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ON BERTRAND SUPERCURVES IN SUPER-EUCLIDEAN SPACE

HATICE TOZAK, CUMALI EKICI, CANSEL YORMAZ

Abstract. Using Banach Grassmann algebra, given by Rogers, a new scalar
product, a new definition of the orthogonality and of Frenet frame associated to

supersmooth supercurve are introduced on the (m,n)-dimensional total super-

Euclidean space. It is well known that a characteristic property of Bertrand
curve is the existence of a linear relation between its curvature and torsion. In

this study, definition of Bertrand supercurve in Bm+n
L is given and also some

theorems for Bertrand supercurve in B4+4
L are obtained.

1. Introduction

In recent years, much conventional differential geometry has been extended to
include anticommuting variables; objects in this extended field of study are distin-
guishable by the prefix ”super” which derives from the same prefix in supersym-
metry, the fermi-base symmetry which is under such intense study by elementary
particle physicist. Historically, the consideration of supermanifolds has a dual ori-
gin. Due to the first origin the earliest work is that Berezin and Leites [6] and Kon-
stant [19] arose from the study of the mathematics of fermi field quantisation, their
approach was sheaf theoretic, extending the sheaf of C∞ functions on a manifold,
rather than the manifold itself. Afterwards, a supermanifold was developed with a
lot of study such as [7], [20]. Secondly, a more geometric approach grew directly
from the physicists’ superspace [18] as a space with points labelled by even elements
(xµ) and odd elements (θα) of a Grassmann algebra; a supermanifold is a topo-
logical space with local coordinates (xµ, θα) of this nature [11], [23]. Alternatively,
the the best relationships between them have been made by Rogers [23], Bartocci
et al. [4] and Batchelor [5]. Then, (m,n)- dimensional total super-Euclidean space
Bm+n
L is studied by Rogers [23]. Using Banach Grassmann algebra BL, a new su-

perscalar product, a new definition of the ortogonality and Frenet frame associated
to a supersmooth supercurve in general position are given by Cristea [11]. Also,
Inoque and Maeda define super-Euclidean space with a different algebra, called a
Frechet-Grassmann algebra [17].
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French mathematician Saint-Venant proposed in 1845 [26] the question whether
upon the ruled surface generated by the principal normal of a curve in the three-
dimensional Euclidean space R3 and a second curve can exist which has for this prin-
cipal normals of the given curve. The second question was answered by Bertrand
[8] in a paper in which he showed that a necessary and sufficient condition for the
existence of such a second curve is that a linear relationship with constant coef-
ficients shall exist between the curvature and torsion of the given original curve.
Since the publication of Bertrand’s paper, a pair of curves of this kind has been
called Conjugate Bertrand curves or, more commonly, Bertrand curves. Bertrand
curves have attracted many mathematicians since the beginning. Later, the rela-
tions between Frenet frames of Bertrand couple in the space Rn were given in [16].
Also, Bertrand couple is studied by many researchers in Euclidean 3-space R3 [10],
[12], [27], [28]. In [22], Pears extended the well-known properties of Bertrand curves
in Euclidean 3-space R3 to the curves in the n-dimensional Euclidean space Rn,
n > 3. However, in the last case, he found that either k2 or k3 must be zero; in
other words, Bertrand curves in Rn (n > 3) are degenerate, i.e. a Bertrand curve
in Rn must belong to a three-dimensional subspace R3 ⊂ Rn. The same result has
been obtained recently in [1] and [21]. As a natural consequence, some extensions
of that concept have been proposed [16], [25], and more recently have been general-
ized in [9]. Many authors have studied Bertrand curves in other ambient spaces: in
the three-dimensional Lorentz-Minkowski space R3

1 [2], [3], [14], in semi-Euclidean
spaces Rn+1

v [15], etc.
In this paper, we firstly define Bertrand supercurve, a one dimensional superman-

ifold, couples in definition of Bertrand supercurve on total super-Euclidean space
Bm+n
L . Later, using the methods expressed in [16] and Frenet frame we calculate

some theorems for Bertrand supercurve in B4+4
L .

2. Preliminary Notes

In this section, we refer to a few basic definitions for the so-called geometric
theory of supernumbers, supermanifolds, total super-Euclidean space, supervector
space and operators, initialized by Dewitt, Rogers and Cristea. For further de-
velopments of the theory, which eliminated some drawbacks of research topic, the
reader may utilize [11], [13], [23], [24].

