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ON SOME FIXED POINT RESULTS IN EXTENDED STRONG

b−METRIC SPACES

BADR ALQAHTANI, ERDAL KARAPINAR AND FARSHID KHOJASTEH

Abstract. In this paper, we propose a notion of a strong extended b-metric

space and investigate the existence and uniqueness of a fixed point of certain

operators.

1. Introduction and Preliminaries

The advancement of metric fixed point theory is based on two ways. In the
first way, the researcher refine the abstract space and investigate whether the well-
known contraction types posses a fixed point. Second way is to extend, improve
and generalize contractions types to guarantee the existing of a fixed point and, as
a next step, to determine whether the existing point is unique. In this paper, we
focus on the first approach.

We start to our discussion by recollecting the interesting generalization of stan-
dard metric space which was proposed by Bakhtin [8] and independently by Czerwik
[9].

Definition 1.1. [8] Let d be a function from the cross-product of non-empty set
X to the set of nonnegative real numbers and s ≥ 1 be a given real number. The
function d is called b-metric if it fulfils the following properties:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)];

for each x, y, z ∈ X. In addition, the pair (X, d) is called a b-metric space.

It is a proper extension of a standard metric space. For s = 1, the definition of
b-metric turns to be a standard metric. The notion of b-metric space has attracted
a lot of attention of a number of researchers and it has been studied densely, see
e.g. [1],[2],[6],[7],[11],[13] and the related references therein.

Very recently, in 2017, Kamran et al. [10] generalized the concept of b-metric
spaces in the following way.

2000 Mathematics Subject Classification. 47H10,54H25,46J10, 46J15.
Key words and phrases. b-metric spaces; Extended b-metric spaces ; Extended strong b-metric

spaces; fixed point .
c©2018 Universiteti i Prishtinës, Prishtinë, Kosovë.
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Definition 1.2. [10] Let d be a function from the cross-product of non-empty set
X to the set of nonnegative real numbers and θ : X × X → [1,∞) be a mapping.
The function d is called b-metric if it achieves the following properties:

(e1) d(x, y) = 0 if and only if x = y;
(e2) d(x, y) = d(y, x);
(e3) d(x, z) ≤ θ(x, z)(d(x, y) + d(y, z));

for all x, y, z ∈ X. Further, the pair (X, d) is called an extended b-metric space.

Following this initial papers, it has been studied by several authors, see e.g.
[3, 4]. Further, the above definition was slightly revised by Aydi et al. [?]. Indeed,
the authors extended the domain of the function θ from X ×X to X ×X ×X. In
this report, the authors discussed the existence and uniqueness of certain operators
in the context of this new abstract space. For the sake of completeness, we recollect
the version of extended b-space of Aydi et al. [5].

Definition 1.3. [5] Let d be a function from the cross-product of non-empty set X
to the set of nonnegative real numbers and θ : X ×X ×X → [1,∞) be a mapping.
The function d is called b-metric if it achieves the following properties:

(E1) d(x, y) = 0⇐⇒ x = y;
(E2) d(x, y) = d(y, x);
(E3) d(x, z) ≤ θ(x, y, z)(d(x, y) + d(y, z));

for all x, y, z ∈ X. Moreover, the pair (X, d) is called an extended b-metric space.

Remark. For taking the third component zero, that is, θ(x, y, z) = θ(x, y), the Def-
inition 1.3 with Definition 1.2. If θ(x, y, z) = s ≥ 1, then the notion of an extended
b-metric spaces coincides with the standard b-metric. Notice also that in general,
extended b-metric spaces carry the topological problems of b-metric spaces. For in-
stance, extended b-metrics need not to be continuous too. Furthermore, whenever
we mention ”extended b-metric” we have meant the notion introduced in Definition
1.3.

Example 1.4. Let X = {0, 1, 2}. Consider

d(0, 1) = d(1, 0) = 1, d(1, 2) = d(2, 1) =
1

2
, d(0, 2) = d(2, 0) =

3

2
,

and

d(0, 0) = d(1, 1) = d(2, 2) = 0.

Take

θ(0, 1, a) = θ(1, 0, a) = 3, θ(1, 2, a) = θ(2, 1, a) = 4, θ(0, 2, a) = θ(2, 0, a) = 2,

and

θ(0, 0, a) = θ(1, 1, a) = 1, θ(2, 2, a) = 2,

where a ∈ {0, 1, 2} It is straightforward to see that (X, d) forms an extended b-metric
space.

