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GAP FUNCTIONS AND ERROR BOUNDS FOR RANDOM

EXTENDED GENERALIZED VARIATIONAL INEQUALITY

PROBLEM

A.H. DAR AND M.K. AHMAD

Abstract. In this paper, we introduce a new type of variational inequal-

ity called random extended generalized variational inequality problem . We
find error bounds for the variational inequality problem with the help of gap

functions. The results obtained in this paper improve and generalize some

corresponding known results in literature.

1. Introduction

One of the basic approaches to study variational inequality is to convert it into
an identical optimization problem. The advantage of this approach is that op-
timization problem may be solved by descent algorithms which possess a global
convergence property. Gap functions are used to transform variational inequality
into an identical optimization problem. Recently many authors have developed
gap functions for different kinds of variational inequality problems; as for example
[3, 4, 5, 6, 12, 13, 15, 16, 17, 18, 23, 24, 27, 26, 28, 30, 31, 32, 35]. Besides these,
gap functions are used in constructing globally convergent algorithms, in analysing
the rate of convergence of some iterative methods and in getting error bounds.

Due to uncertainty in the real world decision problems, variational inequalities
in fuzzy setting have become important problems both in theory and practice. It
was Chang and Zhu [7] who set in motion the concept of variational inequalities
for fuzzy mappings, in 1989. Different types of variational inequalities and comple-
mentarity problems for fuzzy mapping were studied by Chang et al. [10], Chang
and Salahuddin [11], Anastassios and Salahuddin [2], Ahmad et al. [1], Verma and
Salahuddin [33], Lee et al. [25], Park et al. [29], Khan et al. [22], Ding et al. [14]
and Lan and Verma [9].

In this paper, we have developed gap functions for random extended generalized
variational inequality problem in fuzzy setting. Then we get error bounds for the
variational inequality problem with the help of residual vector. Gap functions and
error bounds in fuzzy setting were first studied by Khan et al. [24].
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2. Preliminaries and Definitions

In this paper, we consider (S,T) as measurable space where S is a set and T
is a σ-algebra of subsets of S , and H as real Hilbert space with inner product
and norm designated by 〈·, ·〉 and ‖ · ‖ respectively. We use the notions B(H), 2H,
CB(H) and H(·, ·) to denote the collection of Borel σ-fields in H, the class of all
non empty subsets of H, the class of all nonempty closed bounded subsets of H,
and the Hausdorff metric on CB(H), respectively.

Let F(H) be the collection of all fuzzy sets over H. A mapping M : H→ F(H)
is called a fuzzy mapping on H. If M is a fuzzy mapping on H, then for any z ∈ H,
M(z) (denoted by Mz in the sequel) is a fuzzy set on H and Mzw is the membership
function of w in Mz. The set (F )λ = {z ∈ H : F (z) ≥ λ}, F ∈ F(H), λ ∈ [0, 1] is
called a λ-cut of F .

Definition 2.1. [19] A fuzzy mapping M : S×H → F(H) is said to be a random
fuzzy mapping, if for any z ∈ H, M(., z) : S→ F(H) is a measurable fuzzy mapping.

Definition 2.2. [19] A mapping M : S×H→ 2H is said to be a random set-valued
mapping if for any z ∈ H, M(., z) is measurable. A random set-valued mapping
M : S × H → CB(H) is said to be H- continuous if for any s ∈ S, M(., z) is
continuous in the Hausdorff metric.

Definition 2.3. [19] A mapping z : S → H is said to be measurable selection
of a set-valued measurable mapping M : S → 2H if z is measurable and for any
s ∈ S, z(s) ∈M(s).

The multi-valued mappings, random multi valued mappings, and fuzzy mappings
are some particular cases of the random fuzzy mappings.

Let M,N : S×H→ F(H) be two random fuzzy mappings fulfilling the condition:
(a1): There exist two mappings c, d : H→ (0, 1] such that
(Ts,z)c(z) ∈ CB(H), (Ns,z)d(z) ∈ CB(H), ∀(s, z) ∈ S×H.

Using these two random fuzzy mappings M,N , the random set-valued mappings
M̂ and N̂ can be defined as follows:
M̂ : S×H→ CB(H), z 7→ (Ms,z)c(z) ∀(s, z) ∈ S×H
N̂ : S×H→ CB(H), z 7→ (Ns,z)d(z) ∀(s, z) ∈ S×H.

The mappings M̂ and N̂ are known as random set-valued mappings induced by
random fuzzy mappings M and N , respectively.

For mappings c, d : H→ (0, 1], the random fuzzy mappings M,N : S×H→ F(H)
fulfills condition (a1) and random operator g : S×H→ H with Img∩dom(∂φ) 6= ∅,
we have considered the following problem:

Find measurable mappings z, u, v, : S→ H, such that for all s ∈ S, w(s) ∈ H and
z(s) ∈ H, Ms,z(s)(u(s)) ≥ c(z(s)), Ns,z(s)(v(s)) ≥ d(z(s)), g(s, z(s))∩dom(∂φ) 6= ∅,
and

〈u(s)− v(s), w(s)− g(s, z(s))〉+ φ(w(s))− φ(g(s, z(s))) ≥ 0, (2.1)

where φ : H → R ∪ {+∞} is a proper, convex and lower semi-continuous function
and ∂φ denotes its sub-differential. This problem is called random extended gener-
alized variational inequality problem (REGVIP). The set of measurable mappings
(z,u,v) is known as random solution of the random extended generalized variational
inequality (REGVIP) (2.1).

