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ON A UNIQUENESS CONDITION FOR CR FUNCTIONS ON
HYPERSURFACES

ABTIN DAGHIGHI

Abstract. Let f be a smooth CR function on a smooth hypersurface M ⊂
Cn, such that f vanishes to infinite order along a C∞-smooth curve γ ⊂ M.
Assume that for each q ∈ γ there exists a truncated double cone C at q in
M, such that at least one of the following three conditions holds true: (a)
There is a constant θ ∈ R, such that C ⊂ {

∣∣Re(eiθf)
∣∣ ≤ ∣∣Im(eiθf)

∣∣}. (b)
C ⊂ {Re f ≥ 0}. (c) |f(z)||z−q| → 0, z → q, z ∈ C. Then f vanishes on an
M -open neighborhood of γ.
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1. Introduction and statement of the main result

Our starting point is the following definition of vanishing to infinite order on a
submanifold.

Definition 1.1 (See Baouendi & Zachmanoglou [9], p.9). Let Ω ⊂ RN be an open
set and let M and γ ⊂ M, be two differentiable submanifolds of Ω. We say that a
continuous complex-valued function f , defined on M, vanishes to infinite order on
γ, if for every α ∈ R, the function,

z 7→ f(z)(dist(z, γ))α, (1.1)

is bounded in any compact set of M.
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Remark 1.2. Let f,M, γ be as in Definition 1.1 and let 0 ∈ γ. We automatically
know that for α ≥ 0, f(z)(dist(z, γ))α, is bounded on any compact subset ofM , and
that for any pair of α < 0, c > 0, it is bounded on the intersection, of any compact
subset of M with {z ∈ M : dist(z, γ) ≥ c}. On the set {z ∈ M : dist(z, γ) < 1}
it is obvious that f(z)(dist(z, γ))α, is bounded on every compact subset if and
only if, for every k ∈ N, f(z)(dist(z, γ))−k, is bounded locally near each point of
γ. Hence, vanishing to infinite order on γ, is equivalent to the requirement that
f(z)(dist(z, γ))−k is bounded locally near each point of γ, for each fix k ∈ N. We
shall be interested in the version of Definition 1.1, where Ω ⊂ R2n and where we
identify R2n with Cn. Let M ⊂ Cn be a CR submanifold and let γ ⊂ M be a
submanifold. We say that a continuous CR function1 f : M → C, vanishes to
infinite order on γ if for every a ∈ γ, and ∀k ∈ N, there exists a constant Ck > 0,
and U ⊂M an open neighborhood of a satisfying,

|f(z)| ≤ Ck(dist(z, γ))k, z ∈ U. (1.2)

Note that for any p ∈ γ, we have (sufficiently near p), |f(z)|·|z − p|−(k+1) ≤ Ck+1 ⇒
|f(z)| · |z − p|−k ≤ Ck+1 |z − p| , thus letting z → p, we see that,

lim
z→p

f(z)

|z − p|k
= 0, k ∈ N, (1.3)

(where the case k = 0 is due to the fact that |f(z)| ≤ C1 |z − p| → 0 as z → p).

In the case of a generic embedded CR submanifolds M ⊂ Cn, there exists (con-
trary to the case of complex manifolds) choices of M allowing for smooth CR
functions which vanish to infinite order at a point p ∈ M, but not identically, see
e.g. Schmalz [25]. In our main result we shall use so-called truncated double cones
at a point in a hypersurface.

Definition 1.3. Let M be a C1-smooth N -dimensional real manifold. We define
a set C(q) ⊂ M to be a truncated double cone in M at q ∈ M if there exists a
parametrization of M by local Euclidean coordinates (x1, . . . , xN ) centered at q,
such that C(q) is parametrized, in the variables (x1, . . . , xN ), by an open nonempty
truncated double cone at q in RN .

For a smooth hypersurface M ⊂ Cn, where n ≥ 2, we denote T cM := TpM ∩
JpTpM , where J is the complex structure map on TCn defined by Jp on each TpCn.
It is still an open problem, to determine necessary and sufficient conditions, under
which a CR∞ function (by which we mean a C∞-smooth CR function) on a C∞-
smooth hypersurface, such that the function vanishes to infinite order along a curve,
is forced to vanish identically. The work of Nirenberg [22] initiated the following
question on unique continuation, see Fornaess & Sibony [12]: Let Ω ⊂ Cn, n ≥ 2,
be a domain with smooth boundary. Let γ be a smooth curve in ∂Ω, transverse to
T cp (∂Ω), for every p ∈ γ. Does it hold true that if f ∈ C∞(Ω), holomorphic on Ω
and vanishes to infinite order on γ, then f ≡ 0?
In our main result we provide some additional conditions under which we have an
affirmative answer to the question.

