BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 10 Issue 1 (2018), Pages 89-99.

COMPUTATIONAL COUPLED FIXED POINTS FOR $\Theta-$ CONTRACTIVE MAPPINGS IN METRIC SPACES ENDOWED WITH A GRAPH

ZUBARIA ASLAM, JAMSHAID AHMAD, NAZRA SULTANA

ABSTRACT. The aim of this paper is to establish some existence theorems for coupled fixed points of Θ -type contractive operator in metric spaces endowed with a directed graph. Our results unify, generalize and extend various results related with *G*-contraction for a directed graph *G*. We also provide an application to some nonlinear integral system equations to support the results.

1. INTRODUCTION AND PRELIMINARIES

Banach's contraction principle [5] is one of the pivotal results of analysis. It establishes that, given a mapping f on a complete metric space (X, d) into itself and a constant $\alpha \in (0, 1)$ such that

$$d(fx, fy) \le \alpha d(x, y) \tag{1.1}$$

holds for all $x, y \in X$. Then f has a unique fixed point in X.

Due to its importance and simplicity, several authors have obtained many interesting extensions and generalizations of the Banach contraction principle (see [1-14] and references therein). In 2008, Jachymski [15] proved some fixed point results in metric spaces endowed with a graph and generalized simultaneously Banach's contraction principle from metric and partially ordered metric spaces. Consistent with Jachymski, let (X, d) be a metric space and Δ denote the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set V(G) of its vertices coincides with X and the set E(G) of its edges contains all loops, i.e., $\Delta \subseteq E(G)$. Also assume that the graph G has no parallel edges and, thus, one can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph (see [15]) by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path in G from x to y of length N ($N \in \mathbb{N}$) is a sequence $\{x_i\}_{i=0}^N$ of N+1 vertices such that $x_0 = x$, $x_N = y$ and $(x_{n-1}, x_n) \in E(G)$ for each $i = 1, \dots, N$.

Notice that a graph G is connected if there is a directed path between any two vertices and it is weakly connected if \widetilde{G} is connected, where \widetilde{G} denotes the

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. Metric space endowed with a graph, Θ -contractions, coupled fixed point, nonlinear integral equations.

 $[\]textcircled{C}2018$ Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted January 28, 2017. Published February 15, 2018.

Communicated by Janusz Brzdek.

undirected graph obtained from G by ignoring the direction of edges. Denote by G^{-1} the graph obtained from G by reversing the direction of edges. Thus, we have

$$V(G^{-1}) = V(G) \text{ and } E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}$$

It is more convenient to treat \widetilde{G} as a directed graph for which the set of its edges is symmetric, under this convention; we have that

$$E(\widetilde{G}) = E(G) \cup E(G^{-1}).$$

One the other hand, Bhaskar and Lakshmikantham [6] introduced the concept of coupled fixed point for mixed monotone operators and used it to solve various existence problems including periodic boundary value problem In 2006. Chifu and Petrusel [7] applied the ideas from Jachymski [14] to introduce the concept of coupled *G*-contraction and proved some interesting coupled fixed point theorems.

Let us consider the function $f: X \times X \to X$.

Definition 1.1. [7] An element $(x, y) \in X \times X$ is called coupled fixed point of the mapping f, if f(x, y) = x and f(y, x) = y.

We denote by CFix(f) the set of all coupled fixed points of a mapping f, that is,

$$CFix(f) = \{(x, y) \in X \times X : f(x, y) = x \text{ and } f(y, x) = y\}$$

Definition 1.2. [7] We say that $f : X \times X \to X$ is edge preserving if $[(x, u) \in E(G), (y, v) \in E(G^{-1})]$, then $(f(x, y), f(u, v)) \in E(G)$ and $(f(y, x), f(v, u)) \in E(G^{-1})$.

Definition 1.3. [7] The mapping $f: X \times X \to X$ is called G-continuous if for all $(x, y) \in X \times X$, $(x^*, y^*) \in X \times X$ and for any sequence $(n_i)_{i \in \mathbb{N}}$ of positive integers, with $f^{n_i}(x, y) \to x^*$ and $f^{n_i}(y, x) \to y^*$, as $i \to \infty$, and $(f^{n_i}(x, y), f^{n_i+1}(x, y)) \in E(G)$, $(f^{n_i}(y, x), f^{n_i+1}(y, x)) \in E(G^{-1})$, we have that

$$\begin{array}{rcl} f(f^{n_i}(x,y), f^{n_i}(y,x)) & \to & f(x^*,y^*), \\ f(f^{n_i}(y,x), f^{n_i}(x,y)) & \to & f(y^*,x^*) \end{array}$$

as $i \to \infty$.