Special cases:
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If we take d as zero operator, then the problem (2.1) is equivalent to random
generalized variational inequality problem (RGVIP), which is finding measurable
mappings z, u : S→ H, such that, ∀ s ∈ S, w(s) ∈ H,

Ms,z(s)(u(s)) ≥ c(z(s)), 〈u(s), w(s)−g(s, z(s))〉+φ(w(s))−φ(g(s, z(s))) ≥ 0. (2.2)

This problem was studied by Khan et al. [24]. They derived error bounds for
problem (2.2).

In the above problem (2.2), if we take c as a zero operator and M : H → H a
single valued operator, then the problem becomes the generalized mixed variational
inequality problem (GMVIP), which is finding z ∈ H such that

〈Mz,w − g(z)〉+ φ(w)− φ(g(z)) ≥ 0, ∀w ∈ H. (2.3)

This problem was investigated by Solodov [30]. He obtained error bounds for the
variational inequality by using gap functions.

If g(z) = z,∀z ∈ H, then problem GMVIP (2.3) becomes mixed variational
inequality problem (MVIP), which is to find z ∈ H such that

〈Mz,w − z〉+ φ(w)− φ(z) ≥ 0, ∀w ∈ H. (2.4)

This problem was investigated by Tang and Huang [32]. They constructed two reg-
ularized gap functions for the above MVIP(2.4) and investigated their differentiable
properties.

If the funcion φ(.) is taken as an indicator function of a closed set K in H,
then problem MVIP (2.4) collapses to classical variational inequality problem(VIP),
which is to find z ∈ K such that

〈Mz,w − z〉 ≥ 0, ∀w ∈ K. (2.5)

This was investigated by many authors, like [4, 16, 28, 32]. They obtained error
bounds for VIP (2.5) by using regularized gap functions and the D-gap functions.

Khan et al. [24] constructed the natural residual vector in the random fuzzy
setting for RGVIP (2.2) as follows:

Rφλ(s)(s, z(s)) = g(s, z(s))− Pφ,zλ(s)[g(s, z(s))− λ(s)u(s)], z(s) ∈ H.

Motivated by [24], we construct a natural residual vector for (2.1) as:

Rφλ(s)(s, z(s)) = g(s, z(s))− Jφλ(s)[g(s, z(s))− λ(s)(u(s)− v(s))],

where λ : S → (0,∞) is a measurable function and Jφλ(s) = (I + λ(s)∂φ)−1 is the

proximal mapping on H.

Lemma 2.1. The measurable function z : S → H is a solution of REGVIP (2.1)

if and only if Rφλ(s)(s, z(s)) = 0, where λ : S→ (0,+∞) is a measurable function.

Proof. Suppose Rφλ(s)(s, z(s)) = 0, this means that

g(s, z(s)) = Jφλ(s)[g(s, z(s))− λ(s)(u(s)− v(s))].

Now from the definition of proximal mapping, it follows that

g(s, z(s)) = arg min
w(s)∈H

{
φ(w(s)) +

1

2λ(s)
‖w(s)− g(s, z(s))− λ(s)(u(s)− v(s))‖2

}
.
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By using the condition of optimality (which are sufficient and necessary by convex-
ity), we can write

0 ∈ ∂φ(g(s, z(s))) +
1

λ(s)

(
g(s, z(s))− (g(s, z(s))− λ(s)(u(s)− v(s))))

)
= ∂φ(g(s, z(s))) +

(
u(s)− v(s)

)
,

so one can write −
(
(u(s)− v(s)

)
∈ ∂φ(g(s, z(s))).

Finally using the definition of ∂φ, we get

φ(w(s)) ≥ φ(g(s, z(s)))− 〈u(s)− v(s), w(s)− g(s, z(s))〉,∀w(s) ∈ H, s ∈ S.

Which shows that z(s) solves REGVIP (2.1). �

Definition 2.4. A random set-valued mapping M̂ : S×H→ CB(H) is said to be
strongly g-monotone, if there exists a measurable function γ1 : S→ (0,∞) such that
〈u1(s)− u2(s), g(s, z1(s))− g(s, z2(s))〉
≥ γ1(s)‖z1(s)− z2(s)‖2, ∀zi(s) ∈ M̂(t, ui),∀zi(s) ∈ H, i = 1, 2,∀s ∈ S.

Definition 2.5. A random operator g : S×H→ H is called Lipschitz continuous,
if there exists a measurable function L1 : S→ (0,+∞) such that
‖g(s, z1(s))− g(s, z2(s))‖ ≤ L1(s)‖z1(s)− z2(s)‖, ∀zi(s) ∈ H, i = 1, 2,∀s ∈ S.