1By which we mean that Xf = 0, for all sections X, of H0,1M.
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Theorem 1.4 (Main result). Let M ⊂ Cn, be a C∞-smooth real hypersurface. Let
γ ⊂M be a real C∞-smooth curve such that,

T czM + Tzγ = TzM, z ∈ γ. (1.4)

Let f ∈ CR∞(M) such that f vanishes to infinite order along γ. Assume that for
each q ∈ γ, there exists a truncated double cone C at q in M, such that at least one
of the following holds true:

(a) There is a constant θ ∈ R, such that C ⊂ {
∣∣Re(eiθf)

∣∣ ≤ ∣∣Im(eiθf)
∣∣}.

(b) C ⊂ {Re f ≥ 0}.
(c) |f(z)||z−q| → 0, z → q, z ∈ C.

Then f vanishes on an M -open neighborhood of γ.

2. Preliminary definitions and remarks

Remark 2.1. For a smooth vector field X on an open Ω ⊂ Rn and any point
p ∈ Ω there exists a unique integral curve, κ, satisfying κ : [0, T ) → Ω, (for a
maximal T ) κ̇(t) = X(κ)(t), of X which passes through p when t = 0 i.e. κ(0) = p.
We shall denote this integral curve by t 7→ ΦX,t(p). It is further known that if
X = X(ϑ) =: Xϑ, i.e., X depends upon a parameter ϑ then T = T (p, ϑ) is a
lower semi-continuous function of (p, ϑ) and t 7→ Φt(p) is continuous on the set
0 < t < T (p, ϑ), as (p, ϑ) vary on an open neighborhood of (p, 0).2

Definition 2.2. Let H be a collection of smooth vector fields on Ω. By a polygonal
path of a finite number of integral curves, of vector fields in H joining q′ ∈ Ω to
q ∈ Ω we mean a piecewise smooth curve κ : [0, 1]→ Ω such that κ(0) = q, κ(1) = q′

and 0 = s0 < s1 < · · · < sk = 1 such that,

κ(s) = ΦXj ,tj(s)(κ(sj−1)), sj−1 ≤ s ≤ sj , 1 ≤ j ≤ k, (2.1)

where Xj ∈ H and tj(s) is a smooth diffeomorphism of [sj−1, sj ] onto some closed
interval of R with tj(sj−1) = 0. For t = (t1, . . . , tk) ∈ Rk one may use the notation,

q′ = ΦX1,t11(ΦX2,t2(· · ·ΦXk,tk(q) · · · )), (2.2)

for expressing that q′ can be reached from q by a polygonal path of integral curves of
the vector fields Xj (in the given order). This gives a mapping Rk×Ω 3 (t, q) 7→ Ω,
which for fixed choice of X1, . . . , Xk and for t near 0 in Rk, is given by,

(t, q) 7→ ΦX1,t1(ΦX2,t2(· · ·ΦXk,tk(q) · · · )) =: ΦX,t(q), (2.3)

(where we are using the notation X = (X1, . . . , Xk)) for more details on this map,
see Baouendi et al. [5], p.69.

Definition 2.3. Let M ⊂ Rn, for a positive integer n, be a submanifold and let
p ∈ M . We say that a submanifold M ′ ⊂ Rn is equivalent to M at p, denoted
M ∼p M ′, if: p ∈ M ′ and there exists an open neighborhood V ⊂ Rn, of p, such
that V ∩M = V ∩M ′. The equivalence class of M , under the equivalence relation
∼p, is called the germ of the submanifold M at p. If N ⊂M is a submanifold and
p ∈ N, then a submanifold N ′ ⊂ Rn, is said to belong to the germ of N at p in M,

2This is a consequence of the fundamental theorem of ODE, see e.g. Hartmann [16], p.94,
which is usually stated in terms of a unique solution γ(t) = η(t, t0, γ0, ξ), (defined for a maximal
interval, which may depend on t0, γ0 and the parameters ξ, i.e. t ∈ (a(t0, γ0, ξ), b(t0, γ0, ξ))) to
the initial value problem γ′(t) = f(t, γ, ξ), γ(t0) = γ0. In our case f(t, γ, ϑ) = (Xϑγ)(t), where X
is a vector field.
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if N ′ ⊂M and belongs to the germ of the submanifold N at p. Any submanifold of
Rn that belongs to the germ of a submanifold M at a point p ∈ M , will be called
a representative (or member) of the germ of the submanifold M at p.