Definition 2.1. For each positive integer L, BL will denote Grassmann algebra

over the real numbers with generators 1(L), β
(L)
1 , ..., β

(L)
L and relations

1(L)β
(L)
i = β

(L)
i 1(L) = β

(L)
i i = 1, 2, ..., L

β
(L)
i β

(L)
j = −β(L)

j β
(L)
i i, j = 1, 2, ...L.

(2.1)

BL is a gradded algebra and can be written as

BL = (BL)0 ⊕ (BL)1 (2.2)

where ⊕ be the direct sum and (BL)0 and (BL)1 be the even and odd part of BL,
respectively [23].

Definition 2.2. Let ML denote the set of finite sequences of positive integers
µ = (µ1, µ2, ..., µk) with 1 ≤ µ1 < µ2 < ... < µk ≤ L [19]. ML includes the sequence
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with no elements, denoted φ . As it follows in [24] for each µ in ML,

β
(L)
µ = β

(L)
µ1 ...β

(L)
µk

β
(L)
φ = 1(L)

(2.3)

and typical element b of BL may be expressed as

b =
∑
µ∈ML

bµβ(L)
µ (2.4)

where the coefficients bµ are real numbers. We consider the body map [12]

ε(L)(b) = bφ (2.5)

is given by

ε : BL → R. (2.6)

with the norm of BL is defined by

‖b‖ =
∑
µ∈ML

|bµ| . (2.7)

Definition 2.3. BL is Banach algebra, considering L
′

also a positive integer, with
L ≥ L′ , there is a natural projection

iL′ ,L : BL′ → BL (2.8)

which is the unique algebra homomorphism satisfying

iL′ ,L

(
β
(L
′
)

i

)
= β

(L)
i i = 1, 2, ...L

iL′ ,L

(
1(L

′
)
)

= 1(L).
(2.9)

BL naturally has a BL′ module structure with

ab = iL′ ,L(a)b a ∈ BL′ , b ∈ BL (2.10)

[24].

Definition 2.4. The (m,n)-dimensional total super-Euclidean space Bm+n
L as the

space, which is the cartesian product of m+ n copies of BL, is defined by

Bm+n
L =

(
Bm+n
L

)
0
⊕
(
Bm+n
L

)
1
. (2.11)

A typical element of Bm+n
L is written

(
x1, x2, ..., xm, θ1, θ2, ..., θn

)
or simply (x, θ) ,

an element of
(
Bm+n
L

)
0

is called c-type or even element and is written in the form(
x′1, x′2, ..., x′m, θ′1, θ′2, ..., θ′n

)
with x′1, x′2, ..., x′m ∈ (BL)0 . Also, θ′1, θ′2, ...,

θ′n ∈ (BL)1, an element of
(
Bm+n
L

)
1

is called a-type or odd element is written in
the form(

x′′1, x′′2, ..., x′′m, θ′′1, θ′′2, ..., θ′′n
)

with x′′1, x′′2, ..., x′′m ∈ (BL)1 (2.12)

and θ′′1, θ′′2, ..., θ′′n ∈ (BL)0 . An even element has the parity 0 and an odd ele-
ment has the parity 1 [13].

Definition 2.5. The body map ε is defined by [11]

ε
(L)
(m,n):

(
Bm+n
L

)
0
→ Rm

(x
′
, θ
′
) 7→ ε

(L)
(m,n)(x

′
, θ
′
) =

(
ε(L)(x′1), ...ε(L)(x′m)

)
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where (x
′
, θ
′
) =

(
x′1, x′2, ..., x′m, θ′1, θ′2, ..., θ′n

)
∈
(
Bm+n
L

)
0

and the body map ε′

ε
′(L)
(m,n):

(
Bm+n
L

)
1
→ Rn

(x′′, θ′′) 7→ ε
′(L)
(m,n)(x

′′, θ′′) =
(
ε′(L)(θ′′1), ...ε′(L)(θ′′n)

)
where (x′′, θ′′) =

(
x′′1, x′′2, ..., x′′m, θ′′1, θ′′2, ..., θ′′n

)
∈
(
Bm+n
L

)
1
.