Definition 1.4. [7]Let (X, d) be a complete metric space and G be a directed graph. We say that the triple (X, d, G) has the property (A_1) , if for any sequence $(x_n)_{n \in \mathbb{N}}$ with $x_n \to x$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G)$ for all $n \in \mathbb{N}$, we have $(x_n, x) \in E(G)$.

Definition 1.5. [7]Let (X, d) be a complete metric space and G be a directed graph. We say that the triple (X, d, G) has the property (A_2) , if for any sequence $(x_n)_{n \in \mathbb{N}}$ with $x_n \to x$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G^{-1})$ for all $n \in \mathbb{N}$, we have $(x_n, x) \in E(G^{-1})$.

Let (X, d) be a metric space endowed with a directed graph G satisfying the standard conditions. The set denoted by $(X \times X)^f$ is defined as follows:

$$(X \times X)^f = \{(x, y) \in X \times X : (x, f(x, y)) \in E(G) \text{ and } (y, f(y, x)) \in E(G^{-1})\}.$$

Proposition 1.6. [7] If $f: X \times X \to X$ is edge preserving, then:

(i) $(x, u) \in E(G)$ and $(y, v) \in E(G^{-1})$ implies $(f^n(x, y), f^n(u, v)) \in E(G)$ and $(f^n(y, x), f^n(v, u)) \in E(G^{-1})$;

(ii) $(x,y) \in (X \times X)^f$ implies $(f^n(x,y), f^{n+1}(x,y)) \in E(G), (f^n(y,x), f^{n+1}(y,x)) \in E(G^{-1})$ for all $n \in \mathbb{N}$.

(iii) $(x, y) \in (X \times X)^f$ implies $(f^n(x, y), f^n(y, x)) \in (X \times X)^f$ for all $n \in \mathbb{N}$.

Most recently, Jleli and Samet [16] introduced a new type of contraction called Θ -contraction and obtained new fixed point theorems for such contraction in the setting of generalized metric spaces.

Definition 1.7. Let $\Theta : (0, \infty) \to (1, \infty)$ be a function satisfying:

- (Θ_1) Θ is nondecreasing;
- (Θ_2) for each sequence $\{\alpha_n\} \subseteq R^+$, $\lim_{n \to \infty} \Theta(\alpha_n) = 1$ if and only if $\lim_{n \to \infty} (\alpha_n) = 0$;

 $(\Theta_3) \text{ there exists } 0 < h < 1 \text{ and } l \in (0,\infty] \text{ such that } \lim_{a \to 0^+} \frac{\Theta(\alpha) - 1}{\alpha^h} = l.$

A mapping $f: X \to X$ is said to be Θ -contraction if there exist the function Θ satisfying (Θ_1) - (Θ_3) and a constant $\alpha \in (0, 1)$ such that for all $x, y \in X$,

$$d(fx, fy) \neq 0 \Longrightarrow \Theta(d(fx, fy)) \le [\Theta(d(x, y))]^{\alpha}.$$
(1.2)

Theorem 1.8. [16] Let (X, d) be a complete metric space and $f : X \to X$ be a Θ -contraction, then f has a unique fixed point.

To be consistent with Samet et al. [16], we denote by the Ω set of all functions $\Theta : (0, \infty) \to (1, \infty)$ satisfying the above conditions. In this paper, we define $\Theta - G$ -contraction to obtain some coupled fixed point theorems for $\Theta - G$ -contraction in metric spaces endowed with a directed graph. We also provide an application to some nonlinear integral system equations to support the results. Throughout the article \mathbb{N} , \mathbb{R} , \mathbb{R}_+ will denote the set of natural numbers, real numbers and positive real numbers, respectively.

2. Main Results

Motivated by the work of Samet et al. [16], we give the following definition of Θ -G-contraction.

Definition 2.1. A mapping $f: X \times X \to X$ is said to be a Θ – G-contraction if:

- (i) f is edge preserving;
- (ii) there exist some $\Theta \in \Omega$ and $k \in (0, 1)$ such that

$$\Theta(d(f(x,y), f(u,v))) \le [\Theta(\max\{d(x,u), d(y,v)\})]^k$$
(2.1)

for all $(x, u) \in E(G), (y, v) \in E(G^{-1})$ with d(f(x, y), f(u, v)) > 0.