Definition 2.4 (See Baouendi et al. [5], p.94). Let M be a smooth CR manifold
and let p ∈ M. By a known theorem (see Baouendi et al. [5], p.68) there exists a
C∞-smooth submanifold W ⊂ M, p ∈ W, satisfying (i) if p ∈ W ′, where W ′ is
another C∞-smooth submanifold to which all vector fields of T cM are tangent at
every point then there is an open V ⊂ M, p ∈ V, with W ∩ V ⊂ W ′ ∩ V, (ii) for
every open U ⊂ M, p ∈ U, there exists N ∈ Z+, and open V1 ⊂ V2 ⊂ U, with
p ∈ V1, such that any q ∈ V1 ∩W can be reached by a polygonal path of N integral
curves, of vector fields in T cM, contained in W ∩ V2.
We denote by o(p), the members of the germ ofW at p, inM , such that the tangent
space at each point of the member contains T cqM . We call o(p) the local CR-orbit
at p.

Any representative of o(p) contains a CR submanifold ofM which passes through
p and whose CR dimension equals the CR dimension of M.

Definition 2.5 (See e.g. Baouendi et al. [5], p.20). Let M ⊂ Cn be an embedded
CR submanifold and p0 ∈ M. M is said to be minimal at p0, if there is no real
submanifold S ⊂ M, p0 ∈ S, such that the following two conditions hold true
simultaneously: (1) T cpM is tangent to S at every p ∈ S. (2) dimRS <dimRM.

If a CR submanifold M ⊂ Cn, is not minimal at a point p0 ∈ M , then we shall
say that p0 is a non-minimal point of M .

3. Some known results used in the proof of Theorem 1.4.

The problem of unique continuation for CR functions has been studied by many
authors, see e.g. Rosay [23], Airapetyan & Khenkin [1], Hunt et al. [18], Baouendi
& Treves [7], Alinhac et al. [3], Grachev [14], Schmalz [25], Berhanu & Mendoza [8],
Huang et al. [17] and Baouendi & Rothschild [6], Alexander [2] and very recently
(in relation to growth conditions) Della Sala & Lamel [11]. Here we mention just a
few, which we shall make use of.

Theorem 3.1 (Alinhac et al. [3], p.635). Let W ⊂ C be an open neighborhood
of 0, let W+ := W ∩ {Im z > 0}, and let A ⊂ Cn be a totally real C2-smooth
submanifold. Let F ∈ O(W+) and continuous up to the boundary such that F
maps W ∩ {Im z = 0} into A. If F vanishes to infinite order at the origin then F
vanishes identically in the connected component of the origin in W+.

Theorem 3.2 (Huang et al. [17] and Baouendi & Rothschild [6]). If f(z) is a
holomorphic function in the intersection, with the upper half plane, of a domain
containing 0, f continuous up to the boundary, vanishing to infinite order at 0 (in
the sense that f(z) = O(|z|N ) for every N ∈ N) and Ref(x) ≥ 0, x :=Rez, then f
must vanish identically.

Theorem 3.3 (Huang et al. [17], See Remark 5.6 regarding stronger version). If
f = u + iv is holomorphic in H+ := {z ∈ C : Imz > 0}, and continuous up
to (−1, 1) ⊂ ∂H+, such that |v(t)| ≤ |u(t)| for t ∈ (−1, 1), and if f vanishes to
infinite order at 0, then f ≡ 0.
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Given any of the conditions in the last two theorems, there is a certain technique
of reducing to one-variable, to be applied for obtaining a uniqueness result (see
Lemma 4.1). The following is a version of a uniqueness theorem for hypersurfaces
due to Shafin [26], where the author originally requires that the hypersurface has
a positive eigenvalue of the Levi form at 0 and that the growth condition in the
theorem is independent of direction, but the proof reveals that the result holds true
given one-sided holomorphic extension and that the growth conditions are only
required with respect to an open non-empty double cone at 0.

Theorem 3.4. Let M ⊂ Cn be a C∞-smooth hypersurface, 0 ∈ M . Let f be a
C∞-smooth CR function near 0 such that f has holomorphic extension to one side
at 0 and there is a double cone, C, at 0 in M , limz→0 |f(z)||z| = 0, z ∈ C. Then
f ≡ 0 on an M -neighborhood of the origin.

We shall use the following results, in the proof of Theorem 1.4 (see the proof of
Claim 4.3).

