorem 5.2 and Proposition 6.2 we have the following:

Theorem 6.3. A three-dimensional Lorentzian �-Sasakian manifold with �-parallel
Ricci tensor is locally �-symmetric.

7. Example

We consider the three-dimensional manifold M = {(x1, x2, x3) : xi ∈ ℝ3}, where
(x1, x2, x3) are the standard coordinates of ℝ3. The vector fields

e1 = ex3
∂

∂x2
, e2 = ex3(

∂

∂x1
+

∂

∂x2
), e3 = �

∂

∂x3
,

are linearly indepent at each point of M, where � is constant. Let g be the
Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1,
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that is, the form of the metric becomes

g =
1

(ex3)2
(dx2)2 − 1

�2
(dx3)2,

which is a Lorentzian metric.
Let � be the 1-form defined by �(Z) = g(Z, e3) for any Z ∈ �(M). Let � be the

(1, 1)-tensor field defined by

�e1 = −e1, �e2 = −e2, �e3 = 0.

Then using the linearity of � and g, we have

�(e3) = −1,

�2Z = Z + �(Z)e3 and

g(�Z, �W ) = g(Z,W ) + �(Z)�(W ),

for any Z,W ∈ �(M). Then for e3 = �, the structure (�, �, �, g) defines a Lorantzian
paracontact structure on M. Let ∇ be the Levi-Civita connection with respect to
the Lorentzian metric g and R be the curvature tensor of g. Then we have

[e1, e2] = 0, [e1, e3] = −�e1, [e2, e3] = −�e2.
Koszul’s formula is defined by

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) (7.1)

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using (7.1) for the Lorentzian metric g, we can easily calculate that

∇e1e1 = −�e3, ∇e1e2 = 0, ∇e1e3 = −�e1,
∇e2e1 = 0, ∇e2e2 = −�e3, ∇e2e3 = −�e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Hence the structure (�, �, �, g) is a Lorantzian �-Sasakian manifold. Now using the
above results, we obtain

R(e1, e2)e3 = 0, R(e2, e3)e3 = −�2e2,

R(e1, e3)e3 = −�2e1, R(e1, e2)e2 = �2e1,

R(e2, e3)e2 = −�2e3, R(e1, e2)e1 = −�2e2, (7.2)

R(e3, e1)e1 = �2e3, R(e2, e1)e1 = �2e2,

R(e3, e2)e2 = �2e3.

From which it follows that

�2(∇WR)(X,Y )Z = 0.

Hence, the three-dimensional Lorentzian �-Sasakian manifold is locally �-symmetric.
Also from the above expressions of the curvature tensor we obtain

S(e1, e1) = S(e2, e2) = 0 and S(e3, e3) = −2�2. (7.3)

Hence
� = −2�2,

which is a constant. Thus Theorem 5.3 is verified.
Next from the expresions of the Ricci tensor we find that the manifold is Ricci-

semisymmetric. Also from (7.2) we see that the manifold is a manifold of constant
curvature �2. Hence Theorem 4.2 is verified.
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Finally from (7.3) it follows that

(∇ZS)(�X, �Y ) = 0,

for all X,Y, Z. Therefore Theorem 6.3 is also verified.
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