Remark 2.2. If Θ is defined by $\Theta(t) = e^{\sqrt{t}}$, for all t > 0, and the fact that $(\frac{a+b}{2}) \leq \max\{a,b\}$ for all non-negative real numbers a and b, the Θ -G-contraction reduces to G-contraction given in [7].

Lemma 2.3. Let (X,d) be a metric space endowed with a directed graph G and let $f: X \times X \to X$ be a Θ -G-contraction. Then, for all $(x,u) \in E(G), (y,v) \in E(G^{-1})$, we have

$$\Theta(d(f^n(x,y), f^n(u,v))) \le [\Theta(d(x,u))]^{k'}$$

or

$$\Theta(d(f^n(x,y),f^n(u,v))) \le [\Theta(d(y,v))]^{k^n}$$

and

$$\Theta(d(f^n(y,x),f^n(v,u))) \le [\Theta(d(x,u))]^{k^n}$$

or

$$\Theta(d(f^n(y,x),f^n(v,u))) \le [\Theta(d(y,v))]^{k^n}$$

Proof. Let $(x, u) \in E(G), (y, v) \in E(G^{-1})$. Since f is edge preserving, we have ($f(x,y),f(u,v))\in E(G)$ and ($f(y,x),f(v,u))\in E(G^{-1}).$ From Proposition 6 (i), it follows that $(f^n(x,y), f^n(u,v)) \in E(G)$ and $(f^n(y,u), f^n(v,u)) \in E(G^{-1})$. We prove by mathematical induction. Since f is an Θ -G-contraction, we obtain

$$\Theta(d(f^{2}(x,y),f^{2}(u,v))) = \Theta(d(f(f(x,y),f(y,x)),f(f(u,v),f(v,u)))) \\ \leq [\Theta(\max\{d(f(x,y),f(u,v)),d(f(y,x),f(v,u))\})]^{k}.$$

If $\max \{ d(f(x, y), f(u, v)), d(f(y, x), f(v, u)) \} = d(f(x, y), f(u, v))$, then we have

$$\Theta(d(f^2(x,y),f^2(u,v))) \leq [\Theta(d(f(x,y),f(u,v)))]^k$$

which implies

$$\Theta(d(f^{2}(x,y), f^{2}(u,v))) \leq [\Theta(\max\{d(x,u), d(y,v)\})]^{k^{2}}.$$
(2.2)
If $\max\{d(f(x,y), f(u,v)), d(f(y,x), f(v,u))\} = d(f(y,x), f(v,u))$, then we have

$$\Theta(d(f^2(x,y),f^2(u,v))) \leq [\Theta(d(f(y,x),f(v,u)))]^k$$

which implies

$$\Theta(d(f^2(x,y), f^2(u,v))) \le [\Theta(\max\{d(y,v), d(x,u)\})]^{k^2}.$$
(2.3)

Thus, from (2.2) and (2.3), we conclude that

$$\Theta(d(f^2(x,y), f^2(u,v))) \le [\Theta(\max\{d(x,u), d(y,v)\})]^{k^2}.$$

Now, we consider the two cases:

Case 01: If $\max \{ d(x, u), d(y, v) \} = d(x, u)$, then we get

$$\Theta(d(f^2(x,y), f^2(u,v))) \le [\Theta(d(x,u))]^{k^2}.$$

Case 02: If $\max \{ d(x, u), d(y, v) \} = d(y, v)$, then we get

$$\Theta(d(f^2(x,y),f^2(u,v))) \le [\Theta(d(y,v))]^{k^2}.$$

Therefore, by mathematical induction, we get

$$\Theta(d(f^n(x,y), f^n(u,v))) \le [\Theta(d(x,u))]^{k^n}$$

or

$$\Theta(d(f^n(x,y),f^n(u,v))) \le [\Theta(d(y,v))]^{k^n}$$

Similarly, we can write

$$\begin{split} \Theta(d(f^2(y,x),f^2(v,u))) &= & \Theta(d(f(f(y,x),f(x,y)),f(f(v,u),f(u,v)))) \\ &\leq & [\Theta(\max\left\{d(f(y,x),f(v,u)),d(f(x,y),f(u,v))\right\})]^k. \end{split}$$