Theorem 3.5 (See Treves [30], proof of Theorem II.3.3, p.91). Let M be a C∞-
smooth real manifold equipped with a locally integrable structure L, let V ⊂ M be
an open subset and X a C1-smooth section of L over V (denoted X ∈ Γ1(V, L)).
Let γ : [0, 1] → Ω be an integral curve of ReX and let f be a distribution solution
to the system of equations induced by L (i.e. Xf = 0 on V, for each X ∈ Γ1(V, L)).
If f ≡ 0 on an open neighborhood of γ(0), then f ≡ 0 on an open neighborhood of
γ(1).

We have the following special case, whereM ⊂ Cn is a C∞-smooth hypersurface,
L = H0,1M, i.e. tangential CR vector fields3 (where we identify4 ReL with T cM).

Corollary 3.6 (to Theorem 3.5). Let M ⊂ Cn be a C∞-smooth hypersurface and
let p′0 ∈ M. Assume there is an integral curve of a CR vector field, such that the
curve originates at p′0 and whose end point is p0. If f is a continuous CR function
on M which vanishes on an open M -neighborhood of p′0, then f vanishes on an
open M -neighborhood of p0.

4. Proof of Theorem 1.4.

We begin with the following lemma.

Lemma 4.1. Let M ⊂ Cn, be a C∞-smooth real hypersurface, 0 ∈M. Let γ ⊂M
be a real C∞-smooth curve, 0 ∈ γ, such that,

T czM + Tzγ = TzM, z ∈ γ. (4.1)

Let f ∈ CR∞(M) such that f vanishes to infinite order on γ. Assume f has
holomorphic extension to at least one side of M , near 0. Assume that there is a
truncated double cone, C, at 0 in M such that at least one of the following holds
true:

(a) There is a constant θ ∈ R, such that C ⊂ {
∣∣Re(eiθf)

∣∣ ≤ ∣∣Im(eiθf)
∣∣}.

(b) C ⊂ {Re f ≥ 0}.

3For the fact that H0,1M is integrable see e.g. Baouendi et al. [5], p.36 (a short proof of the,
in itself not sufficient, involutivity can be found in e.g. Boggess [10]).

4This is done via the identification X 7→ X+iJX
2

, X ∈ T cM , with inverse Y 7→ Y + Y ,

Y ∈ T 0,1M , see e.g. Zampieri [36], p.112 and p.116.
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(c) |f(z)||z| → 0, z → 0, z ∈ C.

Then f ≡ 0 on an M -open neighborhood of 0.

Proof. Let U be an open subset of Cn, such that V := ∂U ∩ M is open in M,
0 ∈M, and there exists a function F ∈ O(U)∩C0(U ∪V ), F |V = f |V . Let D ⊂ Cn
be a complex line passing through 0 such that T0D + T0M = T0Cn, and, for any
sufficiently small open B ⊂ Cn, 0 ∈ B, such that B ∩D ∩M is a connected C∞-
smooth curve. Since we know that F has C∞-extension to the boundary, then for
each α ∈ Nn, the function ∂αF

∂zα has continuous extension to the boundary, thus
vanishing to infinite order on γ of f , implies,

lim
p∈U,p→0

∂αF

∂zα
(p) = 0 (4.2)

Next, pick a sufficiently small open subset B ⊂ Cn, 0 ∈ B, such that U := B ∩ U ,
satisfies that M ∩ ∂U ∩ D is a C∞-smooth curve. Assuming further that U is a
bounded domain and that U ∩D is a bounded simply connected domain, bounded
by a finite union of smooth curves, there is a bijective holomorphic map R from
the (non-empty, bounded and simply connected one-dimensional complex) domain
U+ := U ∩D, onto an open half-set, W+ ⊂ C as in Theorem 3.1, and furthermore
R extends to a homeomorphism up to the boundary, see e.g. Taylor [28], p.342 (for
a short proof of the fact that a bijective holomorphic map of a domain necessarily
has holomorphic inverse, see e.g. Rudin [24], p.217). So we can assume R is a
biholomorphism of U ∩ D and a homeomorphism of U ∩D. Since R is an open
mapping of U ∩D with open inverse we can assume R(0) is the origin, belonging
to the boundary of W+ in C. Now given a holomorphic coordinate z centered at
0, for D near 0, and setting R(z) =: ζ, we can (by the chain rule) for any j ∈ N,
and any q ∈ W+, express ∂jF