We recollect the following example to indicate that the notion of extended b-
metric is proper generalization of the notion of b-metric.
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Example 1.5. [5] Let X = N, define d : X ×X → R by

d(x, y) =


0, ⇐⇒ x = y
1
x , if x is even and y is odd
1
y , if x is odd and y is even

1, otherwise.

Note that condition (E1) holds trivially. Further, if x, y are both even or odd then
d(x, y) = 1 = d(y, x). Furthermore, if x is even and y is odd then d(x, y) = 1

x =
d(y, x). Therefore, condition (E2) is satisfied. To verify condition (E3) we have to
consider following cases for some function θ.

: Case i) when x = z and y is even or odd.

Note that in subsequent cases x 6= z.

: Case ii) when x and z are even and y odd.

: Case iii) when x and z are odd and y even.

: Case iv) when x, z and y are all even or all odd. In this case it may happen
that y = x or y = z.

: Case v) when x is even, z is odd and y even. This includes the case y = x.

: Case vi) when x is odd, z is even and y is even. This includes the case y = z.

: Case vii) when x is odd, z is even and y is odd. This includes the case y = x.

: Case viii) when x is even, z is odd and y is odd. This includes the case y = z.

By taking

θ(x, y, z) =



0, if x = z and y is even or odd
xz
x+z , if x 6= z, x and z are even and y odd
y
2 , if x 6= z, x and z are odd and y even
1
2 , if x 6= z, x, z and y are all even or all odd
y

x(1+y) , if x 6= z, x is even, z is odd and y is even
y

z(y+1) , if x 6= z, x is odd, z is even and y is even
1

1+z , if x 6= z, x is odd, z is even and y is odd
1
x , if x 6= z, x is even, z is odd and y is odd.

One can check that condition (E3) holds. Therefore, (X, d) is an extend b-metric
space in the sense of Definition 1.3.

Remark. Note that for n ∈ N, by letting x = 2n + 1, z = 4n + 1 and y = 2n we
have

d(2n+ 1, 4n+ 1)

d(2n+ 1, 2n) + d(2n, 4n+ 1)
= n.

Therefore, it is impossible to find s satisfying (b3). Thus d is not a b-metric on X.
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Remark. Note that in the above example the function θ depends on all three ar-
guments, x, y and z. Therefore, d is not an extended b-metric in the sense of
Definition 1.2.

Example 1.6. [10] Let X = C([a, b],R) be the space of all continuous real valued
functions defined on [a, b]. Given θ : X ×X → [1,∞) as

θ(x, y) = |x(t)|+ |y(t)|+ 2, for all t ∈ [a, b].

Consider
d(x, y) = sup

t∈[a,b]
|x(t)− y(t)|2.

Note that (X, d) is an extended b-metric space.

Inspired by [10], we shall state the following definitions.

Definition 1.7. Let (X, d) be an extended b-metric space.
(i) A sequence {xn} in X converges to a point x ∈ X if and only if lim

n→∞
d(xn, x) =

0.
(ii) A sequence {xn} in X is called Cauchy if for all ε > 0, there exists Nε ∈ N
such that for all n,m ≥ Nε, d(xn, xm) ≤ ε.
(iii) (X, d) is said complete if every Cauchy sequence {xn} in X converges.

Remark. An extended b-metric does not need to be a continuous function.

Kamran et al. [10] proved the following result.

Theorem 1.8. [10] Let (X, d) be a complete extended b-metric space. Suppose that
T : X → X satisfy

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

where k ∈ (0, 1) is such that for each x0 ∈ X, lim
n,m→∞

θ(xn, xm) <
1

k
, here xn =

Tnx0, n ∈ N. Then T has precisely one fixed point u. Moreover, for each y ∈ X,
Tny → u.

Now, let Φ be the set of all continuous and non-decreasing functions φ : [0,∞)→
[0,∞) satisfying the following conditions:

lim sup
t→s+

φ(t)

t
< 1 for all s > 0.

We introduce a nonlinear contractive mapping in the setting of extended b-metric
spaces as follows.