If $\max \{ d(f(y, x), f(v, u)), d(f(x, y), f(u, v)) \} = d(f(y, x), f(v, u))$, then we have $\Theta(d(f^{2}(y,x), f^{2}(v,u))) \leq [\Theta(d(f(y,x), f(v,u)))]^{k}$

92

which implies

$$\Theta(d(f^2(y,x), f^2(v,u))) \le [\Theta(\max\{d(y,v), d(x,u)\})]^{k^2}.$$
(2.4)

If $\max\left\{d(f(y,x),f(v,u)),d(f(x,y),f(u,v))\right\}=d(f(x,y),f(u,v)),$ then we have

$$\Theta(d(f^{2}(y,x), f^{2}(v,u))) \le [\Theta(d(f(x,y), f(u,v)))]^{k}$$

which further implies

$$\Theta(d(f^2(y,x), f^2(v,u))) \le [\Theta(\max\{d(x,u), d(y,v)\})]^{k^2}.$$
(2.5)

Thus, from (2.4) and (2.5), we conclude that

$$\Theta(d(f^2(y, x), f^2(v, u))) \le [\Theta(\max\{d(y, v), d(x, u)\})]^{k^2}.$$

Now, we consider the two cases:

Case 01: If $\max \{ d(y, v), d(x, u) \} = d(y, v)$, then we get

 $\Theta(d(f^2(y,x), f^2(v,u))) \le [\Theta(d(y,v))]^{k^2}.$

Case 02: If $\max \{ d(y, v), d(x, u) \} = d(x, u)$, then we get

$$\Theta(d(f^2(y,x),f^2(v,u))) \le [\Theta(d(x,u))]^{k^2}.$$

Therefore, by mathematical induction, we get

$$\Theta(d(f^n(y,x),f^n(v,u))) \le [\Theta(d(x,u))]^{k^n}$$

or

$$\Theta(d(f^n(y,x), f^n(v,u))) \le [\Theta(d(y,v))]^{k^n}.$$

Lemma 2.4. Let (X, d) be a complete metric space endowed with a directed graph G and let $f : X \times X \to X$ be an Θ -G-contraction. Then, for each $(x, y) \in (X \times X)^f$, there exist $x^* \in X$ and $y^* \in X$ such that $(f^n(x, y))_{n \in \mathbb{N}}$ converges to x^* and $(f^n(y, x))_{n \in \mathbb{N}}$ converges to y^* , as $n \to \infty$.

Proof. Let $(x, y) \in (X \times X)^f$, that is, $(x, f(x, y)) \in E(G)$ and $(y, f(y, x)) \in E(G^{-1})$. By Lemma 11, we consider u = f(x, y) and v = f(y, x), then we obtain

$$\Theta(d(f^n(x,y), f^n(f(x,y)))) \le [\Theta(d(x,f(x,y)))]^k$$

that is,

$$\Theta(d(f^{n}(x,y), f^{n+1}(x,y))) \le [\Theta(d(x, f(x,y)))]^{k^{n}}$$
(2.6)

and

$$\Theta(d(f^{n}(y,x),f^{n}(f(y,x)))) \leq [\Theta(d(y,f(y,x)))]^{k^{n}}$$

$$\Theta(d(f^{n}(y,x),f^{n+1}(y,x))) \leq [\Theta(d(y,f(y,x)))]^{k^{n}}.$$
 (2.7)

Now, taking limit as $n \to \infty$ in (2.6), we get

$$\lim_{n \to \infty} \Theta(d(f^n(x, y), f^{n+1}(x, y))) = 1$$
(2.8)

which implies that

$$\lim_{n \to \infty} d(f^n(x, y), f^{n+1}(x, y)) = 0$$
(2.9)

by (Θ_2) . From the condition (Θ_3) , there exist 0 < h < 1 and $l \in (0, \infty]$ such that

$$\lim_{n \to \infty} \frac{\Theta(d(f^n(x,y), f^{n+1}(x,y))) - 1}{d(f^n(x,y), f^{n+1}(x,y))^h} = l.$$
(2.10)