∂ζj (q) as finite sum of multiples of ∂kF
∂zk

(R−1(q)), and
∂lR−1

∂ζl
(q), k, l ∈ {1, . . . , j} Here we are considering the restriction of F to D ∩ U ,

so there is only one complex coordinate z (which explains why we write j instead
of a multi-index α). By (4.2), we obtain that (F ◦ R−1) is a continuous map of
U ∩D (holomorphic on U ∩ D) which vanishes to infinite order at R(0) ∈ ∂W+.
SinceM is smooth, D a complex one-dimensional manifold We can (by appropriate
choice of B, if necessary we replace U ∩ D but keep the same notation) assume
that both U ∩D and R(U ∩D) have C∞-smooth boundary. In particular we can
assume (F ◦R−1) is smooth up to the boundary. If condition (c) holds true then,
by Theorem 3.4, f vanishes on an open M -neighborhood of 0. If condition (c) does
not hold true, then by assumption one of (a) or (b) must hold true. Then we
are able to choose D such that D ∩ V (for sufficiently small V ) belongs to the
intersection with M of a double cone as in (a) or (b). We obtain that (F ◦R−1)
maps an interval containing 0 into (a) {|Re z| ≤ |Im z|} (if necessary after a fixed
rotation of its image, by some θ ∈ R), or (b) {Re z ≥ 0}. In the case (a) Theorem
3.3 applies and in the case (b) Theorem 3.2 applies, in each case implying that
the function (F ◦R−1) vanishes on the connected component of the origin in W+,
which implies that it vanishes on an open subset of W+ so using that R has open
inverse we obtain (by the identity theorem) F ≡ 0 on U ∩ D, and by continuity
f = 0 on D ∩ V. Now D was an arbitrary complex one-dimensional manifold which
sufficiently near 0 had intersection with M belonging to a certain double cone near
0. This can be repeated for all one-dimensional complex D̃ which are perturbations
of D, each passing through 0, and whose intersection with M belong, near 0, to the
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given double cone. So F vanishes on the union of intersections D̃ ∩ U , as D̃ varies
over such complex one dimensional manifolds. The union of all such D̃ covers an
open subset of U , so again by the identity theorem f ≡ 0 near 0. �

We shall use the following observation.

Observation 4.2. Any representative, W, of o(p0), p0 ∈ M, is an embedded CR
submanifold (see e.g. Baouendi et al. [5], p.95). This implies T czW ⊂ T czM for
each z ∈W. Assume p0 (for the remainder of this observation) is non-minimal. By
definition of non-minimality at p0, CRdim(M) ≤ dimRo(p0) < dimRM, and since
the real codimension ofM is one, CR−dim(M) = dimRo(p0), thus TzW = T czW =
T czM for each z ∈ W, which implies that W is a complex (n − 1)-dimensional
manifold containing p0. By the transversality condition (4.1) for γ, it must be
transversal to any member of the local CR orbit at a point of γ. If W ⊂ M is a
small open neighborhood of p0, then every point in W which also belongs to γ is
associated to a family of complex (n−1)-dimensional manifolds (each a member of a
different local CR orbit). In the case of real codimension one, the restriction of the
CR function f to any complex submanifold Wp0 ⊂M, passing through p0 ∈ γ is a
holomorphic function, hence f vanishes within Wp0 , as soon as Wp0 is a member
of the local orbit at p0 ∈ γ. This concludes the observation.

Given a reference point p0 ∈ γ, we parametrize γ, locally near a sufficiently small
neighborhood W ⊂M of p0, by introducing smooth local coordinates,

γ ∩W = {(φ1, . . . , φ2n−2, ϕ) : φ1 = · · · = φ2n−2 = 0}, (4.3)

where p0 = (0, ϕ̂) is a point of γ ∩W .

The strategy of the proof is as follows:

• We construct a open M -neighborhood, denoted Cϕ̂ (see (4.8)), of (0, ϕ̂),
such that every point of Cϕ̂ belongs to the global Sussmann orbit, S(0,ϕ), of
some point (0, ϕ) (with ϕ near ϕ̂).

• We then proceed to prove that f ≡ 0 on Cϕ̂, see Claim 4.3, and the proof
of the latter claim is divided into two main cases based upon minimality.

• In the first case (denoted (i)) appearing in the proof of Claim 4.3, Lemma
4.1 is invoked.

• The second case (denoted (ii)) is divided into two subcases (based upon ex-
istence and non-existence respectively, of minimal points in a given global
orbit passing γ near the reference point). Observation 4.2 is used to handle
the easy subcase when all points of a given global orbit are non-minimal.
The second subcase requires more work in terms of invoking known propa-
gation results in fusion with the properties of Cϕ̂.

