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ROUGH CONVERGENCE IN 2-NORMED SPACES

MUKADDES ARSLAN AND ERDİNÇ DÜNDAR

Abstract. In this work, we introduced the notions of rough convergence,

rough Cauchy sequence and the set of rough limit points of a sequence and
obtained rough convergence criteria associated with this set in 2-normed space.

Later, we proved that this set is closed and convex. Finally, we examined the

relations between rough convergence and rough Cauchy sequence in 2-normed
space.

1. Introduction

The concept of 2-normed spaces was initially introduced by Gähler [8, 9] in
the 1960’s. Since then, this concept has been studied by many authors. Gürdal
and Pehlivan [13] studied statistical convergence, statistical Cauchy sequence and
investigated some properties of statistical convergence in 2-normed spaces. Şahiner
et al. [24] and Gürdal [15] studied I-convergence in 2-normed spaces. Gürdal
and Açık [14] investigated I-Cauchy and I∗-Cauchy sequences in 2-normed spaces.
Sarabadan and Talebi [20] studied statistical convergence and ideal convergence
of sequences of functions in 2-normed spaces. Arslan and Dündar [1] investigated
the concepts of I-convergence, I∗-convergence, I-Cauchy and I∗-Cauchy sequences
of functions in 2-normed spaces. Also, Yegül and Dündar [25] studied statistical
convergence of sequence of functions in 2-normed spaces. Futhermore, a lot of
development have been made in this area (see [5, 16, 21, 23]).

The idea of rough convergence was first introduced by Phu [17] in finite - dimen-
sional normed spaces. In [17], he showed that the set LIMrxi is bounded, closed,
and convex; and he introduced the notion of rough Cauchy sequence. He also inves-
tigated the relations between rough convergence and other convergence types and
the dependence of LIMrxi on the roughness degree r. In another paper [18] related
to this subject, he defined the rough continuity of linear operators and showed that
every linear operator f : X → Y is r -continuous at every point x ∈ X under the
assumption dimY < ∞ and r > 0 where X and Y are normed spaces. In [19],
he extended the results given in [17] to infinite-dimensional normed spaces. Aytar
[3] studied of rough statistical convergence and defined the set of rough statistical
limit points of a sequence and obtained two statistical convergence criteria asso-
ciated with this set and prove that this set is closed and convex. Also, Aytar [4]
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studied that the r-limit set of the sequence is equal to the intersection of these
sets and that r-core of the sequence is equal to the union of these sets. Recently,
Dündar and Çakan [6, 7] introduced the notion of rough I-convergence and the set
of rough I-limit points of a sequence and studied the notion of rough convergence
and the set of rough limit points of a double sequence.

In this paper, using the concept of rough convergence and concept of 2-normed
spaces, we introduce the notion of rough convergence in 2-normed spaces. Defining
the set of rough limit points of a sequence, we obtain two convergence criteria asso-
ciated with this set. Later, we prove that this set is closed and convex. Finally, we
examine the relations between the set of cluster points and the set of rough limit
points of a sequence. We note that our results and proof techniques presented in
this paper are analogues of those in Phu’s [17] paper. Namely, the actual origin
of most of these results and proof techniques is them papers. The following our
theorems and results are the extension of theorems and results in [17].

Now, we recall the concept of 2-normed space, ideal convergence and some fun-
damental definitions and notations (See [10, 11, 12, 13, 14, 15, 20, 24]).

Let X be a real vector space of dimension d, where 2 ≤ d <∞. A 2-norm on X
is a function ‖·, ·‖ : X ×X → R which satisfies the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.
(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.
(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.
As an example of a 2-normed space we may take X = R2 being equipped with

the 2-norm
‖x, y‖ := the area of the parallelogram based on the vectors x and y

which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where
2 ≤ d <∞. The pair (X, ‖·, ·‖) is then called a 2-normed space.

A sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be convergent to L in X
if

lim
n→∞

‖xn − L, y‖ = 0,

for every y ∈ X. In such a case, we write lim
n→∞

xn = L and call L the limit of (xn).

Example 1.1. Let x = (xn) = ( n
n+1 ,

1
n ), L = (1, 0) and z = (z1, z2). It is clear

that (xn) convergent to L = (1, 0) in 2-normed space.

Let (xn) be a sequence in (X, ‖., .‖) 2-normed space. If for ∀ε > 0, there is an
N = N(ε) ∈ N such that for ∀m,n ≥ N and for every z ∈ X,

‖xm − xn, z‖ < ε

then, (xn) said to be a Cauchy sequence in (X, ‖., .‖).