Definition 2.6. A random multi- valued mapping M̂ : S×H→ CB(H) is said to
be H-Lipschitz continuous, if there exists a measurable function θ1 : S → (0,+∞)
such that
H(M̂(s, z(s)), (M̂(s, z0(s))) ≤ θ1(s)‖z(s)− z0(s)‖, ∀z(s), z0(s) ∈ H.

Definition 2.7. A function G : H → R is said to be a gap function for REGVIP
(2.1), if it satisfies the following properties:

(1) G(u) ≥ 0, ∀u ∈ H;
(2) G(u∗) = 0, if and only if u∗ ∈ H solves problem (2.1)

Rφλ(s)(s, z(s)) is a gap function for random extended generalized variational in-

equality for random fuzzy mappings (2.1). This can be verified by using Lemma
2.1.

Lemma 2.2. [8] Let M̂1, M̂2 : S→ CB(H) be two random measurable multi-valued

mappings, ε > 0 be a constant, and u1 : S → H be a measurable selection of M̂1,
then there exists a measurable selection u2 : S→ H of M̂2 such that for all s ∈ S,
‖u1(s)− u2(s)‖ ≤ (1 + ε)H(M̂1(s), M̂2(s)).

Lemma 2.3. Suppose (S,T) be a measurable space and H be a Hilbert space. Let
g : S×H→ H be a random fuzzy mapping and φ : H→ R∪{+∞} be an extended real
valued function. Suppose that the random fuzzy mappings M,N : S × H → F(H)

satisfy the condition (a1) and random set-valued mappings M̂, N̂ : S×H→ CB(H)
induced by random fuzzy mappings mappings M and N , respectively, be strongly
g-monotone with the measurable functions γ1, γ2 : S→ (0,+∞) , then the REGVIP
(2.1) has a unique solution.

Proof. Let z1, z2 : S → H be two random solutions of REGVIP (2.1) with z1(s) 6=
z2(s) ∈ H. Then we can write

〈u1(s)− v1(s), w(s)− g(s, z1(s))〉+ φ(w(s))− φ(g(s, z1(s))) ≥ 0, (2.6)
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〈u2(s)− v2(s), w(s)− g(s, z2(s))〉+ φ(w(s))− φ(g(s, z2(s))) ≥ 0. (2.7)

Putting w(s) = g(s, z2(s)) in (2.6) and w(s) = g(s, z1(s)) in (2.7), then after adding
these equations, we get

〈u1(s)−u2(s), g(s, z2(s))−g(s, z1(s))〉−〈v1(s)−v2(s), g(s, z1(s))−g(s, z2(s))〉 ≥ 0.

By using strongly g-monotonicity of M̂ and N̂ with measurable functions γ1, γ2 :
S→ (0,+∞) (γ1(s) > γ2(s)) respectively, we have

0 ≤ 〈u1(s)− u2(s), g(s, z2(s))− g(s, z1(s))〉
−〈v1(s)− v2(s), g(s, z1(s))− g(s, z2(s))〉
≤ −(γ1(s)− γ2(s))‖z1(s)− z2(s)‖2,

which implies that z1(s) = z2(s). �

3. Main results

Theorem 3.1. Let z0(s), ∀ s ∈ S be a random solution of random extended gener-
alized variational inequality problem (2.1). Let (S,T) be a measurable space, and H
be a real Hilbert space. Let the random fuzzy mappings M,N : S×H→ F(H) satisfy

the condition (a1) and M̂, N̂ : S × H → CB(H) be the random multi-valued map-
pings induced by random fuzzy mappings M and N , respectively. If g : S×H→ H
be random mapping and φ : H → R ∪ {+∞} be an extended real valued function
such that

(1) for each s ∈ S, the measurable mappings M̂ and N̂ are strongly g −
monotone with measurable functions γ1, γ2 : S→ (0,∞), respectively;

(2) for each s ∈ S, the measurable mappings M̂ and N̂ are H-Lipschitz contin-
uous with measurable functions θ1, θ2 : S→ (0,+∞), respectively;

(3) for each s ∈ S, the mapping g : S × H → H are Lipschitz continuous with
measurable function L1 : S→ (0,+∞),

then for any z(s) ∈ H, s ∈ S, we have

‖z0(s)− z(s)‖ ≤ λ(s)(1 + ε)(θ1(s)− θ2(s)) + L1(s)

λ(s)(γ1(s)− γ2(s))

×‖Rφλ(s)
(
s, z(s)

)
‖,

where γ1(s) > γ2(s) and θ1(s) > θ2(s).

Proof. Let z0(s), ∀ s ∈ S be a random solution of random extended generalized
variational inequality problem (REGVIP) (2.1). Then we have

〈u0(s)− v0(s), w(s)− g(s, z0(s))〉+ φ(w(s))− φ(g(s, z0(s))) ≥ 0, ∀w(s) ∈ H.