Definition 1.9. Let (X, d) be an extended b-metric space and θ : X × X × X →
[1,∞). A given mapping T : X → X is called φ-contraction if it satisfies

d(Tx, Ty) ≤ φ(M(x, y)), for all x, y ∈ X, (1.1)

where φ ∈ Φ and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}. (1.2)

In this paper, we shall show that T posses a fixed point in the setting of extended
b-metric spaces in the sense of Definition 1.3. Furthermore, inspired by the notion of
”strong b-metric” of Kirk and Shahzad [12], we introduce the concept of ”extended
strong b-metric”.
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2. Main results

Theorem 2.1. Let (X, d) be a complete extended b-metric space such that d is a
continuous functional. Assume that T : X → X is φ-contraction. Suppose that
there exists x0 ∈ X, ρ ∈ (0, 1) and a bounded sequence {σn}, λ > 0 and β > 1 such
that for every m,n ∈ N with n > m we have

θ(xn+1, xn+2, xm) =
1

ρ
− β

ρn
+

σn
ρn1+λ

where xn = Tnx0, n ∈ N. Then, T has at most one fixed point u. In the case of
existence of a fixed point u, we have Tny → u for each y ∈ X.

Proof. For x0 ∈ X, let xn = Tnx0. If for some n0, we have xn0 = xn0+1 = Txn0 ,
then xn0

is a fixed point of T . From now on, we assume that xn 6= xn+1 for all
n ≥ 0. On account of (1.1), we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ φ(M(xn−1, xn)),

where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max{d(xn−1, xn), d(xn, xn+1)}.

If for some n, M(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1) = d(xn, xn+1), then

0 < d(xn, xn+1) ≤ φ(d(xn, xn+1)),

Therefore,

1 ≤ φ(d(xn, xn+1))

d(xn, xn+1)

and so

lim sup
n→∞

φ(d(xn, xn+1))

d(xn, xn+1)
≥ 1

which is a contradiction.
Thus, for all n ≥ 1,

M(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1) = d(xn−1, xn).

We deduce that

0 < d(xn, xn+1) ≤ φ(d(xn−1, xn)), ∀ n ≥ 1. (2.1)

Hence

0 <
d(xn, xn+1)

d(xn, xn−1)
≤ φ(d(xn−1, xn))

d(xn, xn−1)
, ∀ n ≥ 1. (2.2)

Since

lim sup
n→∞

φ(d(xn−1, xn))

d(xn, xn−1)
< 1,

there exists 0 < ρ < 1 such that for sufficiently large n we have

φ(d(xn−1, xn))

d(xn, xn−1)
≤ ρ < 1.

It means that

d(xn, xn+1) ≤ ρd(xn, xn−1) ≤ ρ2d(xn, xn−1) ≤ ... ≤ ρnd(x0, x1) (2.3)

Therefore, there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r.
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Letting n→∞ in (2.3), we get

r ≤ ρr,
which holds unless r = 0. Thus

lim
n→∞

d(xn, xn+1) = 0. (2.4)

We claim that {xn} is a Cauchy sequence. Using (2.3), for all m > n we have

d(xn, xm) ≤ θ(xn, xn+1, xm)(d(xn, xn+1) + d(xn+1, xm))

≤ θ(xn, xn+1, xm)d(xn, xn+1) + θ(xn, xn+1, xm)θ(xn+1, xn+2, xm)d(xn+1, xn+2)

+...+ θ(xn, xn+1, xm)θ(xn+1, xn+2, xm)...θ(xm−2, xm−1, xm)d(xm−1, xm)

≤ θ(xn, xn+1, xm)ρn(d(x0, x1) + θ(xn, xn+1, xm)θ(xn+1, xn+2, xm)ρn+1d(x0, x1)

+...+ θ(xn, xn+1, xm)θ(xn+1, xn+2, xm)...θ(xm−2, xm−1, xm)ρm−1d(x0, x1)

≤ θ(x1, x2, xm)θ(x2, x3, xm)...θ(xn, xn+1, xm)ρnd(x0, x1)

+θ(x1, x2, xm)θ(x2, x3, xm)...θ(xn, xn+1, xm)θ(xn+1, xn+2, xm)ρn+1d(x0, x1)

+...+ θ(x1, x2, xm)θ(x2, x3, xm)...θ(xm−2, xm−1, xm)ρm−2d(x0, x1)

Choose for all n

Sn =

n∑
j=1

ρjd(x0, x1)

j∏
i=1

θ(xi, xi+1, xm).