Definition 2.6. Suppose that V ⊂ Bm+n
L is open and that U = ε

(L)
(m,n)(V ). Let

L > 2n and L′ =
[
1
2L
]

be the least integer not less than 1
2L. GH

∞(V ) denotes the
set of functions,

f : V → BL

for which there exists fm ∈ C∞ (U,BL′) such that

f(x, θ) =
∑

µ∈Mn

ZL′ ,L(∂ifm)(x)θµ

that the map ZL′ ,L : C∞ (U,BL′)→
[
ε
(L)
(m,0)(U)

]BL
is defined by

ZL′ ,L(f) (X) =
∑

i1=0...im=0

[ 1
i1!...im!

(
∂i11 ...∂

im
m f

(
ε(L)(x1), ..., ε(L)(xm)

))
×s(x1)i1 ...s(xm)im · iL′ ,L]

(2.13)

where (X) =
(
x1, ..., xm

)
and s(xi) = xi − ε(L)(xi)1 for i = 1, 2, ...m. Here

θµ = θµ1 ...θµk and θφ = 1L [24].

Definition 2.7. Suppose n = 2r and the supervectors

v =
(
x1, x2, ..., xm, θ1, θ2, ..., θn

)
, w =

(
y1, y2, ..., ym, θ11, θ

2
1, ..., θ

n
1

)
(2.14)

are the elements of Bm+n
L . Superscalar product is defined by

〈v, w〉 = x1y1 + ...+ xnyn + θ1θr+1
1 + ...+ θrθn1 − θr+1θ11 − ...− θnθr1 (2.15)

〈v, w〉f =
m∑
k=1

xkyk+
r∑

j1=1

(
θj1θ

f(j1)
1 − θf(j1)θj11

)
=x1y1+...+ xnyn+θ1θr+1

1 +...+ θrθn1−θ
r+1θ11−...− θ

nθr1

(2.16)

where f : {1, ..., r} → {r + 1, ..., 2r} is one-to-one function [11].

Definition 2.8. Supervector v ∈ Bm+n
L is orthogonal to supervector

w ∈ Bm+n
L if and only if ε(L) (〈v, w〉) = 0. The standart base vectors on

(
Bm+n
L

)
0

form as

E1 = (1, 0, ..., 0) , E2 = (0, 1, ..., 0) , ..., Em = (0, ..., 1, ..., 0)
Em+1 = (0, ..., 0,−1, 0, ..., 0) , ..., Em+r = (0, 0, ...,−1)
Em+r+1 = (0, ..., 0, 1, 0, ..., 0) , ..., Em+n = (0, ..., 0, 1, 0, ..., 0)

(2.17)

where the first m supervectors are even or c-type and the last n supervectors are
odd or a-type [11].

Definition 2.9. Let f be an element of GH∞(V ). Then, for i = 1, 2, ...,m,

Gif : V → BL
(x, θ) 7→ Gif (x, θ) =

∑
µ∈Mn

ZL′ ,L(∂ifµ)(x) θµ (2.18)
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is defined. Also, for j = 1, 2, ..., n

Gj+mf : V → BL
(x, θ) 7→ Gj+mf (x, θ) =

∑
µ∈Mn

ZL′ ,L(fµ)(x) θµ/j × (-1)
|fµ(x)| (2.19)

is defined where |fµ(x)| is parity of fµ(x) and θµ/j = θµ1 ...θµk (−1)
i−1 , if j = µi

for some i, 1 ≤ i ≤ k and θµ/j = 0, otherwise [24].

Definition 2.10. Let Bm+n
L be an (m,n)-dimensional total super-Euclidean space

for L > 2n and V ⊂ B1,1
L be an open set. Assume that

c : V ⊂ B1,1
L → Bm+n

L

is a function and for ∀θ ∈ V ∩ (BL)1 and ∀t ∈ V ∩ (BL)0

cθ,0 : V ∩ (BL)0 →
(
Bm+n
L

)
0

t 7→ cθ,0(t) = (c (t, θ))0
cθ,B : V ∩ (BL)0 → Rm

t 7→ cθ,B(t) = ε
(L)
m,n ◦ cθ,0(t)

(2.20)

are given where (c (t, θ))0 is the even part of the supervector c (t, θ) . The function
c is to be supercurve if and only if cθ,B |V ∩R is a curve. The function c is called
supersmooth supercurve if and only if

ci ∈ GH∞(V ) i ∈ {1, 2, ...,m}
cj+m ∈ GH∞(V ) j ∈ {1, 2, ..., n} (2.21)

where
ci = xi ◦ c ∀i ∈ {1, 2, ...,m}

cj+m = θj ◦ c ∀j ∈ {1, 2, ..., n} (2.22)

[24].