ROUGH CONVERGENCE IN 2-NORMED SPACES 3

Let r be a nonnegative real number and Rn denotes the real n-dimensional space
with the norm ‖.‖. Consider a sequence x = (xi) ⊂ Rn.

The sequence x = (xi) is said to be r-convergent to x∗, denoted by xi
r−→ x∗

provided that

∀ε > 0 ∃iε ∈ N : i ≥ iε ⇒ ‖xi − x∗‖ < r + ε.

The set

LIMrxi := {x∗ ∈ Rn : xi
r−→ x∗}

is called the r-limit set of the sequence x = (xi).
A sequence x = (xi) is said to be r-convergent if LIMrx 6= ∅. In this case, r

is called the convergence degree of the sequence x = (xi). For r = 0, we get the
ordinary convergence.

The sequence (xn) is said to be a rough Cauchy sequence satisfying

∀ε > 0,∃nε : m,n ≥ nε ⇒ ‖xm − xn‖ < ρ+ ε

for ρ > 0. ρ is roughness degree of (xn). Shortly (xn) is called a rough Cauchy
sequence. ρ is also a Cauchy degree of (xn).

Lemma 1.1. [19] Let (xi) be r-convergent, i.e., LIMrxi 6= ∅. Then, (xi) is a ρ-
Cauchy sequence for every ρ ≥ 2r. This bound for the Cauchy degree cannot be
generally decreased.

2. MAIN RESULTS

In this work, we introduced the notions of rough convergence, rough Cauchy
sequence and the set of rough limit points of a sequence and obtained rough con-
vergence criteria associated with this set in 2-normed space. Later, we proved that
this set is closed and convex. Finally, we examined the relations between rough
convergence and rough Cauchy sequence in 2-normed space.

Definition 2.1. Let (xn) be a sequence in (X, ‖., .‖) 2-normed linear space and r
be a non-negative real number. (xn) is said to be rough convergent (r-convergent)

to L denoted by xn
‖.,.‖−→r L if

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ ‖xn − L, z‖ < r + ε (2.1)

or equivalently, if

lim sup ‖xn − L, z‖ ≤ r,
for every z ∈ X.

If (2.1) holds L is an r-limit point of (xn), which is usually no more unique (for
r > 0). So, we have to consider the so-called r-limit set (or shortly r-limit) of (xn)
defined by

LIMr
2xn := {L ∈ X : xn

‖.,.‖−→r L}. (2.2)

The sequence (xn) is said to be rough convergent if

LIMr
2xn 6= ∅.

In this case, r is called a convergence degree of (xn). For r = 0 we have the classical
convergence in 2-normed space again. But our proper interest is case r > 0. There
are several reasons for this interest. For instance, since an orginally convergent
sequence (yn) (with yn → L) in 2-normed space often cannot be determined (i.e.,
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measured or calculated) exactly, one has to do with an approximated sequence (xn)
satisfying

‖xn − yn, z‖ ≤ r
for all n and for every z ∈ X, where r > 0 is an upper bound of approximation
error. Then, (xn) is no more convergent in the classical sense, but for every z ∈ X,

‖xn − L, z‖ ≤ ‖xn − yn, z‖+ ‖yn − L, z‖
≤ r + ‖yn − L, z‖

implies that is r-convergent in the sense of (2.1).

Example 2.1. The sequence x = (xn) = ((−1)n, (−1)n) is not convergent in 2-
normed space (X, ‖., .‖) but it is rough convergent to L = (0, 0) for every z ∈ X. It
is clear that

LIMr
2xn =

{
∅ , if r < 1

[(−r,−r), (r, r)] , otherwise.

Sometimes we are interested in the set of r-limit points lying in a given subset
D ⊂ X, which is called r-limit in D and denoted by

LIMD,r
2 xn := {L ∈ D : xn

‖.,.‖−→r L}. (2.3)

It is clearly

LIMX,r
2 xn = LIMr

2xn and LIMD,r
2 xn = D ∩ LIMr

2xn.

First, let us transform some properties of classical convergence to rough con-
vergence. It is well known if a sequence converges then its limit is unique. This
property is nor maintained for rough convergence with roughness degree. r > 0,
but only has the following analogy.

Theorem 2.1. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. We have diam(LIMr

2xn) ≤ 2r. In general, diam(LIMr
2xn) has no smaller

bound.