Suppose that $l < \infty$. In this case, let $B = \frac{l}{2} > 0$. From the definition of the limit, there exists $n_1 \in \mathbb{N}$ such that

$$\left|\frac{\Theta(d(f^n(x,y), f^{n+1}(x,y))) - 1}{d(f^n(x,y), f^{n+1}(x,y))^h} - l\right| \le B$$

for all $n > n_1$. This implies that

$$\frac{\Theta(d(f^n(x,y), f^{n+1}(x,y))) - 1}{d(f^n(x,y), f^{n+1}(x,y))^h} \ge l - B = \frac{l}{2} = B$$

for all $n > n_1$. Then

$$nd(f^{n}(x,y), f^{n+1}(x,y))^{h} \le An[\Theta(d(f^{n}(x,y), f^{n+1}(x,y))) - 1]$$
(2.11)

for all $n > n_1$, where $A = \frac{1}{B}$. Now we suppose that $l = \infty$. Let B > 0 be an arbitrary positive number. From the definition of the limit, there exists $n_1 \in \mathbb{N}$ such that

$$B \le \frac{\Theta(d(f^n(x,y), f^{n+1}(x,y))) - 1}{d(f^n(x,y), f^{n+1}(x,y))^h}$$

for all $n > n_1$. This implies that

$$nd(f^{n}(x,y), f^{n+1}(x,y))^{h} \le An[\Theta(d(f^{n}(x,y), f^{n+1}(x,y))) - 1]$$

for all $n > n_1$, where $A = \frac{1}{B}$. Thus, in all cases, there exist A > 0 and $n_1 \in \mathbb{N}$ such that

$$nd(f^{n}(x,y), f^{n+1}(x,y))^{h} \le An[\Theta(d(f^{n}(x,y), f^{n+1}(x,y))) - 1]$$
(2.12)

for all $n > n_1$. Thus by (2.6) and (2.12), we get

$$nd(f^{n}(x,y), f^{n+1}(x,y))^{h} \le An([(\Theta(d(x,f(x,y)))]^{k^{n}} - 1).$$
 (2.13)

Letting $n \to \infty$ in the above inequality, we obtain

$$\lim_{n \to \infty} nd(f^n(x,y), f^{n+1}(x,y))^h = 0$$

Thus, there exists $n_2 \in \mathbb{N}$ such that

$$d(f^{n}(x,y), f^{n+1}(x,y)) \le \frac{1}{n^{1/h}}$$
(2.14)

for all $n > n_2$. Now for $m > n > n_2$, we have

$$\begin{aligned} d(f^n(x,y), f^m(x,y)) &\leq & d(f^n(x,y), f^{n+1}(x,y)) + \ldots + d(f^{m-1}(x,y), f^m(x,y)) \\ &\leq & \sum_{n \geq n_2}^{\infty} \frac{1}{n^{1/h}}. \end{aligned}$$

which is comnvergent, since, 0 < k < 1. Therefore as $m, n \to \infty$, we get $d(f^n(x, y), f^m(x, y)) \to 0$. Similarly, we can obtain $d(f^n(y, x), f^m(y, x)) \to 0$ as $m, n \to \infty$. Therefore, $(f^n(x, y))_{n \in \mathbb{N}}$ and $(f^n(y, x))_{n \in \mathbb{N}}$ are Cauchy sequences in X. Since (X, d) is a complete metric space, then there exists $x^* \in X$ and $y^* \in X$ such that $(f^n(x, y))_{n \in \mathbb{N}}$ converges to point x^* and $(f^n(y, x))_{n \in \mathbb{N}}$ converges to point y^* as $n \to \infty$. \Box

Theorem 2.5. Let (X, d) be a complete metric space endowed with a directed graph G and let $f: X \times X \to X$ be an Θ -G-contraction. Suppose that:

(i) f is G-continuous;

 or

(ii) the triple (X, d, G) satisfy the properties $(A_1), (A_2)$ and Θ is continuous. Then the set of all coupled fixed points of a mapping f is non empty if and only if $(X \times X)^f \neq \emptyset$.

Proof. Suppose that the set of all coupled fixed points of a mapping f is non empty. Then there exists a coupled fixed point (x^*, y^*) of maping f such that $(x^*, f(x^*, y^*)) = (x^*, x^*) \in \Delta \subset E(G)$ and $(y^*, f(y^*, x^*)) = (y^*, y^*) \in \Delta \subset E(G^{-1})$. So $(x^*, f(x^*, y^*)) \subset E(G)$ and $(y^*, f(y^*, x^*)) \subset E(G^{-1})$, that is, $(x^*, y^*) \in (X \times X)^f$ and thus $(X \times X)^f \neq \emptyset$.