We deduce that

d(xn, xm) ≤ Sm−1 − Sn, ∀ m > n. (2.5)

Consider the series
∞∑
n=1

ρnd(x0, x1)

n∏
i=1

θ(xi, xi+1, xm).

Put un = ρnd(x0, x1)
∏n
i=1 θ(xi, xi+1, xm). By assumption we have

un+1

un
= ρθ(xn+1, xn+2, xm) = 1− β

n
+

σn
n1+λ

,

and then applying Gauss test, the above series is convergent. Consequently, lim
n→∞

Sn =

0. Therefore, we get

lim
n,m→∞

d(xn, xm) = 0, (2.6)

It means that, {xn} is a Cauchy sequence. Since (X, d) is a complete extended
b-metric space, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0. (2.7)

Since we assume that the extended b-metric is continuous, we derive that

lim
n→∞

d(Txn, T z) = 0 = lim
n→∞

d(xn+1, T z) = d(z, Tz). (2.8)

Regarding the uniqueness of the limit, we conclude that Tz = z.
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We shall prove that z is unique. Assume that z and w two fixed points of T with
z 6= w. By (1.1),

d(z, w) = d(Tz, Tw) ≤ φ(M(z, w)) = φ(max{d(z, w), d(z, Tz), d(w, Tw)}) = φ(d(z, w))

which is a contradiction because φ(d(z,w))
d(z,w) ≤ lim sup

t→d(z,w)

φ(t)
t < 1. So the fixed point of

T is unique.
�

We state the following corollary.

Corollary 2.2. Let (X, d) be a complete extended b-metric space such that d is a
continuous functional. Let T : X → X satisfy

d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty)} for all x, y ∈ X,

where k ∈ (0, 1). Suppose that for each x0 ∈ X there exists a bounded sequence
{σn}, λ > 0 and β > 1 such that for every m,n ∈ N with n > m we have

θ(xn+1, xn+2, xm) =
1

k
− β

kn
+

σn
kn1+λ

where xn = Tnx0, n ∈ N. Then T has precisely one fixed point u. Moreover, for
each y ∈ X, Tny → u.

Proof. It suffices to take φ(t) = kt for k ∈ (0, 1) in Theorem 2.1 and desired result
is obtained. �

Remark. Corollary 2.2 is a generalization of Theorem 1.8.

3. Extended strong b-metric space

In this section, inspired by the notion of ”strong b-metric” of Kirk and Shahzad
[12], we propose the notion of ”extended strong b-metric”. The following definition
have been designed such that the distance is continuous.

Definition 3.1. Let X be a nonempty set and θ : X×X×X → [1,∞). An extended
strong b-metric is a function d : X ×X → [0,∞) such that for all x, y, z ∈ X:

(s1) d(x, y) = 0 if and only if x = y;
(s2) d(x, y) = d(y, x);
(s3) d(x, z) ≤ d(x, y) + θ(x, y, z)d(y, z).

The pair (X, d) is then called a strongly extended b-metric space.

Proposition 3.2. Let (X, d) be a extended strong b-metric space such that such
that d is a continuous functional and θ(x, y, z) = θ(x, z, y), for all x, y, z ∈ X.
Then, for all p, q, r, t ∈ X we have

|d(p, q)− d(r, t)| ≤ θ(r, t, p)d(t, p) + θ(p, r, q)d(r, q). (3.1)

Proof. By (a3) of Definition 1.3 we have{
d(p, q) ≤ d(p, r) + θ(p, r, q)d(r, q),

≤ d(r, t) + θ(r, t, p)d(t, p) + θ(p, r, q)d(r, q).

So we have

d(p, q)− d(r, t) ≤ θ(r, t, p)d(t, p) + θ(p, r, q)d(r, q). (3.2)
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Similarly, {
d(r, t) ≤ d(r, p) + θ(r, p, t)d(p, t),

≤ d(p, q) + θ(p, q, r)d(q, r) + θ(r, p, t)d(p, t),

and thus

d(r, t)− d(p, q) ≤ θ(r, p, t)d(t, p) + θ(p, q, r)d(r, q). (3.3)

Therefore, combining (3.2) and (3.3), and the fact that θ(p, q, r) = θ(p, r, q) and
θ(r, p, t) = θ(r, t, p), one can conclude that

|d(p, q)− d(r, t)| ≤ θ(r, p, t)d(t, p) + θ(p, q, r)d(r, q).

and this ends the proof. �

Remark. It is worth mentioning that if θ(x, y, z) = 1 in inequality (3.1), then the
resulting inequality is precisely the triangle inequality. This is because the relation
|d(p, q) − d(r, s)| ≤ d(s, q) + d(r, p) implies (upon taking r = p) d(p, q) ≤ d(r, s) +
d(s, q). Thus the triangle inequality holds.