Remark 2.1 shows that if we pick a nonzero vector field Z ∈ Γ(W , T cM), and we
introduce the parameter ϑ, (to be further specified later) on which Z depends, i.e.
Z = Zϑ, then there is a unique integral curve, η(t, (0, ϕ), ϑ) =: ΦZϑ,t((0, ϕ)), of Z
originating at (0, ϕ) defined for t ∈ [0, T ((0, ϕ), ϑ)), where T ((0, ϕ), ϑ)) is a lower
semi-continuous function near ((0, ϕ), 0), (i.e T is the maximal time parameter as
in Remark 2.1), specifically, given any ε > 0, (0, ϕ̂) ∈ γ ∩ W , and any ϑ0, there
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exists a δ(ϕ̂, ϑ0, ε) such that,

(|(φ, ϕ)− (0, ϕ̂)| < δ(ϕ̂, ϑ0, ε)) ∧
(∣∣∣ϑ− ϑ̂∣∣∣ < δ(ϕ̂, ϑ0, ε)

)
⇒

T ((φ, ϕ), ϑ) ≥ T ((0, ϕ̂), ϑ0)− ε, (4.4)

hence T is bounded from below as ((φ, ϕ), ϑ) varies on an open box-neighborhood
of (ϕ̂, ϑ0). This in turn implies that ΦZϑ,t((0, ϕ)), which defines the end point of the
integral curve of the vector field Zϑ passing through (0, ϕ), varies smoothly with
respect to the base point, near (0, ϕ̂). For each z ∈ γ, we let Sz denote the set of
points of M which can be reached from q by a polygonal path (see the definition
in the preliminaries) of integral curves to sections of T cM (S is called the global
Sussmann orbit at q). Let W be sufficiently small such that there is a basis, of
vector fields v1, . . . , v2n−2 (we assume each vk is normalized), for the set of sections
of T cM over W . Let,

Zϑ := Z0 +

2n−2∑
k=1

ϑkvk. (4.5)

We shall use Z0 = 0, in which case we already know that each Zϑ is a section of
T cM , and we shall use ϑ0 = 0.

Given ϑ0 = 0, we set T (ϕ̂) := T ((ϕ̂, 0), 0). We complement v1, . . . , v2n−2 to full
basis by adjoining a vector field v2n−1 which along γ coincides with ∂

∂ϕ .

Next we consider the map,

Ψ : (ϑ, ϕ) 7→ Φ(Zϑ+(ϕ−ϕ̂)v2n−1),1((0, ϕ̂)). (4.6)

Since v1, . . . , v2n−1 form a basis for TW , the map Ψ has nonzero determinant at
(0, ϕ̂) (see e.g. Baouendi et al. [5], p.65) so let {ϕv2n−1 +

∑2n−2
j=1 ϑjvj : |ϕ− ϕ̂| <

υ, |ϑ| < υ} =: Bυ ⊂ TM be such that the image of any subdomain of Bυ containing
(0, ϕ̂), under Ψ, is an open subset ofM, and such that the maximal time parameter
T above is bounded from below on Bυ by 7T (ϕ̂)/8. In particular we must chose
ε < T (ϕ̂)/8 above and υ < δ(ϕ̂, 0, ε). Let a = min{1/8, T (ϕ̂)/8, υ/8}. Define the
following sets,

C(ϕ) =
⋃
|ϑ|<a

ΦZϑ,a((0, ϕ)), (4.7)

Cϕ̂ =
⋃

ϕ∈{s : |s−ϕ̂|<a}

C(ϕ). (4.8)

Now for fixed ϕ (sufficiently near ϕ̂ as above) and |ϑ| < a, we have,

ΦZϑ,a((0, ϕ)) = ΦZϑ,a
(
Φv2n−1,ϕ−ϕ̂((0, ϕ̂))

)
= Ψ((aϑ, ϕ)). (4.9)

Also for fixed ϕ such that |ϕ− ϕ̂| < a, the union,
⋃
|ϑ|<a ΦZϑ,a(0, ϕ) belongs to

S(0,ϕ) (the global Sussmann orbit). Since we already know that its image under Ψ
is an open subset of M containing (0, ϕ̂) we obtain that the union,

⋃
|ϕ−ϕ̂|<υ Sϕ

contains an M -open neighborhood of (0, ϕ̂).

Claim 4.3. f ≡ 0 on Cϕ̂.

