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COMPUTATIONAL COUPLED FIXED POINTS FOR Θ−
CONTRACTIVE MAPPINGS IN METRIC SPACES ENDOWED

WITH A GRAPH

ZUBARIA ASLAM, JAMSHAID AHMAD, NAZRA SULTANA

Abstract. The aim of this paper is to establish some existence theorems for

coupled fixed points of Θ-type contractive operator in metric spaces endowed

with a directed graph. Our results unify, generalize and extend various re-
sults related with G-contraction for a directed graph G. We also provide an

application to some nonlinear integral system equations to support the results.

1. Introduction and Preliminaries

Banach’s contraction principle [5] is one of the pivotal results of analysis. It
establishes that, given a mapping f on a complete metric space (X, d) into itself
and a constant α ∈ (0, 1) such that

d(fx, fy) ≤ αd(x, y) (1.1)

holds for all x, y ∈ X. Then f has a unique fixed point in X.
Due to its importance and simplicity, several authors have obtained many inter-

esting extensions and generalizations of the Banach contraction principle (see [1-14]
and references therein). In 2008, Jachymski [15] proved some fixed point results
in metric spaces endowed with a graph and generalized simultaneously Banach’s
contraction principle from metric and partially ordered metric spaces. Consistent
with Jachymski, let (X, d) be a metric space and ∆ denote the diagonal of the
Cartesian product X ×X. Consider a directed graph G such that the set V (G) of
its vertices coincides with X and the set E(G) of its edges contains all loops, i.e.,
∆ ⊆ E(G). Also assume that the graph G has no parallel edges and, thus, one can
identify G with the pair (V (G), E(G)). Moreover, we may treat G as a weighted

graph (see [15]) by assigning to each edge the distance between its vertices. If x and
y are vertices in a graph G, then a path in G from x to y of length N (N ∈ N) is a
sequence {xi}Ni=0 of N+1 vertices such that x0 = x, xN = y and (xn−1, xn) ∈ E(G)
for each i = 1, · · · , N.

Notice that a graph G is connected if there is a directed path between any

two vertices and it is weakly connected if G̃ is connected, where G̃ denotes the
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undirected graph obtained from G by ignoring the direction of edges. Denote by
G−1 the graph obtained from G by reversing the direction of edges. Thus, we have

V
(
G−1

)
= V (G) and E

(
G−1

)
= {(x, y) ∈ X ×X : (y, x) ∈ E (G)} .

It is more convenient to treat G̃ as a directed graph for which the set of its edges
is symmetric, under this convention; we have that

E(G̃) = E(G) ∪ E(G−1).

One the other hand, Bhaskar and Lakshmikantham [6] introduced the concept
of coupled fixed point for mixed monotone operators and used it to solve vari-
ous existence problems including periodic boundary value problem In 2006. Chifu
and Petrusel [7] applied the ideas from Jachymski [14] to introduce the concept of
coupled G-contraction and proved some interesting coupled fixed point theorems.

Let us consider the function f : X ×X → X.

Definition 1.1. [7]An element (x, y) ∈ X ×X is called coupled fixed point of the
mapping f , if f(x, y) = x and f(y, x) = y.

We denote by CFix(f) the set of all coupled fixed points of a mapping f , that
is,

CFix(f) = {(x, y) ∈ X ×X : f(x, y) = x and f(y, x) = y} .

Definition 1.2. [7]We say that f : X × X → X is edge preserving if [(x, u) ∈
E(G), (y, v) ∈ E(G−1)], then (f(x, y), f(u, v)) ∈ E(G) and (f(y, x), f(v, u)) ∈
E(G−1).

Definition 1.3. [7]The mapping f : X ×X → X is called G-continuous if for all
(x, y) ∈ X ×X, (x∗, y∗) ∈ X ×X and for any sequence (ni)i∈N of positive integers,
with fni(x, y) → x∗ and fni(y, x) → y∗, as i → ∞, and (fni(x, y), fni+1(x, y)) ∈
E(G), (fni(y, x), fni+1(y, x)) ∈ E(G−1), we have that

f(fni(x, y), fni(y, x)) → f(x∗, y∗),

f(fni(y, x), fni(x, y)) → f(y∗, x∗)

as i→∞.