Taking w(s) = Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))] in the above inequality, we get

〈u0(s)− v0(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z0(s))〉

+φ(Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))])− φ(g(s, z0(s))) ≥ 0, ∀w(s) ∈ H. (3.1)

For z(s) ∈ H and measurable function λ : S→ (0,+∞), we have

g(s, z(s))− λ(s)(u(s)− v(s)) ∈ (I + λ(s)∂φ)(I + λ(s)∂φ)−1(g(s, z(s))− λ(s)(u(s)− v(s)))

= (I + λ(s)∂φ)Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))],
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which means that

−(u(s)− v(s)) +
1

λ(s)
[g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]]

∈ ∂φ
(
Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]

)
.

By the definition of ∂φ(., .), we have

〈
u(s)− v(s)− 1

λ(s)

(
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]

)
,

w(s)− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]
〉

+ φ(w(s))

−φ(Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]) ≥ 0.

Substituting w(s) = g(s, z0(s)) in the above inequality, we get

〈
u(s)− v(s)− 1

λ(s)

(
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]

)
,

g(s, z0(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]
〉

+ φ(g(s, z0(s)))

−φ(Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]) ≥ 0.

This can be written as

〈
− (u(s)− v(s)) +

1

λ(s)

(
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]

)
,

Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z0(s))
〉

+ φ(g(s, z0(s)))

−φ(Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]) ≥ 0. (3.2)

Adding (3.1) and (3.2), we have

〈
u0(s)− v0(s)− (u(s)− v(s)) +

1

λ(s)

(
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]

)
,

Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z0(s))
〉
≥ 0,

which implies that

λ(s)
〈
u0(s)− v0(s)− (u(s)− v(s)), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))

〉
+λ(s)〈u0(s)− v0(s)− (u(s)− v(s)), g(s, z(s))− g(s, z0(s))〉
+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))],

Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))
〉

+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))], g(s, z(s))− g(s, z0(s))

〉
≥ 0,
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this can be written as

λ(s)
〈
u0(s)− u(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))

〉
−λ(s)

〈
v0(s)− v(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))

〉
+λ(s)〈u0(s)− u(s), g(s, z(s))− g(s, z0(s))〉
−λ(s)〈v0(s)− v(s), g(s, z(s))− g(s, z0(s))〉
+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))],

Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))
〉

+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))], g(s, z(s))− g(s, z0(s))

〉
≥ 0,

this implies that

λ(s)
〈
u0(s)− u(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))

〉
−λ(s)〈v0(s)− v(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))〉

+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))], g(s, z(s))− g(s, z0(s))

〉
≥ λ(s)〈u0(s)− u(s), g(s, z0(s))− g(s, z(s))〉
−λ(s)〈v0(s)− v(s), g(s, z0(s))− g(s, z(s))〉
+
〈
g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))],

g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]
〉
.

Now using strongly g-monotonicity of M̂ and N̂ with measurable functionsγ1, γ2 :
S→ (0,+∞), the above can be written as

λ(s)〈u0(s)− u(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))〉

−λ(s)〈v0(s)− v(s), Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))〉

+〈g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))], g(s, z(s))− g(s, z0(s))〉

≥ λ(s)(γ1(s)− γ2(s))‖z0(s)− z(t‖2 + ‖Rφλ(s)(s, z(s))‖
2.

By Cauchy-Schwartz inequality and triangular inequality, we can write

λ(s)‖u0(s)− u(s)‖‖Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))‖

−λ(s)‖v0(s)− v(s)‖‖Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]− g(s, z(s))‖

+‖〈g(s, z(s))− Jφ,z0λ(s) [g(s, z(s))− λ(s)(u(s)− v(s))]‖‖g(s, z(s))− g(s, z0(s))‖

≥ λ(s)(γ1(s)− γ2(s))‖z0(s)− z(s)‖2.

Using the H-Lipschitz continuity of M̂ and N̂ , and the Lipschitz continuity of g,
we get

λ(s)θ1(s)(1 + ε)‖z0(s)− z(s)‖‖Rφλ(s)
(
s, z(s)

)
‖

−λ(s)θ2(s)(1 + ε)‖z0(s)− z(s)‖‖Rφλ(s)
(
s, z(s)

)
‖

‖Rφλ(s)
(
s, z(s)

)
‖L1(s)‖z0(s)− z(s)‖

≥ λ(s)(γ1(s)− γ2(s))‖z0(s)− z(s)‖2.
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‖z0(s)− z(s)‖ ≤ λ(s)(1 + ε)(θ1(s)− θ2(s)) + L1(s)

λ(s)(γ1(s)− γ2(s))

×‖Rφλ(s)
(
s, z(s)

)
‖,

where γ1(s) > γ2(s) and θ1(s) > θ2(s). �

Corollary 3.1. If the random fuzzy mapping N : S×H→ F(H) and the random

multi-valued mapping N̂ : S×H→ CB(H) are taken as zero mappings then Theorem
3.1 gives the error bound for (2.2) without using the condition:

‖Jφ,zλ(s)(x)− Jφ,z0λ(s) (x)‖ ≤ K(s)‖z(s)− z0(s)‖,

which was used by Khan et al. [24].