Proof 2.1. We have to show that

diam(LIMr
2xn) = sup {‖y − t, z‖ : y, t ∈ LIMr

2xn ≤ 2r} , (2.4)

where (X, ‖., .‖) is a 2-normed space and for every z ∈ X. Assume the contrary that

diam(LIMr
2xn) > 2r

then, there exist y, t ∈ LIMr
2xn satisfying

d := ‖y − t, z‖ > 2r,

for every z ∈ X. For an arbitrary ε ∈ (0, d/2 − r), it follows from (2.1) and (2.2)
that there is an nε ∈ N such that for n ≥ nε,

‖xn − y, z‖ < r + ε and ‖xn − t, z‖ < r + ε,

for every z ∈ X. This implies

‖y − t, z‖ ≤ ‖xn − y, z‖+ ‖xn − t, z‖
< 2(r + ε)

< 2r + 2(d/2− r)
= d,
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for every z ∈ X, which conflicts with d = ‖y − t, z‖. Hence, (2.4) must be true.
Consider a convergent sequence (xn) with lim

n→∞
xn = L. Then, for

Br(L) := {y ∈ X : ‖y − L, z‖ ≤ r},
it follows from

‖xn − y, z‖ ≤ ‖xn − L, z‖+ ‖L− y, z‖
≤ ‖xn − L, z‖+ r

for every z ∈ X and for y ∈ Br(L), (2.1) and (2.2) that

LIMr
2xn = Br(L).

Since diam(Br(L)) = 2r, this shows that in general the upper bound 2r of the
diameter of an r-limit set cannot be decreased anymore.

Obviously the uniqueness of limit (of classical convergence) can be regarded as a
special case of latter property, because if r = 0 then diam(LIMr

2xn) = 2r = 0, that
is, LIMr

2xn is either empty or a singleton. A further property of classical concept
is the boundedness of convergent sequences. Its analogy for rough convergence is:

Theorem 2.2. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. The sequence (xn) is bounded if and only if there exist an r ≥ 0 such
that LIMr

2xn 6= ∅. For all r > 0, a bounded sequence (xn) is always contains a
subsequence xnk

with

LIM
(xnk

),r

2 xnk
6= ∅.

Proof 2.2. For every z ∈ X if

s := sup{‖xn, z‖ : n ∈ N} <∞
then, LIMs

2xn contains the origin of X. On the other hand LIMr
2xn 6= ∅, for some

r ≥ 0 then, all but finite elements xn are contained in some ball with any radius
greater than r. Therefore, the sequence (xn) is bounded in 2-normed space X. As
(xn) is bounded sequence in 2-normed space X, it certainly contains a convergent
subsequence (xnk

). Let L be its limit point, then

LIMr
2xnk

= Br(L)

and for r > 0,

LIM
(xnk

),r

2 xnk
= {xnk

: ‖L− xnk
, z‖ ≤ r} 6= ∅,

for every z ∈ X.
Note that the second part of the previous proposition is concerned with r-limit

points lying in the subsequence (xnk
) in 2-normed space X. It is straightforward

that a sequence contained in some bounded set D always possesses a subsequence
being r-convergent (for an arbitrary r > 0) to some point of D. Here, the closedness
of D is not needed as for classical convergence. Corresponding to the property that
each subsequence of a convergent sequence also converges to the same limit point,
we now have the following one whose proof is rather simple.

Proposition 2.1. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. If (x′n) is a subsequence of (xn) then,

LIMr
2xn ⊆ LIMr

2x
′
n

in 2-normed space X.
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Theorem 2.3. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. For all r ≥ 0, the r-limit set LIMr

2xn of an arbitrary sequence (xn) is
closed.

Proof 2.3. Let (ym) be an arbitrary sequence in LIMr
2xn which converges to some

point L. For each ε > 0 and every z ∈ X, by definition there are mε/2 and an nε/2
such that

‖ymε/2
− L, z‖ < ε/2 and ‖xn − ymε/2

, z‖ < r + ε/2

whenever n ≥ nε/2. Consequently for every z ∈ X,

‖xn − L, z‖ ≤ ‖xn − ymε/2
, z‖+ ‖ymε/2

− L, z‖
< r + ε,

if n ≥ nε/2. That means L ∈ LIMr
2xn too. Hence, LIMr

2xn closed.

Theorem 2.4. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. If

y0 ∈ LIMr0
2 xn and y1 ∈ LIMr1

2 xn

then,

yα := (1− α)y0 + αy1 ∈ LIM
(1−α)r0+αr1
2 xn, for α ∈ [0, 1].