Definition 1.4. [7]Let (X, d) be a complete metric space and G be a directed graph.
We say that the triple (X, d,G) has the property (A1), if for any sequence (xn)n∈N
with xn → x as n → ∞ and (xn, xn+1) ∈ E(G) for all n ∈ N, we have (xn, x) ∈
E(G).

Definition 1.5. [7]Let (X, d) be a complete metric space and G be a directed graph.
We say that the triple (X, d,G) has the property (A2), if for any sequence (xn)n∈N
with xn → x as n→∞ and (xn, xn+1) ∈ E(G−1) for all n ∈ N, we have (xn, x) ∈
E(G−1).

Let (X, d) be a metric space endowed with a directed graph G satisfying the
standard conditions. The set denoted by (X ×X)f is defined as follows:

(X ×X)f =
{

(x, y) ∈ X ×X : (x, f(x, y)) ∈ E(G) and (y, f(y, x)) ∈ E(G−1)
}
.

Proposition 1.6. [7]If f : X ×X → X is edge preserving, then:
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(i) (x, u) ∈ E(G) and (y, v) ∈ E(G−1) implies (fn(x, y), fn(u, v)) ∈ E(G) and
(fn(y, x), fn(v, u)) ∈ E(G−1);

(ii) (x, y) ∈ (X×X)f implies (fn(x, y), fn+1(x, y)) ∈ E(G), (fn(y, x), fn+1(y, x)) ∈
E(G−1) for all n ∈ N.

(iii) (x, y) ∈ (X ×X)f implies (fn(x, y), fn(y, x)) ∈ (X ×X)f for all n ∈ N.
Most recently, Jleli and Samet [16] introduced a new type of contraction called

Θ-contraction and obtained new fixed point theorems for such contraction in the
setting of generalized metric spaces.

Definition 1.7. Let Θ : (0,∞)→ (1,∞) be afunction satisfying:

(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if limn→∞(αn) =

0;

(Θ3) there exists 0 < h < 1 and l ∈ (0,∞] such that lima→0+
Θ(α)−1
αh = l.

A mapping f : X → X is said to be Θ-contraction if there exist the function Θ
satisfying (Θ1)-(Θ3) and a constant α ∈ (0, 1) such that for all x, y ∈ X,

d(fx, fy) 6= 0 =⇒ Θ(d(fx, fy)) ≤ [Θ(d(x, y))]α. (1.2)

Theorem 1.8. [16] Let (X, d) be a complete metric space and f : X → X be a
Θ-contraction, then f has a unique fixed point.

To be consistent with Samet et al. [16], we denote by the Ω set of all functions
Θ : (0,∞)→ (1,∞) satisfying the above conditions. In this paper, we define Θ−G-
contraction to obtain some coupled fixed point theorems for Θ −G-contraction in
metric spaces endowed with a directed graph. We also provide an application to
some nonlinear integral system equations to support the results. Throughout the
article N, R, R+ will denote the set of natural numbers, real numbers and positive
real numbers, respectively.

2. Main Results

Motivated by the work of Samet et al. [16], we give the following definition of
Θ-G-contraction.

Definition 2.1. A mapping f : X ×X → X is said to be a Θ−G-contraction if:

(i) f is edge preserving;
(ii) there exist some Θ ∈ Ω and k ∈ (0, 1) such that

Θ(d(f(x, y), f(u, v))) ≤ [Θ(max {d(x, u), d(y, v)})]k (2.1)

for all (x, u) ∈ E(G), (y, v) ∈ E(G−1) with d(f(x, y), f(u, v)) > 0.

Remark 2.2. If Θ is defined by Θ(t) = e
√
t, for all t > 0, and the fact that

(a+b
2 ) ≤ max{a, b} for all non-negative real numbers a and b, the Θ-G-contraction

reduces to G-contraction given in [7].

Lemma 2.3. Let (X, d) be a metric space endowed with a directed graph G and
let f : X × X → X be a Θ-G -contraction. Then, for all (x, u) ∈ E(G), (y, v) ∈
E(G−1), we have

Θ(d(fn(x, y), fn(u, v))) ≤ [Θ(d(x, u))]k
n



92 ZUBARIA ASLAM, JAMSHAID AHMAD, NAZRA SULTANA

or

Θ(d(fn(x, y), fn(u, v))) ≤ [Θ(d(y, v))]k
n

and

Θ(d(fn(y, x), fn(v, u))) ≤ [Θ(d(x, u))]k
n

or

Θ(d(fn(y, x), fn(v, u))) ≤ [Θ(d(y, v))]k
n

.