Definition 2.11. Let c be a regular smooth curve in Euclidean 4-space E4 defined
by

x : s ∈ L→ x(s) ∈ E4

where L denotes a subset of the set R of all real numbers, and s is the arc-length
parameter of c. The curve c is called a special Frenet curve if there exist three
smooth functions k1, k2, k3 on c and smooth frame field {e1, e2, e3, e4} along the
curve c. The formulas of Frenet-Serret hold:

e
′

1

e
′

2

e
′

3

e
′

4

 =


0 k1e2 0 0

−k1e2 0 k2e3 0
0 −k2e3 0 k3e4
0 0 −k3e4



e1
e2
e3
e4

 (2.23)

for s ∈ L, where the prime (′) denotes differentiation with respect to s. The frame
field {e1, e2, e3, e4} is of orthonormal positive orientation. The functions k1and k2
are of positive, and the function k3 doesn’t vanish. Also, the functions k1, k2, k3
are called the first, the second, and the third curvature function of c, respectively.
The frame field {e1, e2, e3, e4} is called Frenet frame field on c [16]. We refer this
notion to [28].
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3. Frenet frame associated to a supersmooth supercurve in general
position

In this part, using definition of supersmooth supercurve and Frenet frame associ-
ated to a supersmooth supercurve in general position [11], Frenet frame associated
to a supersmooth supercurve in general position of even and odd part of super-
Euclidean space Bm+n

L is given.

Definition 3.1. Let
(
Bm+n
L

)
0

be an even part of (m,n)-dimensional total super-

Euclidean space for L > 2n and V ⊂ B1,1
L be an open set and c : V ⊂ B1,1

L → Bm+n
L

be supersmooth supercurve. The supercurve c is in general position if and only if{
G1c(t, θ), ..., G

(m−1)
1 c(t, θ), G2c(t, θ), G1G2c(t, θ), ..., G

(n−1)
1 G2c(t, θ)

}
are linearly independent where G1c(t, θ) is a supervector which is expressed by(

G1c
1(t, θ), ..., G1c

m(t, θ), G1c
m+1(t, θ), ..., G1c

m+n(t, θ)
)

and same as G2c(t, θ) is a supervector which is expressed by(
G2c

1(t, θ), ..., G2c
m(t, θ), G2c

m+1(t, θ), ..., G2c
m+n(t, θ)

)
(3.1)

with

G
(0)
1 c(t, θ) = c(t, θ), G

(1)
1 c(t, θ) = G1c(t, θ), ..., G

(s)
1 c(t, θ) = G1...G1︸ ︷︷ ︸

s−times

c(t, θ)

where ∀(t, θ) ∈ V ⊂ B1,1
L [11].

Definition 3.2. Let
(
Bm+n
L

)
0

be an even part of (m,n)-dimensional total super-

Euclidean space for L > 2n and V ⊂ B1,1
L be an open set. Consider that

c : V ⊂ B1,1
L →

(
Bm+n
L

)
0

is a supersmooth supercurve. By a Frenet frame associated to a supersmooth su-
percurve c we shall mean a system of m+ n supervector fields {e1, ..., em+n} along

to the supersmooth supercurve c for ∀(t, θ) ∈ V ⊂ B1,1
L , we have the following

properties:

〈ek(t, θ), eh(t, θ)〉 = δkh ∀k, h ∈ {1, 2, ...,m}〈
em+j(t, θ), em+j(t, θ)

〉
= −δjj

∀j ∈ {1, 2, ..., r} ,
j ∈ {r + 1, r + 2, ..., 2r = n}〈

em+j(t, θ), em+j(t, θ)
〉

= δjj
∀j ∈ {1, 2, ..., r − 1} ,
j ∈ {r + 1, r + 2, ..., 2r = n}

〈em+j1(t, θ), em+j2(t, θ)〉 = 0 ∀j1, j2 ∈ {1, 2, ..., r}〈
em+j1

(t, θ), em+j2
(t, θ)