Lemma 3.3. Let (X, d) be any strong b−metric space such that for every two
d−convergent sequences {tn}, {sn} ⊂ X respectively to t, s ∈ X

lim sup
n→∞

θ(t, s, tn) <∞ and lim sup
n→∞

θ(tn, t, qn) <∞

Then, every open ball is an open set and so d is continuous.

Proof. Let {pn}, {qn} be two sequence and

lim
n→∞

d(pn, p) = 0 , lim
n→∞

d(qn, q) = 0.

Thus, applying Proposition 3.2, we have

|d(pn, qn)− d(p, q)| ≤ θ(p, q, pn)d(qn, q) + θ(pn, p, qn)d(pn, p),

from which lim
n→∞

d(pn, qn) = d(p, q). Thus, d is continuous mapping and so every

open ball is open set. �

Theorem 3.4. Let (X, d) be a strong extended b-metric space. Then for all m,n ∈
N we have

d(xn, xn+m) ≤ d(xn, xn+1)+

m−1∑
j=1

j∏
i=1

θ(xn+i−1, xn+i, xn+m)d(xn+j , xn+j+1) (3.4)
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Proof.

d(xn, xn+m) ≤ d(xn, xn+1) + θ(xn, xn+1, xn+m)d(xn+1, xn+m)

≤ d(xn, xn+1) + θ(xn, xn+1, xn+m)d(xn+1, xn+2)

+θ(xn, xn+1, xn+m)θ(xn+1, xn+2, xn+m)d(xn+2, xn+m)

≤ d(xn, xn+1) + θ(xn, xn+1, xn+m)d(xn+1, xn+2) + ...

+
m−2∏
j=1

θ(xn+j−1, xn+j , xn+m)d(xn+m−1, xn+m)

≤ d(xn, xn+1) +
m−1∑
j=1

j−1∏
i=1

θ(xn+i−1, xn+i, xn+m)d(xn+j , xn+j+1)

�

Theorem 3.5. Let {xn} be a sequence in strong extended b-metric space and sup-
pose that for all m > n

lim
j→∞

θ(xn+j , xn+j+1, xn+m)
d(xn+j+1, xn+j+2)

d(xn+j , xn+j+1)
< 1

Then, {xn} is a Cauchy sequence.

Proof. By applying Ratio test and Theorem 3.5, desired result is obtained. �

Theorem 3.6. Let (X, d) be the strong extended b-metric space and let T : X → X
be a mapping. Assume there is k ∈ (0, 1) such that for all x, y ∈ X

d(Tx, Ty) ≤ kd(x, y)

and for any initial point x0 ∈ X, the Picard sequence xn = Tnx0, for all m,n ∈ N
with m > n, fulfils in

lim
j→∞

θ(xn+j , xn+j+1, xn+m) <
1

k
.

Then, T has a fixed point.

Proof. Define ρ : X → R such that ρ(x) = (1−k)−1d(x, T (x)), for all x ∈ X. Then,

d(x, T (x))− kd(x, T (x)) ≤ d(x, T (x))− d(T (x), T 2(x)).

Hence

d(x, T (x)) ≤ (1− k)−1(d(x, T (x))− d(T (x), T 2(x))) = ρ(x)− ρ(T (x)).

Therefore,
∞∑
i=0

d(T i(x), T i+1(x)) ≤
∞∑
i=0

[ρ(T i(x))− ρ(T i+1(x))] <∞

Also, for all n ∈ N we have d(Tn+j+1(x), Tn+j+2(x)) ≤ kd(Tn+j(x), Tn+j+1(x)).
Thus, by the assumption

lim
j→∞

θ(xn+j , xn+j+1, xn+m)
d(xn+j+1, xn+j+2)

d(xn+j , xn+j+1)
< 1
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Then, by Theorem 3.6, {xn} is a Cauchy sequence and so is converges to z ∈ Z. By
the continuity of T , one can easy check that z is the fixed point of T . �
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