Proof. Let (x, u) ∈ E(G), (y, v) ∈ E(G−1). Since f is edge preserving, we have
( f(x, y), f(u, v)) ∈ E(G) and ( f(y, x), f(v, u)) ∈ E(G−1). From Proposition 6 (i),
it follows that ( fn(x, y), fn(u, v)) ∈ E(G) and ( fn(y, u), fn(v, u)) ∈ E(G−1). We
prove by mathematical induction. Since f is an Θ-G-contraction, we obtain

Θ(d(f2(x, y), f2(u, v))) = Θ(d(f(f(x, y), f(y, x)), f(f(u, v), f(v, u))))

≤ [Θ(max {d(f(x, y), f(u, v)), d(f(y, x), f(v, u))})]k.

If max {d(f(x, y), f(u, v)), d(f(y, x), f(v, u))} = d(f(x, y), f(u, v)), then we have

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(d(f(x, y), f(u, v)))]k

which implies

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(max {d(x, u), d(y, v)})]k
2

. (2.2)

If max {d(f(x, y), f(u, v)), d(f(y, x), f(v, u))} = d(f(y, x), f(v, u)), then we have

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(d(f(y, x), f(v, u)))]k

which implies

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(max {d(y, v), d(x, u)})]k
2

. (2.3)

Thus, from (2.2) and (2.3), we conclude that

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(max {d(x, u), d(y, v)})]k
2

.

Now, we consider the two cases: �

Case 01: If max {d(x, u), d(y, v)} = d(x, u), then we get

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(d(x, u))]k
2

.

Case 02: If max {d(x, u), d(y, v)} = d(y, v), then we get

Θ(d(f2(x, y), f2(u, v))) ≤ [Θ(d(y, v))]k
2

.

Therefore, by mathematical induction, we get

Θ(d(fn(x, y), fn(u, v))) ≤ [Θ(d(x, u))]k
n

or

Θ(d(fn(x, y), fn(u, v))) ≤ [Θ(d(y, v))]k
n

.

Similarly, we can write

Θ(d(f2(y, x), f2(v, u))) = Θ(d(f(f(y, x), f(x, y)), f(f(v, u), f(u, v))))

≤ [Θ(max {d(f(y, x), f(v, u)), d(f(x, y), f(u, v))})]k.

If max {d(f(y, x), f(v, u)), d(f(x, y), f(u, v))} = d(f(y, x), f(v, u)), then we have

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(d(f(y, x), f(v, u)))]k
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which implies

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(max {d(y, v), d(x, u)})]k
2

. (2.4)

If max {d(f(y, x), f(v, u)), d(f(x, y), f(u, v))} = d(f(x, y), f(u, v)), then we have

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(d(f(x, y), f(u, v)))]k

which further implies

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(max {d(x, u), d(y, v)})]k
2

. (2.5)

Thus, from (2.4) and (2.5), we conclude that

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(max {d(y, v), d(x, u)})]k
2

.

Now, we consider the two cases:
Case 01: If max {d(y, v), d(x, u)} = d(y, v), then we get

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(d(y, v))]k
2

.

Case 02: If max {d(y, v), d(x, u)} = d(x, u), then we get

Θ(d(f2(y, x), f2(v, u))) ≤ [Θ(d(x, u))]k
2

.

Therefore, by mathematical induction, we get

Θ(d(fn(y, x), fn(v, u))) ≤ [Θ(d(x, u))]k
n

or

Θ(d(fn(y, x), fn(v, u))) ≤ [Θ(d(y, v))]k
n

.

Lemma 2.4. Let (X, d) be a complete metric space endowed with a directed graph
G and let f : X × X → X be an Θ-G-contraction. Then, for each (x, y) ∈ (X ×
X)f , there exist x∗ ∈ X and y∗ ∈ X such that (fn(x, y))n∈N converges to x∗and
(fn(y, x))n∈N converges to y∗, as n→∞.