4. GENERALIZED REGULARIZED GAP FUNCTIONS FOR RANDOM
EXTENDED GENERALIZED VARIATIONAL INEQUALITY

PROBLEM (2.1)

The regularized gap function gλ : H→ R is defined as:

gλ(z) = max
w∈K
{〈Tz, z − w〉 − λ

2
‖z − w‖2}, where λ > 0 is a positive parameter.

This function was studied by Fukushima [16]. The function gλ converts variational
inequality (2.6) into an equivalent constrained optimization formulation as z solves
variational inequality problem (2.6) if and only if z minimizes gλ on K and gλ(z) =
0,∀z ∈ H. Wu et al. [34] further extended the regularized gap function and con-
sidered the function Gλ : H→ R defined by gλ(z) = max

w∈K
{〈Tz, z −w〉 − αF (x, y)}.

They showed that Gλ constitutes an equivalent constrained differentiable optimiza-
tion reformulation of the VIP (2.6). Khan et al. [24] constructed a generalized
regularized gap function for problem RGVIP(2.2). Inspired and motivated by the
above work we construct a generalized regularized gap function Gλ(s) : S×H→ R,
associated with the problem (2.1) defined by

Gλ(s)(z(s)) = max
w(s)∈H

ψλ(s)(z(s), w(s)),

where λ : S→ (0,+∞) is a measurable function,

Gλ(s)(z(s)) = max
w(s)∈H

{〈u(s)− v(s), g(s, z(s))− w(s)〉+ φ(g(s, z(s)))

−φ(w(s))− λ(s)F (g(s, z(s)), w(s)},

Gλ(s)(z(s)) = 〈u(s)− v(s), g(s, z(s))− πλ(s)z(s)〉+ φ(g(s, z(s)))

−φ(πλ(s)z(s))− λ(s)F (g(s, z(s)), πλ(s)z(s)), (4.1)

where πλ(s)z(s) is the unique minimizer of −ψλ(s)(z(s), .) on H for each s ∈ S and
the function F : H×H→ R satisfies the following properties:

(p1) F is nonnegative on H×H;
(p2) F is continuously differentiable on H×H;
(p3) F (z(s), .) is strongly convex uniformly in z(s), for each s ∈ S, i.e., there

exists a measurable function η : S → (0,+∞) such that, for any s ∈ S,
z(s) ∈ H,
F (z(s), w1(s))− F (z(s), w2(s))
≥ 〈∇2F (z(s), w2(s)), w1(s)−w2(s)〉+η(s)‖w1(s)−w2(s)‖2,∀w1(s), w2(s) ∈
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H,
where ∇2F denotes the partial differential of F with respect to the second
variable of F ;

(p4) F (z(s), w(s)) = 0 if and only if z(s) = w(s), ∀s ∈ S;
(p5) ∇2F (z(s), .) is uniformly Lipschitz continuous, i.e., there exists a measur-

able function α : S→ (0,+∞) such that, for any s ∈ S, z(s) ∈ H,
‖∇2F (z(s), w1(s))−∇2F (z(s), w2(s))‖ ≤ α(s)‖w1(s)−w2(s)‖, w1(s), w2(s) ∈
H.

Lemma 4.1. [24] If F satisfies (p1) -(p4), then for each ∇2F (z(s), w(s)) = 0 if
and only if z(s) = w(s),∀s ∈ S.

Lemma 4.2. [24] If the function F satisfies (p3). Then ∇2F (z(s), .) is strongly
monotone with modulus 2η(s) on H, i.e.,
〈∇2F (z(s), w1(s))−∇2F (z(s), w2(s)), w1(s)− w2(s)〉 ≥ 2η(s)‖w1(s)− w2(s)‖2
∀w1(s), w2(s) ∈ H.

Lemma 4.3. [24] If the function F satisfies (p1)- (p5) with the associated measur-
able functions α, η : S→ (0,+∞). Then
F (z(s), w(s)) ≤ (α(s)− η(s))‖z(s)− w(s)‖2 ∀z(s), w(s) ∈ H.

Using these Lemmas, we prove the following Lemma:

Lemma 4.4. If the function F satisfies (p1)- (p4). Then measurable mapping
z : S→ H is a solution of random extended generalized variational inequality (2.1)
if and only if ∀s ∈ S, g(s, z(s)) = πλ(s)(z(s)).

Proof. Since πλ(s)(z(s)) minimizes −ψλ(s)(z(s), .) on H, and −ψλ(s)(z(s), .) is con-
vex for any z(s) ∈ H, we have

0 ∈ ∂ψλ(s)(z(s), w(s))

= u(s)− v(s) + ∂φ(πλ(s)(z(s))) + λ(s)∇2F (g(s, z(s)), πλ(s)(z(s)))

−(u(s)− v(s)− λ(s)∇2F (g(s, z(s)), πλ(s)(z(s))) ∈ ∂φ(πλ(s)(z(s))).