Conversely suppose that $(X \times X)^f \neq \emptyset$, then there exists $(x, y) \in (X \times X)^f$ that is, $(x, f(x, y)) \subset E(G)$ and $(y, f(y, x)) \subset E(G^{-1})$. Let $(n_i)_{i \in \mathbb{N}}$ be a sequence of positive integers. From Proposition 6 (ii), we have

$$(f^{n_i}(x,y), f^{n_i+1}(x,y)) \in E(G)$$

$$(f^{n_i}(y,x), f^{n_i+1}(y,x)) \in E(G^{-1}).$$
 (2.15)

Then by Lemma 12, there exists $x^* \in X$ and $y^* \in X$ such that $f^{n_i}(x, y) \to x^*(x)$ and $f^{n_i}(y, x) \to y^*(y)$ as $i \to \infty$. Now, we shall prove that $x^* = f(x^*, y^*)$ and $y^* = f(y^*, x^*)$.

Case 1: Suppose f is a G-continuous mapping, then we get $f(f^{n_i}(x, y), f^{n_i}(y, x)) \to f(x^*, y^*)$ and $f(f^{n_i}(y, x), f^{n_i}(x, y)) \to f(y^*, x^*)$ as $i \to \infty$. Now

$$d(f(x^*, y^*), x^*) \le d(f(x^*, y^*), f^{n_i+1}(x, y)) + d(f^{n_i+1}(x, y), x^*).$$

Since f is G-continuous and $f^{n_i}(x, y) \to x^*$, therefore, we get $d(f(x^*, y^*), x^*) = 0$ that is $f(x^*, y^*) = x^*$. Similarly, we can prove that $f(y^*, x^*) = y^*$. Thus (x^*, y^*) is a coupled fixed point of the mapping f.

Case 2: Suppose that the triple (X, d, G) has the properties (A_1) and (A_2) , then we get

$$(f^n(x,y),x^*) \in E(G)$$

 $(f^n(y,x),y^*) \in E(G^{-1}).$

Now suppose that $f(x^*, y^*) \neq x^*$, then by triangle inequality, we have

$$\begin{array}{rcl} d(f(x^*,y^*),x^*) &\leq & d(f(x^*,y^*),f^{n+1}(x,y)) + d(f^{n+1}(x,y),x^*) \\ &\leq & d(f(x^*,y^*),f(f^n(x,y),f^n(y,x))) + d(f^{n+1}(x,y),x^*). \end{array}$$

By (Θ_1) and (2.1), we have

$$\begin{array}{lll} \Theta((d(f(x^*,y^*),x^*) - d(f^{n+1}(x,y),x^*)) &\leq & \Theta(d(f(x^*,y^*),f(f^n(x,y),f^n(y,x)))) \\ &\leq & \left[\Theta(\max\{d(x^*,f(x^*,y^*)),d(y^*,f^n(y,x))\})\right]^k \end{array}$$

Then, as $n \to \infty$ and continuity of Θ , we get

$$\Theta(d(f(x^*, y^*), x^*)) \le [\Theta(d(f(x^*, y^*), x^*))]^k < \Theta(d(f(x^*, y^*), x^*))$$

a contradiction because 0 < k < 1. Thus $f(x^*, y^*) = x^*$. Similarly, one can easily prove that $f(y^*, x^*) = y^*$. Thus (x^*, y^*) is a coupled fixed point of f.

Theorem 2.6. Under the condition of Theorem 13, if (x^*, y^*) is a coupled fixed point of f with $(x^*, y^*) \in E(G)$ and $(y^*, x^*) \in E(G^{-1})$, then $x^* = y^*$.

Proof. Suppose $x^* \neq y^*$. Then as $(x^*, y^*) \in E(G)$ and $(y^*, x^*) \in E(G^{-1})$ and f is an Θ -G-contraction, we have

$$\begin{aligned} \Theta(d((x^*, y^*)) &= & \Theta(d(f(x^*, y^*), f(y^*, x^*))) \\ &\leq & \left[\Theta(\max\{d((x^*, y^*), d((y^*, x^*)\})\right]^k \\ &= & \left[\Theta(d((x^*, y^*))\right]^k < \Theta(d((x^*, y^*))) \end{aligned}$$

a contradiction. Hence $x^* = y^*$.