〉
= 0 ∀j1, j2 ∈ {r + 1, r + 2, ..., 2r = n}

〈ei(t, θ), em+j(t, θ)〉 = 0 ∀i ∈ {1, 2, ...,m} ,∀j ∈ {1, 2, ..., n}

(3.2)

where

Sp
(
G1c(t, θ), ..., G

(k)
1 c(t, θ)

)
= Sp (e1(t, θ), ..., ek(t, θ)) ∀k ∈ {1, 2, ...,m− 1},

(3.3)
and

Sp
(
G2c(t, θ), G1G2c(t, θ), ..., G

(j−1)
1 G2c(t, θ)

)
= Sp

(
em+1(t, θ), ..., em+j(t, θ)

)
(3.4)

∀i ∈ {1, 2, ...,m} and ∀j ∈ {1, 2, ..., n} [11].
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Theorem 3.3. Let
(
Bm+n
L

)
0

be an even part of (m,n)-dimensional total super-

Euclidean space Bm+n
L for L > 2n and V ⊂ B1,1

L be an open set and

c : V ⊂ B1,1
L →

(
Bm+n
L

)
0

be a supersmooth supercurve in general position which is satisfied following relation:
For ∀(t, θ) ∈ V ⊂ B1,1

L ,

ε(L)
(〈
G1c(t, θ), G

(r)
1 G2c(t, θ)

〉)
> 0

ε(L)
(〈
Gj11 c(t, θ), G

(r+j1)
1 G2c(t, θ)

〉)
> 0 ∀j1, j2∈{1, 2, ..., r − 1}

ε(L)
(〈
G2c(t, θ), G

(j)
1 G2c(t, θ)

〉)
= 0 ∀j ∈ {1, 2, ..., n− 1}

ε(L)(
〈
G
j′
1 G2c(t, θ), G

(r+j1)
1 G2c(t, θ)

〉
)= 0

∀j′, j∈{1, 2, ..., r − 1}
j′ 6= j, j′ < j.

(3.5)

Then there exists a unique Frenet frame {e1, ..., em+n} associated to the supercurve

c and for ∀(t, θ) ∈ V ⊂ B1,1
L

G1ek(t, θ) =
m∑
h=1

akh(t, θ)eh(t, θ) ∀k ∈ {1, 2, ...,m}

G1em+j(t, θ) =
m∑
l=1

am+j m+l(t, θ)em+l(t, θ) ∀j ∈ {1, 2, ..., n}
(3.6)

where

akh(t, θ) + ahk(t, θ) = 0 ∀k, h ∈ {1, 2, ...,m}
akh(t, θ) = 0 h > k, ∀k, h ∈ {1, 2, ...,m}
am+j1 m+j2(t, θ) + am+r+j2 m+r+j1(t, θ)= 0 ∀j1, j2 ∈ {1, 2, ..., r}
am+r+j1 m+j2(t, θ)− am+j2 m+r+j1(t, θ)= 0 ∀j1, j2 ∈ {1, 2, ..., r}
ai m+j(t, θ) = 0 ∀i ∈ {1, 2, ...,m}
am+j i(t, θ) = 0 j ∈ {1, 2, ..., n}
am+j m+l(t, θ) = 0 l 6= j + 1

(3.7)
and

am+j1 m+j2(t, θ) = 〈G1em+j1(t, θ), em+r+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
am+j1 m+r+j2(t, θ) = −〈G1em+j1(t, θ), em+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
am+r+j1 m+j2(t, θ) = 〈G1em+r+j1(t, θ), em+r+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
am+r+j1 m+r+j2(t, θ) = −〈G1em+r+j1(t, θ), em+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
akh(t, θ) = 〈G1ek(t, θ), eh(t, θ)〉 ∀k, h ∈ {1, 2, ...,m}
ak m+j(t, θ) = 〈G1ek(t, θ), em+j(t, θ)〉 [∀k ∈ {1, 2, ...,m} ,
am+j k(t, θ) = 〈G1em+j(t, θ), ek(t, θ)〉 ∀j ∈ {1, 2, ..., n}]

(3.8)
are obtained [11].