By the definition of ∂φ, we have

φ(z(s)) ≥ φ(πλ(s)(z(s)))− 〈u(s)− v(s) + λ(s)∇2F (g(s, z(s)), πλ(s)(z(s))),

w(s)− πλ(s)(z(s)))〉.

This implies that

〈u(s)− v(s), w(s)− πλ(s)(z(s))〉+ φ(w(s))− φ(πλ(s)(z(s)))

≥ λ(s)〈−∇2F (g(s, z(s)), πλ(s)(z(s))), w(s)− πλ(s)(z(s)))〉. (4.2)

Now by Lemma 4.1, we see that z(s) is a solution of the random extended general-
ized variational inequality (2.1) if and only if g(s, z(s)) = πλ(s)(z(s))).

Conversely, z(s) is a solution of the the random extended generalized variational
inequality (2.1), then taking z(s) = πλ(s)(z(s))) in (2.1), we obtain

〈u(s)− v(s), πλ(s)(z(s)))− g(s, z(s))〉+ φ(πλ(s)(z(s))))− φ(g(s, z(s))) ≥ 0.

Since g(s, z(s)) ∈ H, so from equation (4.2), we can write

〈u(s)− v(s), g(s, z(s))− πλ(s)(z(s)))〉+ φ(g(s, z(s)))− φ(πλ(s)(z(s)))

≥ λ(s)〈−∇2F (g(s, z(s)), πλ(s)z(s)), w(s)− πλ(s)(z(s))〉.
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Adding the above two inequalities, we get

λ(s)〈∇2F (g(s, z(s)), πλ(s)(z(s))), g(s, z(s))− πλ(s)z(s)〉 ≥ 0.

Now by using the strong convexity of F (g(s, z(s)), .), together with (p1) and (p4),
we get

λ(s)〈∇2F (g(s, z(s)), πλ(s)z(s)), g(s, z(s))− πλ(s)(z(s))〉
+β(s)‖g(s, z(s))− πλ(s)z(s))‖2

≤ F (g(s, z(s)), g(s, z(s)))− F (g(s, z(s)), πλ(s)z(s)) ≤ 0.

From the above inequalities, it follows that g(s, z(s)) = πλ(s)(z(s)). �

Theorem 4.1. Let z0(s) ∈ H be a solution of random extended generalized vari-
ational inequality problem (REGVIP) (2.1) for all s ∈ S. Suppose that for each

s ∈ S, the multi-valued mappings M̂ and N̂ are strongly g-monotone with measur-
able functions γ1, γ2 : S → (0,+∞) respectively. Also assume that M̂ and N̂ are
H-Lipschitz with measurable functions θ1, θ2 : S → (0,+∞). If g : S × H → H is
Lipschitz continuous with measurable function L1 : S → (0,+∞) and the function
F satisfies (p1)- (p5), then

‖z(s)− z0(s)‖ ≤
(
(θ1(s)− θ2(s))(1 + ε) + λ(s)α(s)L1(s)

)
γ1(s)− γ2(s)

×‖g(s, z(s))− πλ(s)(z(s)))‖,
where γ1(s) > γ2(s) and θ1(s) > θ2(s).

Proof. As z0(s) is a solution of REGVIP (2.1) and πλ(s)(z(s))) ∈ H for each z(s) ∈
H, we can write

〈u0(s)−v0(s), πλ(s)(z(s)))−g(s, z0(s))〉+φ(πλ(s)(z(s)))−φ(g(s, z0(s))) ≥ 0. (4.3)

Putting w(s) = g(s, z0(s)) in (4.2), we have

〈u(s)− v(s), g(s, z0(s))− πλ(s)z(s)〉+ φ(g(s, z0(s)))− φ(πλ(s)(z(s))

≥ λ(s)〈−∇2F (g(s, z(s)), πλ(s)z(s)), g(s, z0(s))− πλ(s)(z(s))〉. (4.4)

Adding the two inequalities (4.3) and (4.4), we get

〈u(s)− v(s)− (u0(s)− v0(s)), πλ(s)(z(s)))− g(s, z0(s))〉
≤ λ(s)〈∇2F (g(s, z(s)), πλ(s)(z(s))), g(s, z0(s))− πλ(s)(z(s)))〉. (4.5)

Using Lemmas (4.1), (4.2) and ((p5)), we get

λ(s)〈∇2F (g(s, z(s)), πλ(s)(z(s)), g(s, z0(s))− πλ(s)(z(s)))〉
= λ(s)〈∇2F (g(s, z(s)), πλ(s)(z(s)))−∇2F (g(s, z(s)), g(s, z(s))),

g(s, z0(s))− g(s, z(s))〉
−λ(s)〈∇2F (g(s, z(s)), g(s, z(s)))−∇2F (g(s, z(s)), πλ(s)(z(s))),

g(s, z(s))− πλ(s)(z(s)))〉

≤ λ(s)‖∇2F (g(s, z(s)), πλ(s)(z(s)))−∇2F (g(s, z(s)), g(s, z(s)))‖
×‖g(s, z0(s))− g(s, z(s))‖ − 2λ(s)η(s)‖g(s, z(s))− πλ(s)(z(s)))‖2

≤ λ(s)α(s)‖g(s, z(s))− πλ(s)(z(s)))‖g(s, z0(s))− g(s, z(s))‖
−2λ(s)η(s)‖g(s, z(s))− πλ(s)(z(s)))‖2.
≤ λ(s)α(s)‖g(s, z(s))− πλ(s)(z(s)))‖g(s, z0(s))− g(s, z(s))‖.