3. Applications

The aim of this section is to apply our main theorem to the existence for a solutions of the some integral system of Volterra type integral equations. Consider the following integral system of equations given in [8].

$$x(t) = \int_0^T g(t, s, x(s), y(s))ds + h(t) \text{ and } y(t) = \int_0^T g(t, s, y(s), x(s))ds + h(t)$$
(3.1)

where $t \in [0, T]$ with T > 0.

Let C[0,T] denote the space of all continuous functions on [0,T], where T > 0. Let $X = C([0,T], \mathbb{R}^n)$ with the usual supremum norm, that is $||x|| = \max_{t \in [0,T]} |x(t)|$ for all $x, y \in C([0,T], \mathbb{R}^n)$. Consider also the graph G defined by using the partial order relation that is,

$$x, y \in X, x \leq y \Leftrightarrow x(t) \leq y(t)$$
 for any $t \in [0, T]$.

Therefore, $(X, || \cdot ||)$ is a complete metric space endowed with a directed graph G. If we consider $E(G) = \{(x, y) \in X \times X : x \leq y\}$, then the diagonal Δ of $X \times X$ is included in E(G). On the other hand $E(G^{-1}) = \{(x, y) \in X \times X : y \leq x\}$. Moreover, $(X, || \cdot ||, G)$ has the properties (A_1) and (A_2) .

In this case $(X \times X)^f = \{(x, y) \in X \times X : x \le f(x, y) \text{ and } f(y, x) \le y\}.$

Theorem 3.1. Consider system of equations (3.1). Suppose that

(i) $g: [0,T] \times [0,T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and $h: [0,T] \to \mathbb{R}^n$ are continuous;

(ii) for all $x, y, u, v \in \mathbb{R}^n$ with $x \leq u, y \leq v$, we have $g(t, s, x, y) \leq g(t, s, u, v)$ for all $t, s \in [0, T];$

(iii) there exists a number $k \in (0, 1)$ such that

$$|g(t, s, x, y) - g(t, s, u, v)| \le \frac{k^2}{T} \max\{|x - u|, |y - v|\}$$

for all $t, s \in [0, T]$ and $x, y, u, v \in \mathbb{R}^n$ with $x \leq u, y \leq v$; (iv) there exists $(x_0, y_0) \in X \times X$ such that

$$x_0(t) = \int_0^1 g(t, s, x_0(s), y_0(s))ds + h(t)$$

and

$$y_0(t) = \int_0^T g(t, s, y_0(s), x_0(s)) ds + h(t)$$

where $t \in [0, T]$. Then there exists at least one solution of the integral system (3.1).

Proof. Let $f: X \times X \to X$, $(x, y) \longmapsto f(x, y)$, where

$$f(x,y)(t) = \int_0^T g(t,s,x(s),y(s))ds + h(t)$$

where $t \in [0,T]$. Then the system (3.1) can be written as x = f(x,y) and y = f(y,x).

Now let $x, y, u, v \in \mathbb{R}^n$ with $x \leq u, y \leq v$. Then we have

$$f(x,y)(t) = \int_0^T g(t,s,x(s),y(s))ds + h(t)$$

$$\leq \int_0^T g(t,s,u(s),v(s))ds + h(t)$$

$$= f(u,v)(t)$$

for all $t \in [0, T]$ and

$$f(y,x)(t) = \int_0^T g(t,s,y(s),x(s))ds + h(t)$$

$$\leq \int_0^T g(t,s,v(s),u(s))ds + h(t)$$

$$= f(v,u)(t)$$

Hence, f is G-edge preserving. From condition (iv), it follows that

$$(X \times X)^f = \{(x, y) \in X \times X : x \le f(x, y) \text{ and } f(y, x) \le y\} \ne \emptyset.$$

Further

$$\begin{aligned} |f(x,y)(t) - f(u,v)(t)| &= \left| \int_0^T g(t,s,x(s),y(s))ds + h(t) - \int_0^T g(t,s,u(s),v(s))ds - h(t) \right| \\ &\leq \int_0^T |g(t,s,x(s),y(s)) - g(t,s,u(s),v(s))| \, ds \\ &\leq \frac{k^2}{T} \int_0^T \max\{|x(s) - u(s)|, |y(s) - v(s)|\} ds \\ &\leq k^2 \max\{||x - u||, ||y - v||\}. \end{aligned}$$