Proof. Let (x, y) ∈ (X×X)f , that is, (x, f(x, y)) ∈ E(G) and (y, f(y, x)) ∈ E(G−1).
By Lemma 11, we consider u = f(x, y) and v = f(y, x), then we obtain

Θ(d(fn(x, y), fn(f(x, y)))) ≤ [Θ(d(x, f(x, y)))]k
n

that is,

Θ(d(fn(x, y), fn+1(x, y))) ≤ [Θ(d(x, f(x, y)))]k
n

(2.6)

and

Θ(d(fn(y, x), fn(f(y, x)))) ≤ [Θ(d(y, f(y, x)))]k
n

Θ(d(fn(y, x), fn+1(y, x))) ≤ [Θ(d(y, f(y, x)))]k
n

. (2.7)

Now, taking limit as n→∞ in (2.6), we get

lim
n→∞

Θ(d(fn(x, y), fn+1(x, y))) = 1 (2.8)

which implies that

lim
n→∞

d(fn(x, y), fn+1(x, y)) = 0 (2.9)

by (Θ2). From the condition (Θ3), there exist 0 < h < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ(d(fn(x, y), fn+1(x, y)))− 1

d(fn(x, y), fn+1(x, y))h
= l. (2.10)



94 ZUBARIA ASLAM, JAMSHAID AHMAD, NAZRA SULTANA

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit,

there exists n1 ∈ N such that

|Θ(d(fn(x, y), fn+1(x, y)))− 1

d(fn(x, y), fn+1(x, y))h
− l| ≤ B

for all n > n1. This implies that

Θ(d(fn(x, y), fn+1(x, y)))− 1

d(fn(x, y), fn+1(x, y))h
≥ l −B =

l

2
= B

for all n > n1. Then

nd(fn(x, y), fn+1(x, y))h ≤ An[Θ(d(fn(x, y), fn+1(x, y)))− 1] (2.11)

for all n > n1, where A = 1
B . Now we suppose that l = ∞. Let B > 0 be an

arbitrary positive number. From the definition of the limit, there exists n1 ∈ N
such that

B ≤ Θ(d(fn(x, y), fn+1(x, y)))− 1

d(fn(x, y), fn+1(x, y))h

for all n > n1. This implies that

nd(fn(x, y), fn+1(x, y))h ≤ An[Θ(d(fn(x, y), fn+1(x, y)))− 1]

for all n > n1, where A = 1
B . Thus, in all cases, there exist A > 0 and n1 ∈ N such

that

nd(fn(x, y), fn+1(x, y))h ≤ An[Θ(d(fn(x, y), fn+1(x, y)))− 1] (2.12)

for all n > n1. Thus by (2.6) and (2.12), we get

nd(fn(x, y), fn+1(x, y))h ≤ An([(Θ(d(x, f(x, y))]k
n

− 1). (2.13)

Letting n→∞ in the above inequality, we obtain

lim
n→∞

nd(fn(x, y), fn+1(x, y))h = 0.

Thus, there exists n2 ∈ N such that

d(fn(x, y), fn+1(x, y)) ≤ 1

n1/h
(2.14)

for all n > n2. Now for m > n > n2, we have

d(fn(x, y), fm(x, y)) ≤ d(fn(x, y), fn+1(x, y)) + ...+ d(fm−1(x, y), fm(x, y))

≤
∞∑

n≥n2

1

n1/h
.

which is comnvergent, since, 0 < k < 1. Therefore asm,n→∞, we get d(fn(x, y), fm(x, y))→
0. Similarly, we can obtain d(fn(y, x), fm(y, x)) → 0 as m,n → ∞. Therefore,
(fn(x, y))n∈N and (fn(y, x))n∈N are Cauchy sequences in X. Since (X, d) is a com-
plete metric space, then there exists x∗ ∈ X and y∗ ∈ X such that (fn(x, y))n∈N
converges to point x∗ and (fn(y, x))n∈N converges to point y∗ as n→∞. �

Theorem 2.5. Let (X, d) be a complete metric space endowed with a directed graph
G and let f : X ×X → X be an Θ-G-contraction. Suppose that:
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(i) f is G-continuous;
or
(ii) the triple (X, d,G) satisfy the properties (A1), (A2) and Θ is continuous.

Then the set of all coupled fixed points of a mapping f is non empty if and only if
(X ×X)f 6= ∅.