20 A.H. DAR AND M.K. AHMAD

Now using the Lipschitz continuity of g, we can write

λ(s)〈∇2F (g(s, z(s)), πλ(s)(z(s))), g(s, z0(s))− πλ(s)(z(s)))〉
≤ λ(s)α(s)L1(s)‖g(s, z(s))− πλ(s)(z(s)))‖z0(s)− z(s)‖. (4.6)

It follows from (4.5) and (4.6) that

〈u(s)− v(s)− (u0(s)− v0(s)), πλ(s)(z(s)))− g(s, z0(s))〉
≤ λ(s)α(s)L1(s)‖g(s, z(s))− πλ(s)(z(s))‖z0(s)− z(s)‖. (4.7)

Now using the strongly g-monotonicity of M̂ and N̂ with measurable functions
γ1, γ2 : S→ H , we can write(

γ1(s)− γ2(s)
)
‖z(s)− z0(s)‖2

≤ 〈u(s)− v(s)− (u0(s)− v0(s)), g(s, z(s))− g(s, z0(s))〉
≤ 〈u(s)− v(s)− (u0(s)− v0(s)), g(s, z(s))− πλ(s)(z(s)))〉
+〈u(s)− v(s)− (u0(s)− v0(s)), πλ(s)(z(s)))− g(s, z0(s))〉
≤ 〈u(s)− u0(s), g(s, z(s))− πλ(s)(z(s)))〉
−〈v(s)− v0(s), g(s, z(s))− πλ(s)(z(s)))〉
+
〈
u(s)− v(s)− (u0(s)− v0(s)), πλ(s)(z(s)))− g(s, z0(s))

〉
.

Now from H-Lipschitz continuity of M̂ and N̂ with measurable functions γ1, γ2 :
S→ H and using (4.7), we have(

γ1(s)− γ2(s)
)
‖z(s)− z0(s)‖2

≤ θ1(s)(1 + ε)‖z(s)− z0(s)‖‖g(s, z(s))− πλ(s)(z(s)))‖
−θ2(s)(1 + ε)‖z(s)− z0(s)‖‖g(s, z(s))− πλ(s)(z(s)))‖
+〈u(s)− v(s)− (u0(s)− v0(s)), πλ(s)(z(s)))− g(s, z0(s))〉
≤
(
(θ1(s)− θ2(s))(1 + ε) + λ(s)α(s)L1(s)

)
‖z(s)− z0(s)‖‖g(s, z(s))− πλ(s)(z(s)))‖.

So, we get

‖z(s)− z0(s)‖ ≤
(
(θ1(s)− θ2(s))(1 + ε) + λ(s)α(s)L1(s)

)
γ1(s)− γ2(s)

×‖g(s, z(s))− πλ(s)(z(s)))‖,
where γ1(s) > γ2(s) and θ1(s) > θ2(s). �

Corollary 4.1. In the above Theorem 4.1, if the random multi-valued mapping N̂
is taken as zero mapping, then we get the result for (2.2) proved by [24].

Theorem 4.2. If the function F satisfies (p1)- (p4), then

Gλ(s)(z(s)) ≥ λ(s)η(s)‖g(s, z(s))− πλ(s)(z(s)))‖,∀z(s) ∈ H,∀s ∈ S,

and z(s) is solution of the REGVIP (2.1) if and only if Gλ(s)(z(s)) = 0.

Proof. substituting w(s) = g(s, z(s)) in (4.2), we get

〈u(s)− v(s), g(s, z(s))− πλ(s)(z(s))〉+ φ(g(s, z(s)))− φ(πλ(s)(z(s)))

≥ λ(s)〈−∇2F (g(s, z(s)), πλ(s)(z(s))), g(s, z(s))− πλ(s)(z(s)))〉.
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So, we can write

Gλ(s)(z(s)) ≥ 〈−∇2F (g(s, z(s)), πλ(s)(z(s))), g(s, z(s))− πλ(s)(z(s)))〉
−λ(s)F (g(s, z(s)), πλ(s)(z(s))).

Using (p3), we have

Gλ(s)(z(s)) ≥ λ(s)[−F (g(s, z(s)), g(s, z(s))) + η(s)‖g(s, z(s))− πλ(s)(z(s)))‖2].

Now from (p4), we get

Gλ(s)(z(s)) ≥ λ(s)η(s)‖g(s, z(s))− πλ(s)(z(s)))‖2.