This implies that

$$||f(x,y)(t) - f(u,v)(t)|| \le k^2 \max\{||x-u||, ||y-v||\}$$

or equivalently,

$$d(f(x,y), f(u,v)) \le k^2 \max\{d(x-u), d(y-v)\}.$$

Taking exponential, we have

$$e^{d(f(x,y),f(u,v))} < e^{k^2 \max\{d(x-u),d(y-v)\}}$$

Now, we observe that mapping $\Theta: (0,\infty) \to (1,\infty)$ defined by

$$\Theta(t) = e^{\sqrt[k]{t}}.$$

for each $t \in C([0,T], \mathbb{R}^n)$ and $k \in (0,1)$ is in Ω . Thus all conditions of Theorem 4 are satisfied. Hence, there exists a coupled fixed point $(x^*, y^*) \in X \times X$ of the mapping f which is the solution of the integral system (3.1).

Conflict of Interests

The authors declare that they have no competing interests.

Authors' Contribution

All authors contributed equally and significantly in writing this paper. All authors read and approved the final paper.

Acknowledgement

This article was funded by the Deanship of Scientific Research (DSR), University of Jeddah. Therefore, the second author acknowledge with thanks DSR, UJ for financial support.

References

- [1] J. Ahmad, A. Al-Rawashdeh, A. Azam, Fixed point results for $\{\alpha, \xi\}$ -expansive locally contractive mappings, Journal of Inequalities and Applications **2014**, 2014:364
- [2] J. Ahmad, A. Al-Rawashdeh and A. Azam, New fixed point theorems for generalized Fcontractions in complete metric spaces, Fixed Point Theory and Appl., 2015:80 (2015).
- [3] J. Ahmad, A E. Al-Mazrooei, Y. J. Cho, Y. O. Yang, Fixed point results for generalized Θ-contractions, The Journal of Nonlinear Sciences and Applications, 10(2017), 1-11.
- [4] A. Al-Rawashdeh and J. Ahmad, Common Fixed Point Theorems for JS- Contractions, Bulletin of Mathematical Analysis and Applications Volume 8 Issue 4(2016), Pages 12-22.
- [5] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math. 3(1922), 133-181.
- [6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393.
- [7] C. Chifu, G. Petrusel, New results on coupled fixed point theory in metric spaces endowed with a directed graph, Fixed Point Theory Appl., 2014 (2014), 13 pages.
- [8] N. Hussain, J. Ahmad, L. Ćirić and A. Azam, Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory and Appl., 2015:78 (2015)
- [9] N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2015(2015) :185
- [10] N. Hussain, J. Ahmad, and A. Azam, Generalized fixed point theorems for multi-valued $\alpha \psi$ contractive mappings, Journal of Inequalities and Applications, vol. 2014, article 348, 2014.
- [11] N. Hussain, J. Ahmad, and A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl. 8 (2015), 1095-1111.
- [12] N. Hussain and J. Ahmad, New Suzuki-Berinde type fixed point results, Carpathian J. Math, 33 (2017), No. 1, 59 - 72
- [13] N. Hussain, J. Ahmad and M. A. Kutbi, Fixed Point Theorems for Generalized Mizoguchi-Takahashi Contractions, Fixed Point Theory and Applications, Journal of Function Spaces, Volume 2016 (2016), Article ID 6514920, 7 pages
- [14] J. Jachymski and I. Jozwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ., 77 (2007), 123-146.
- [15] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373.
- [16] M. Jleli, B. Samet, A new generalization of the Banach contraction principle. J. Inequal. Appl. 38 (2014): 2014
- [17] Z. Li and S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory and Applications, 2016(2016) :40
- [18] W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei and P. Kumam, Fixed points of a Θ-contraction on metric spaces with a graph, Commun. Nonlinear Anal. 2 (2016), 139–149
- [19] A. Petrusel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc.Amer. Math. Soc. 134 (2006), pp. 411–418.
- [20] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math, 31 (2015), 403 - 410

Zubaria Aslam Department of Mathematics, University of Sargodha, Pakistan E-mail address: zubariaaslam@ymail.com

JAMSHAID AHMAD

Department of Mathematics, University of Jeddah, P.O.Box 80327, Jeddah 21589, Saudi Arabia.

 $E\text{-}mail\ address: \texttt{jamshaid_jasim@yahoo.com}$

NAZRA SULTANA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SARGODHA, PAKISTAN *E-mail address:* pdnaz@yahoo.com