Proof. Suppose that the set of all coupled fixed points of a mapping f is non
empty. Then there exists a coupled fixed point (x∗, y∗) of maping f such that
(x∗, f(x∗, y∗)) = (x∗, x∗) ∈ ∆ ⊂ E(G) and (y∗, f(y∗, x∗)) = (y∗, y∗) ∈ ∆ ⊂
E(G−1). So (x∗, f(x∗, y∗)) ⊂ E(G) and (y∗, f(y∗, x∗)) ⊂ E(G−1), that is, (x∗, y∗) ∈
(X ×X)f and thus (X ×X)f 6= ∅. �

Conversely suppose that (X × X)f 6= ∅, then there exists (x, y) ∈ (X × X)f

that is, (x, f(x, y)) ⊂ E(G) and (y, f(y, x)) ⊂ E(G−1). Let (ni)i∈N be a sequence
of positive integers. From Proposition 6 (ii), we have

(fni(x, y), fni+1(x, y)) ∈ E(G)

(fni(y, x), fni+1(y, x)) ∈ E(G−1). (2.15)

Then by Lemma 12, there exists x∗ ∈ X and y∗ ∈ X such that fni(x, y) → x∗(x)
and fni(y, x) → y∗(y) as i → ∞. Now, we shall prove that x∗ = f(x∗, y∗) and
y∗ = f(y∗, x∗).

Case 1: Suppose f is aG-continuous mapping, then we get f(fni(x, y), fni(y, x))→
f(x∗, y∗) and f(fni(y, x), fni(x, y))→ f(y∗, x∗) as i→∞. Now

d(f(x∗, y∗), x∗) ≤ d(f(x∗, y∗), fni+1(x, y)) + d(fni+1(x, y), x∗).

Since f is G-continuous and fni(x, y) → x∗, therefore, we get d(f(x∗, y∗), x∗) = 0
that is f(x∗, y∗) = x∗. Similarly, we can prove that f(y∗, x∗) = y∗. Thus (x∗, y∗)
is a coupled fixed point of the mapping f.

Case 2: Suppose that the triple (X, d,G) has the properties (A1) and (A2),
then we get

(fn(x, y), x∗) ∈ E(G)

(fn(y, x), y∗) ∈ E(G−1).

Now suppose that f(x∗, y∗) 6= x∗, then by triangle inequality, we have

d(f(x∗, y∗), x∗) ≤ d(f(x∗, y∗), fn+1(x, y)) + d(fn+1(x, y), x∗)

≤ d(f(x∗, y∗), f(fn(x, y), fn(y, x))) + d(fn+1(x, y), x∗).

By (Θ1) and (2.1), we have

Θ((d(f(x∗, y∗), x∗)− d(fn+1(x, y), x∗)) ≤ Θ(d(f(x∗, y∗), f(fn(x, y), fn(y, x))))

≤ [Θ(max{d(x∗, f(x∗, y∗)), d(y∗, fn(y, x))})]k

Then, as n→∞ and continuity of Θ , we get

Θ(d(f(x∗, y∗), x∗)) ≤ [Θ(d(f(x∗, y∗), x∗))]k < Θ(d(f(x∗, y∗), x∗))

a contradiction because 0 < k < 1. Thus f(x∗, y∗) = x∗. Similarly, one can easily
prove that f(y∗, x∗) = y∗. Thus (x∗, y∗) is a coupled fixed point of f.

Theorem 2.6. Under the condition of Theorem 13, if (x∗, y∗) is a coupled fixed
point of f with (x∗, y∗) ∈ E(G) and (y∗, x∗) ∈ E(G−1), then x∗ = y∗.
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Proof. Suppose x∗ 6= y∗. Then as (x∗, y∗) ∈ E(G) and (y∗, x∗) ∈ E(G−1) and f is
an Θ-G-contraction, we have

Θ(d((x∗, y∗)) = Θ(d(f(x∗, y∗), f(y∗, x∗)))

≤ [Θ(max{d((x∗, y∗), d((y∗, x∗)})]k

= [Θ(d((x∗, y∗))]k < Θ(d((x∗, y∗))

a contradiction. Hence x∗ = y∗. �

3. Applications

The aim of this section is to apply our main theorem to the existence for a
solutions of the some integral system of Volterra type integral equations. Consider
the following integral system of equations given in [8].

x(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t) and y(t) =

∫ T

0

g(t, s, y(s), x(s))ds+ h(t)

(3.1)

where t ∈ [0, T ] with T > 0.
Let C[0, T ] denote the space of all continuous functions on [0, T ], where T > 0.