Proof. Indeed, there are two cases which can occur given a ϕ ∈ {|ϕ− ϕ̂| < a}:

(i) (0, ϕ) is a minimal point of M. It is a known result (due to Trepreau [31] and
generalized by Tumanov [34], for our precise formulation, see Trepreau [32], p.409)
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that minimality at a point implies holomorphic extension of f to one side of M
near that point i.e. we assume that f has holomorphic extension to one side of M,
near (0, ϕ). By Lemma 4.1 we obtain that f ≡ 0 on an M -neighborhood of (0, ϕ).
This however, by definition implies that (0, ϕ) does not belong to suppf , which in
turn by the known result of Treves [30], p.91, this implies that S(0,ϕ)∩suppf = ∅,
so f vanishes on C(ϕ) because the latter set is a subset of S(0,ϕ).

(ii) (0, ϕ) is a non-minimal point of M. If all points of S(0,ϕ) are non-minimal
then there passes through each, a complex (n − 1)- dimensional manifold and the
vanishing of f near (0, ϕ) (in the sense of Remark 4.2) propagates along each such
manifold, from (0, ϕ), so f must vanish on S(0,ϕ). Assume instead that there is a
minimal point, q, belonging to S(0,ϕ). By definition q can be reached from q0 = (0, ϕ)
by a polygonal path of CR curves in S(0,ϕ). For a C∞-smooth hypersufaceM ⊂ Cn,
it is a known result that holomorphic extension to one side of M , at a given point
q ∈ M , of continuous CR functions, holds true iff there does not pass a germ of a
complex (n−1)-dimensional submanifold of M through q, and the last condition is
equivalent to minimality at q (see e.g. Baouendi et al. [5], Theorem 1.5.15, p.20).
Also, in the case of C∞-smooth hypersurfaces holomorphic extension to one side
of M coincides with holomorphic wedge-extension, which in turn propagates along
a given CR curve (the direct consequence of the latter result, stated in the terms
we shall use it, can be found in Trepreau [32], Theorem 2, p.409; the more detailed
cause of propagation can be found in Trepreau [32], p.418, and information about
directionality in Tumanov [33]-[35]). Hence, we can assume f has holomorphic ex-
tension to one side of M, near each point of S(0,ϕ). Let U be an open subset of
Cn, such that V := ∂U ∩M contains q0, is open in M, and such that there ex-
ists a function F ∈ O(U) ∩ C0(U ∪ V ), F |V = f |V . By Lemma 4.1 f ≡ 0 on an
M -neighborhood of q0. Theorem 3.5 implies that f vanishes at all points of S(0,ϕ).
This completes the proof of Claim 4.3. �

By Claim 4.3, f ≡ 0 on an openM -neighborhood of p0 and since the latter point
was an arbitrary point of γ this also completes the proof of Theorem 1.4. �

5. Some examples on geometric conditions on M with reduced
growth conditions

Example 5.1 (The Levi flat case). Let M ⊂ Cn be a C∞-smooth hypersurface
and let γ ⊂ M be a C∞-smooth curve which is not locally the intersection with
a complex line, but satisfies the condition of (4.1). Assume M is Levi flat on an
M -open neighborhood, U , of γ.

Then any smooth CR function which vanishes to infinite order along γ must
vanish on an open M -neighborhood of γ: Let p0 ∈ γ, and assume w.l.o.g., p0
coincides with the origin, in γ and in M. It is a known consequence of the complex
version of Frobenius theorem (see Freeman [13]) that there passes through each
point of U∩γ, a complex manifold of complex dimension n−1 (i.e. the CR dimension
of M). In particular every point of U is a non-minimal point of M. Hence we can
apply the proof of (i), to the C∞-smooth CR function f , vanishing to infinite order
along γ, in the C∞-smooth hypersurface U (the reason being that in Claim 4.3,
the requirements (a)-(c) are not invoked). This will yield that f vanishes on the
Sussmann orbit of each point of γ ∩U , in U. As the proof of our main result shows,
the union of such Sussmann orbits cover an M -open neighborhood of p0.
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Example 5.2. WhenM ⊂ Cn is a C∞-smooth hypersurface then it was proved by
Rosay [23] (the proof uses a result of Andreotti & Hill [4]), that if U ∩ γ = U ∩D
for a complex ambient line D, transversal to U ∩M , for some small open U, then
any f ∈ CR∞(M) which vanishes to infinite order along U ∩ γ, must vanish on
an open M -neighborhood of U ∩ γ. This example does not require that the origin
is a minimal point, and does not have additional growth conditions compared to
Theorem 1.4.