The second part of the Theorem follows from Lemma (4.4). �

Using Theorem 4.2, Theorem 4.1 can be restated as:

Theorem 4.3. Let z0(s) ∈ H be a solution of random extended generalized vari-
ational inequality (2.1) for all s ∈ S. Suppose that for each s ∈ S, the multi-

valued mappings M̂ and N̂ are strongly g-monotone with measurable functions
γ1, γ2 : S → (0,+∞), respectively. Also assume that M̂ and N̂ are H-Lipschitz
continuous with measurable functions θ1, θ2 : S → (0,+∞). If g : S × H → H is
Lipschitz continuous with measurable function L1 : S → (0,+∞) and the function
F satisfies (p1)- (p5), then

‖z(s)− z0(s)‖ ≤
(
(θ1(s)− θ2(s))(1 + ε) + λ(s)α(s)L1(s)

)√
Gλ(s)z(s)(

γ1(s)− γ2(s)
)√

λ(s)η(s)
,

where γ1(s) > γ2(s) and θ1(s) > θ2(s).

Corollary 4.2. If in the above theorem (4.2), the random multi-valued mapping

N̂ is taken as zero mapping, then we get the corresponding result for (2.2) proved
by Khan et al. [24].

Also we can obtain the error bound for REGVIP (2.1) without using the Lipschitz

continuity of M̂ and N̂ .

Theorem 4.4. Let z0(s) ∈ H be a solution of random extended generalized vari-
ational inequality (2.1) for all s ∈ S. Suppose that for each s ∈ S, the multi-

valued mappings M̂ and N̂ are strongly g-monotone with measurable functions
γ1, γ2 : S → (0,+∞), respectively. If g : S × H → H is Lipschitz continuous
with measurable function L1 : S→ (0,+∞) and the function F satisfies (p1)- (p5),
then

‖z(s)− z0(s)‖ ≤ 1√(
γ1(s)− γ2(s)

)
+ λ(s)

(
η(s)− α(s)

)
L2
1(s)

×
√
Gλ(s)(z(s)) ∀z(s) ∈ H,

where γ1(s) > γ2(s) and η(s) > α(s).

Proof. As u0(s) is a solution of random extended generalized variational inequality
problem (2.1), so by the definition of Gλ(s)(z(s)) for s ∈ S, z(s) ∈ H, we have

Gλ(s)(z(s)) ≥ 〈u(s)− v(s), g(s, z(s))− g(s, z0(s))〉+ φ(g(s, z(s)))− φ(g(s, z0(s)))

−λ(s)F (g(s, z(s)), g(s, z0(s))).
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Now by using strongly g-monotonicity of M̂ and N̂ with the measurable functions
γ1, γ2 : S→ (0,+∞), we have

Gλ(s)(z(s)) ≥ 〈u0(s)− v0(s), g(s, z(s))− g(s, z0(s))〉+
(
γ1(s)− γ2(s)

)
‖z(s)− z0(s)‖2

φ(g(s, z(s)))− φ(g(s, z0(s)))− λ(s)F (g(s, z(s)), g(s, z0(s))). (4.8)

As z0(s) ∈ H, ∀s ∈ S is a solution of (REGVIP)(2.1), we have

〈u0(s)− v0(s), w(s)− g(s, z0(s))〉+ φ(w(s))− φ(g(s, z0(s))) ≥ 0.

Substituting w(s) = g(s, z(s)) in the above inequality, we get

〈u0(s)− v0(s), g(s, z(s))− g(s, z0(s))〉+ φ(g(s, z(s)))− φ(g(s, z0(s))) ≥ 0. (4.9)

From (4.8) and (4.9), we get

Gλ(s)(z(s)) ≥
(
γ1(s)−γ2(s)

)
‖z(s)−z0(s)‖2−λ(s)F (g(s, z(s)), g(s, z0(s))). (4.10)

Now using Lipschitz continuity of g and Lemma 4.3, we get

−F (g(s, z(s)), g(s, z0(s))) ≥
(
η(s)− α(s)

)
‖g(s, z(s))− g(s, z0(s))‖2(

η(s)− α(s)
)
L2
1(s)‖z(s)− z0(s)‖2. (4.11)

So, it follows from (4.10) and (4.11) that

‖z(s)− z0(s)‖ ≤ 1√(
γ1(s)− γ2(s)

)
+ λ(s)

(
η(s)− α(s)

)
L2
1(s)

×
√
Gλ(s)(z(s)) ∀z(s) ∈ H,

where γ1(s) > γ2(s) and η(s) > α(s). �

Corollary 4.3. If in the above Theorem 4.4, the random multi-valued mapping N̂
is taken as zero mapping, then we get the corresponding result for (2.2) proved by
Khan et al. [24].

5. Conclusion

In this paper, we have found error bounds for random extended generalized
variational inequality with the help of gap functions. Our approach of obtaining
error bounds for the variational inequality is different from the approach used by
Khan et al. [24]. The approach can be used to obtain error bounds for some other
types of variational inequalities.
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