Definition 3.4. Let
(
Bm+n
L

)
1

be an odd part of (m,n)-dimensional total super-

Euclidean space for L > 2n and V ⊂ B1,1
L be an open set and

c : V ⊂ B1,1
L →

(
Bm+n
L

)
1

be supersmooth supercurve. The supercurve c is in general position if and only if{
G2c(t, θ), G1G2c(t, θ), ..., G

(m−1)
1 G2c(t, θ), G1c(t, θ), ..., G

(n−1)
1 c(t, θ)

}
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are linearly independent where G1c(t, θ) is a supervector which is expressed by(
G1c

1(t, θ), ..., G1c
m(t, θ), G1c

m+1(t, θ), ..., G1c
m+n(t, θ)

)
and same as G2c(t, θ) is a supervector which is expressed by(

G2c
1(t, θ), ..., G2c

m(t, θ), G2c
m+1(t, θ), ..., G2c

m+n(t, θ)
)

with

G
(0)
1 c(t, θ) = c(t, θ), G

(1)
1 c(t, θ) = G1c(t, θ), ..., G

(s)
1 c(t, θ) = G1...G1︸ ︷︷ ︸

s−times

c(t, θ).

where for ∀(t, θ) ∈ V ⊂ B1,1
L .

Definition 3.5. Let
(
Bm+n
L

)
1

be an odd part of (m,n)-dimensional total super-

Euclidean space for L > 2n and V ⊂ B1,1
L be an open set. Consider

c : V ⊂ B1,1
L →

(
Bm+n
L

)
1

supersmooth supercurve. By a Frenet frame associated to a supersmooth supercurve
c : V ⊂ B1,1

L →
(
Bm+n
L

)
1

we shall mean a system of m + n supervector fields

{e1, ..., em+n} along to the supersmooth supercurve c such that for ∀(t, θ) ∈ V ⊂
B1,1
L we have the following properties:

〈ek(t, θ), eh(t, θ)〉 = 0 ∀k, h ∈ {1, 2, ..., r}
〈er+j1(t, θ), er+j2(t, θ)〉 = 0 ∀j1, j2 ∈ {1, 2, ..., r}
〈ej1(t, θ), er+j2(t, θ)〉 = δj1j2 ∀j1, j2 ∈ {1, 2, ..., r}
〈er+j1(t, θ), ej2(t, θ)〉 = −δj1j2 ∀j1, j2 ∈ {1, 2, ..., r}
〈em+j1(t, θ), em+j2(t, θ)〉 = δj1j2 ∀j1, j2 ∈ {1, 2, ..., n}
〈ej1(t, θ), em+j2(t, θ)〉 = 0 [∀j1 ∈ {1, 2, ..., r} ,
〈er+j1(t, θ), em+j2(t, θ)〉 = 0 ∀j2 ∈ {1, 2, ..., n}]

(3.9)

where

Sp
(
G2c(t, θ), G1G2c(t, θ), ..., G

(j−1)
1 G2c(t, θ)

)
= Sp (e1(t, θ), ..., ej(t, θ)) (3.10)

∀i ∈ {1, 2, ...,m} , ∀j ∈ {1, 2, ..., n} and

Sp
(
G1c(t, θ), ..., G

(k)
1 c(t, θ)

)
= Sp (em+1(t, θ), ..., em+k(t, θ)) (3.11)

∀k ∈ {1, 2, ...,m− 1} .

Theorem 3.6. Let
(
Bm+n
L

)
1

be an odd part of (m,n)-dimensional total super-

Euclidean space Bm+n
L for L > 2n and V ⊂ B1,1

L be an open set and

c : V ⊂ B1,1
L →

(
Bm+n
L

)
1

be a supersmooth supercurve in general position which satisfies following relations:
For ∀(t, θ) ∈ V ⊂ B1,1

L ,

ε′L
(〈
G2c(t, θ), G

(r)
1 G2c(t, θ)

〉)
> 0

ε′L(
〈
Gj11 G2c(t, θ), G

(r+j1)
1 G2c(t, θ)

〉
)> 0 ∀j1, j2∈{1, 2, ..., r − 1}

ε′L
(〈
G2c(t, θ), G

(j)
1 G2c(t, θ)

〉)
= 0 ∀j ∈ {1, 2, ..., n− 1}

ε′L(
〈
G
j′
1 G2c(t, θ), G

(r+j1)
1 G2c(t, θ)

〉
)= 0

∀j′, j∈{1, 2, ..., r − 1}
j′ 6= j, j′ < j.