Example 5.3 (The real-analytic case). When M ⊂ Cn is a C∞-smooth hypersur-
face and γ ⊂ M a real-analytic curve, then any Lipschitz continuous CR function
that vanishes to infinite order along γ, vanishes on an M -open neighborhood of γ.
This result is due to Baouendi & Treves [7] (see Treves [30], Theorem II.8.1, to-
gether with Corollary II.8.1, p.118, for a textbook version). Let (z1, . . . , zn) denote
holomorphic coordinates, zn = xn + iyn, let 0 ∈ γ and U be open in M such that,
0 ∈ U, U ∩M = U ∩{yn = h(z1, . . . , zn−1, xn)} for a real-analytic graphing function
h. The unique continuation result of Baouendi & Treves [7] in this real-analytic case,
is a consequence of the so called compact cocycle property for {yn = h(0, xn)}.

Definition 5.4 (see Treves [30], p.115). Let Λ be a maximally real submanifold of
Cn, p ∈ Λ. Λ is said to have the compact cocycle property at p if there is a basis of
neighborhoods of p such that, if N is any one of these neighborhoods, then there is
F ∈ O(N) with F (p) 6= 0 and {w ∈ Λ ∩N : F (w) 6= 0} b Λ ∩N.

Here is an example, covered by Theorem 1.4 of this paper, where Σ 6= ∅.

Example 5.5. The following function on R is known to be C∞-smooth but nowhere
real-analytic (see e.g. Kim & Kwon [21]),

ρ(x) :=

∞∑
k=1

1

k!
θ
(
2k(x− dxe)

)
, (5.1)

where d·e denotes the least upper integer, θ(x) := exp(− 1
x2 ) exp

(
− 1

(x−1)2

)
, 0 <

x < 1, and θ(x) = 0, x /∈ (0, 1). Let (z1 = x1 + iy1, z2 = x2 + iy2) ∈ C2 be
holomorphic coordinates and define for each j ∈ Z+, χj(z1, x2) ∈ C∞c (Bj) (where
Bj := B 1

j

(
0, 1j

)
, and Br(p) denotes the ball in C × R, of radius r, and center p)

such that χj = 1 on Cj := B 1
2j

(
0, 1j

)
, (see e.g. HÃűrmander [19], Theorem 1.4.1,

p.25, for the existence of such χj). Let B :=
⋃
j∈Z+

Bj , C :=
⋃
j∈Z+

Cj , and define
M := {(z1, z2) ∈ C2 : y2 = h(z1, x2)}, where,

h(z1, x2) :=

{
ρ(x2) + χ(x2, z1)

(
|z1|2 − ρ(x2)

)
, on B

ρ(x2) , otherwise.
(5.2)

By construction M ⊂ C2 is: (i) a smooth hypersurface (M = {(z1, z2) ∈ C2 :

ψ = 0} where ψ(z1, z2) := y2 − h(z1, x2), with ∂ψ
∂y2
≡ 1, so dψ|0 6= 0) near 0,

(ii) not real-analytic on any open subset, (iii) strictly pseudoconvex on the subset
C ⊂M, and (iv) Levi flat at all points of M \ B.5 Then, for any C∞-smooth curve
γ ⊂ {0} ∪ (M \ B) with 0 ∈ γ we have a decomposition γ = Σ ∪ (γ \ Σ), where Σ

5H1,0M spanned by (see Boggess [10], p.144), L = −2i

(
1

1+i ∂h
∂x2

)
∂h
∂z1

∂
∂z2

+ ∂
∂z̄1

= ∂
∂z̄1

, since

h is (recall that we are speaking of the set M \ B) independent of Re z1, Im z1. Thus [L,L] = 0.
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denotes be the set of points z ∈ γ. such that every M -neighborhood of z contains
a point where the Levi form6 of M is nonzero.

Remark 5.6. After the completion of this paper we were informed that Alexander
[2], Theorem 1, p.2, proved a stronger version of Theorem 3.3, indeed the condition
that f map the part of the real axis as in Theorem 3.3 into a non-spiraling set
will imply that either f ≡ 0 or f cannot vanish to infinite order at 0. In fact by
Alexander’s result we may replace the condition (|v(t)| ≤ |u(t)| for t ∈ (−1, 1)) with
the condition (|v(t)| ≤ C |u(t)| for t ∈ (−1, 1), and a non-negative constant C). We
have chosen to state our results using the weaker version found in Theorem 3.3.
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