Proof 2.4. By definition, for every ε > 0, r0, r1 > 0 and every z ∈ X there exists
an nε such that n > nε implies

‖xn − yo, z‖ < r0 + ε and ‖xn − y1, z‖ < r1 + ε,

which yields also, for every z ∈ X,

‖xn − yα, z‖ ≤ (1− α)‖xn − yo, z‖+ α‖xn − y1, z‖
< (1− α)(r0 + ε) + α(r1 + ε)

= (1− α)r0 + αr1 + ε.

Hence, we have

yα ∈ LIM
(1−α)r0+αr1
2 xn.

Theorem 2.5. Let (X, ‖., .‖) be a 2-normed space and consider a sequence x =
(xn) ∈ X. LIMr

2xn is convex.

Proof 2.5. In particular, for r = r0 = r1, Theorem 2.4 yields immediately that
LIMr

2xn is convex.

Theorem 2.6. If xn
‖.,.‖−→r L1 and yn

‖.,.‖−→r L2. Then,

(i) (xn + yn)
‖.,.‖−→r (L1 + L2) and

(ii) c.(xn)
‖.,.‖−→r c.L1, (c ∈ R).

Proof 2.6. (i) By definition for every z ∈ X,

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ ‖xn − L1, z‖ ≤ r1 +
ε

2

and

∀ε > 0,∃jε ∈ N : n ≥ jε ⇒ ‖yn − L2, z‖ ≤ r2 +
ε

2
.
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Let j = max(nε, jε) and r1 + r2 = r. For every n > j and every z ∈ X we have

‖(xn + yn)− (L1 + L2), z‖ = ‖xn − L1, z‖+ ‖yn − L2, z‖

≤ r1 +
ε

2
+ r2 +

ε

2
= r + ε

and so

(xn + yn)
‖.,.‖−→r (L1 + L2).

(ii) It is obvious for c = 0. Let c 6= 0. Since

xn
‖.,.‖−→r L

for every ε > 0 and every z ∈ X, ∃nε ∈ N such taht for every n ≥ nε we have

‖xn − L, z‖ ≤
r + ε

|c|
.

According to this, for ∀n ≥ nε and every z ∈ X, we can write

‖c.xn − c.L, z‖ = |c|.|xn − L, z‖

≤ |c|. r + ε

|c|
= r + ε.

So,

(c.xn)
‖.,.‖−→r c.L.

Definition 2.2. Let (xn) be a sequence in (X, ‖., .‖) 2-normed space. (xn) is said
to be a rough Cauchy sequence with roughness degree ρ, if

∀ε > 0,∃kε : m,n ≥ kε ⇒ ‖xm − xn, z‖ ≤ ρ+ ε

is hold for ρ > 0, L ∈ X and every z ∈ X. ρ is also called a Cauchy degree of (xn).

Proposition 2.2. (i) Monotonicity: Assume ρ′ > ρ. If ρ is a Cauchy degree of
a given sequence (xn) in (X, ‖., .‖) 2-normed space, so ρ′ is a Cauchy degree of (xn).

(ii) Boundedness: A sequence (xn) is bounded if and only if there exists a ρ ≥ 0
such that (xn) is a ρ-Cauchy sequence in (X, ‖., .‖) 2-normed space.

Theorem 2.7. If (xn) is rough convergent in 2-normed space (X, ‖., .‖), i.e.,
LIMr

2xn 6= ∅ if and only if (xn) is a ρ-Cauchy sequence for every ρ ≥ 2r. This
bound for the Cauchy degree cannot be generally decreased.

Proof 2.7. Let L be any point in LIMr
2xn Then, for all ε > 0, there exists an

kε ∈ N such that m,n ≥ kε implies

‖xm − L, z‖ ≤ r +
ε

2
and ‖xn − L, z‖ ≤ r +

ε

2
,

for every z ∈ X. Therefore, m,n ≥ kε, we have

‖xm − xn, z‖ = ‖xm − L+ L− xn, z‖
≤ ‖xm − L, z‖+ ‖L− xn, z‖

≤ r +
ε

2
+ r +

ε

2
= 2r + ε
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for every z ∈ X. Hence, (xn) is a ρ-Cauchy sequence for ρ ≥ 2r. By proposition
2.2, every ρ ≥ 2r is also a Cauchy degree of (xn).

Let (xn) be a rough Cauchy sequence in 2-normed space (X, ‖., .‖). Since (xn) be
a rough Cauchy sequence, then it is bounded and consequently it is rough convergent
for ρ > 0 and for every z ∈ X. It is clear that this bound 2r can not be generally
decreased by Lemma 1.1.
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