(3.12)
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Then there exists a unique Frenet frame {e1, ..., em+n} associated to the supercurve

c and for ∀(t, θ) ∈ V ⊂ B1,1
L

G1ek(t, θ) =
m∑
h=1

akh(t, θ)eh(t, θ) ∀k ∈ {1, 2, ...,m}

G1em+j(t, θ) =
m∑
l=1

am+j m+l(t, θ)em+l(t, θ) ∀j ∈ {1, 2, ..., n}
(3.13)

are obtained where

aj1 j2(t, θ) + ar+j2 r+j1(t, θ) = 0 ∀j1, j2∈{1, 2, ..., r}
ar+j1 j2(t, θ)− ar+j2 j1(t, θ) = 0 ∀j1, j2∈{1, 2, ..., r}
aj1 r+j2(t, θ)− aj2 r+j1(t, θ) = 0 ∀j1, j2∈{1, 2, ..., r}
aj1, m+j2(t, θ) = aj1, m+j2(t, θ)= 0 ∀j1∈{1, 2, ...,m} , ∀j2∈{1, 2, ..., n}
akh(t, θ) = 0 h 6= k + 1, ∀k, h∈{1, 2, ..., n}

(3.14)
and

aj1j2(t, θ) = 〈G1ej1(t, θ), er+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
aj1 r+j2(t, θ) = −〈G1ej1(t, θ), ej2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
ar+j1 j2(t, θ) = 〈G1er+j1(t, θ), er+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
ar+j1 r+j2(t, θ) = −〈G1er+j1(t, θ), ej2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., r}
am+j1 m+j2(t, θ) = 〈G1em+j1(t, θ), em+j2(t, θ)〉 ∀j1, j2 ∈ {1, 2, ..., n}
aj1 m+j2(t, θ) = 〈G1ej1(t, θ), em+j2(t, θ)〉 [∀j1 ∈ {1, 2, ...,m} ,
am+j1 j2(t, θ) = 〈G1em+j(t, θ), ek(t, θ)〉 ∀j2 ∈ {1, 2, ...,m}].

(3.15)

4. On Bertrand Supercurves in Super-Euclidean Space

In this section, we introduce Bertrand supercurve couple and give some theorems
in super-Euclidean space.

Let M1,M2 ⊂ Bm+n
L be two supersmooth supercurves given by (V, c) and (V, c∗),

respectively. For (t, θ) ∈ V , c∗ is called Bertrand of the supercurve c or (M1,M2) is
called Bertrand supercurve couple, if principal normals of body parts at the point

c(t, θ) and c∗(t, θ) are linearly dependent where V ⊂ B(1,1)
L is an open subset.

Theorem 4.1. Let (M1,M2) be Bertrand supercurve couple which are given by
coordinate neighbourhoods (V, c) and (V, c∗) in

(
Bm+n
L

)
0
, respectively. The distance

between the points c(t, θ) ∈M1 and c∗(t, θ) ∈M2 is given by

d(c(t, θ), c∗(t, θ)) = b

where b is a superconstant.

Proof. If (M1,M2) is Bertrand supercurve couple, we have

c∗(t, θ) = c(t, θ) +A(t, θ)e2(t, θ) (4.1)

where A(t, θ) is supervariable. Differentiating both sides of the expression (4.1)
with respect to t:

G∗1c
∗(t, θ)

dt∗

dt
= G1c(t, θ) +G1A(t, θ)e2(t, θ) + (−1)|t||A(t,θ)|A(t, θ)G1e2(t, θ). (4.2)
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From the equation (3.6), we get

G∗1c
∗(t, θ)

dt∗

dt
= G1c(t, θ) +G1A(t, θ)e2(t, θ) + (−1)|t||A(t,θ)|A(t, θ)a23(t, θ)e3(t, θ)

(4.3)
where t and t∗ are arc–parameters of M1 and M2, respectively.