LetX = C([0, T ],Rn) with the usual supremum norm, that is ||x|| = maxt∈[0,T ] |x(t)|
for all x, y ∈ C([0, T ],Rn). Consider also the graph G defined by using the partial
order relation that is,

x, y ∈ X,x ≤ y ⇔ x(t) ≤ y(t) for any t ∈ [0, T ].

Therefore, (X, || · ||) is a complete metric space endowed with a directed graph G.
If we consider E(G) = {(x, y) ∈ X × X : x ≤ y}, then the diagonal ∆ of X × X
is included in E(G). On the other hand E(G−1) = {(x, y) ∈ X × X : y ≤ x}.
Moreover, (X, || · ||, G) has the properties (A1) and (A2).

In this case (X ×X)f = {(x, y) ∈ X ×X : x ≤ f(x, y) and f(y, x) ≤ y}.

Theorem 3.1. Consider system of equations (3.1). Suppose that

(i) g : [0, T ]× [0, T ]× Rn × Rn → Rn and h : [0, T ]→ Rn are continuous;
(ii) for all x, y, u, v ∈ Rn with x ≤ u, y ≤ v, we have g(t, s, x, y) ≤ g(t, s, u, v) for

all t, s ∈ [0, T ];
(iii) there exists a number k ∈ (0, 1) such that

|g(t, s, x, y)− g(t, s, u, v)| ≤ k2

T
max{|x− u|, |y − v|}

for all t, s ∈ [0, T ] and x, y, u, v ∈ Rn with x ≤ u, y ≤ v;
(iv) there exists (x0, y0) ∈ X ×X such that

x0(t) =

∫ T

0

g(t, s, x0(s), y0(s))ds+ h(t)

and

y0(t) =

∫ T

0

g(t, s, y0(s), x0(s))ds+ h(t)

where t ∈ [0, T ]. Then there exists at least one solution of the integral system (3.1).
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Proof. Let f : X ×X → X, (x, y) 7−→ f(x, y), where

f(x, y)(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t)

where t ∈ [0, T ]. Then the system (3.1) can be written as x = f(x, y) and y =
f(y, x). �

Now let x, y, u, v ∈ Rn with x ≤ u, y ≤ v. Then we have

f(x, y)(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t)

≤
∫ T

0

g(t, s, u(s), v(s))ds+ h(t)

= f(u, v)(t)

for all t ∈ [0, T ] and

f(y, x)(t) =

∫ T

0

g(t, s, y(s), x(s))ds+ h(t)

≤
∫ T

0

g(t, s, v(s), u(s))ds+ h(t)

= f(v, u)(t)

Hence, f is G-edge preserving. From condition (iv), it follows that

(X ×X)f = {(x, y) ∈ X ×X : x ≤ f(x, y) and f(y, x) ≤ y} 6= ∅.
Further

|f(x, y)(t)− f(u, v)(t)| =

∣∣∣∣∣
∫ T

0

g(t, s, x(s), y(s))ds+ h(t)−
∫ T

0

g(t, s, u(s), v(s))ds− h(t)

∣∣∣∣∣
≤

∫ T

0

|g(t, s, x(s), y(s))− g(t, s, u(s), v(s))| ds

≤ k2

T

∫ T

0

max{|x(s)− u(s)|, |y(s)− v(s)|}ds

≤ k2 max{||x− u||, ||y − v||}.
This implies that

||f(x, y)(t)− f(u, v)(t)|| ≤ k2 max{||x− u||, ||y − v||}
or equivalently,

d(f(x, y), f(u, v)) ≤ k2 max{d(x− u), d(y − v)}.
Taking exponential, we have

ed(f(x,y),f(u,v)) ≤ ek
2 max{d(x−u),d(y−v)}

Now, we observe that mapping Θ : (0,∞)→ (1,∞) defined by

Θ(t) = e
k√t.

for each t ∈ C([0, T ],Rn) and k ∈ (0, 1) is in Ω. Thus all conditions of Theorem
4 are satisfied. Hence, there exists a coupled fixed point (x∗, y∗) ∈ X × X of the
mapping f which is the solution of the integral system (3.1).
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