Thus we have

e∗1(t, θ)dt
∗

dt = (1 + (−1)|t||A(t,θ)|A(t, θ)a21(t, θ))e1(t, θ) +G1A(t, θ)e2(t, θ)
+A(t, θ)a23(t, θ)e3(t, θ).

(4.4)
Multiplying the the equation (4.4) with e2(t, θ) by superscalar product, we have

〈e∗1(t, θ), e2(t, θ)〉 dt
∗

dt = (1 + (−1)|t||A(t,θ)|A(t, θ)a21(t, θ)) 〈e1(t, θ), e2(t, θ)〉
+G1A(t, θ) 〈e2(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|A(t, θ)a23(t, θ) 〈e3(t, θ), e2(t, θ)〉 .

(4.5)
From the definition of Bertrand supercurve couple ε(L) 〈e∗1(t, θ), e2(t, θ)〉 = 0. Thus
we obtain

G1ε
(L) (A(t, θ)) = 0

ε(L) (A(t, θ)) = b
(4.6)

and

0 = ε(L) (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉+ s (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|ε(L) (A(t, θ)) ε(L) (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|ε(L) (A(t, θ)) s (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) ε(L) (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) s (a21(t, θ)) s 〈e1(t, θ), e2(t, θ)〉
+G1ε

(L) (A(t, θ)) (s 〈e2(t, θ), e2(t, θ)〉)
+G1s (A(t, θ)) (s 〈e2(t, θ), e2(t, θ)〉) +G1s (A(t, θ))
+(−1)|t||A(t,θ)|ε(L) (A(t, θ)) ε(L) (a23(t, θ)) s 〈e3(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|ε(L) (A(t, θ)) s (a23(t, θ)) s 〈e3(t, θ), e2(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) ε(L) (a23(t, θ)) (s 〈e3(t, θ), e2(t, θ)〉)
+(−1)|t||A(t,θ)|s (A(t, θ)) s (a23(t, θ)) s 〈e3(t, θ), e2(t, θ)〉

(4.7)

where b is a superconstant. From the definition of the distance on total super-
Euclidean space, we can easily find

d(c(t, θ), c∗(t, θ)) = b (4.8)

where b is the superconstant. �

Theorem 4.2. Let (M1,M2) be Bertrand supercurve couple which are given by
coordinate neighbourhoods (V, c) and (V, c∗) in

(
Bm+n
L

)
1
, respectively. The distance

between the points c(t, θ) ∈M1 and c∗(t, θ) ∈M2 is given by

d(c(t, θ), c∗(t, θ)) = b

where b is a superconstant.

Proof. If (M1,M2) is Bertrand supercurve couple, we have

c∗(t, θ) = c(t, θ) +A(t, θ)e6(t, θ) (4.9)
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where A(t, θ) is supervariable. Differentiating both sides of the expression (4.9)
with respect to t:

G∗1c
∗(t, θ)

dt∗

dt
= G1c(t, θ)+G1A(t, θ)e6(t, θ)+(−1)|t||A(t,θ)|A(t, θ)G1e6(t, θ). (4.10)

From the equation (3.13), we get

G∗1c
∗(t, θ)

dt∗

dt
= G1c(t, θ) +G1A(t, θ)e6(t, θ) + (−1)|t||A(t,θ)|A(t, θ)a67(t, θ)e7(t, θ)

(4.11)
where t and t∗ are arc-parameters of M1 and M2, respectively.

Thus, we have

e∗5(t, θ)dt
∗

dt = (1 + (−1)|t||A(t,θ)|A(t, θ)a65(t, θ))e7(t, θ)
+G1A(t, θ)e6(t, θ) +A(t, θ)a67(t, θ)e7(t, θ).

(4.12)

Multiplying the the equation (4.12) with e6(t, θ) by superscalar product, we get

〈e∗5(t, θ), e6(t, θ)〉 dt
∗

dt = (1 + (−1)|t||A(t,θ)|A(t, θ)a65(t, θ))
· 〈e5(t, θ), e6(t, θ)〉+G1A(t, θ) 〈e6(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|A(t, θ)a67(t, θ) 〈e7(t, θ), e6(t, θ)〉 .

(4.13)

From the definition of Bertrand supercurve couple ε′(L) 〈e∗5(t, θ), e6(t, θ)〉 = 0. Thus
we obtain

G1ε
′(L) (A(t, θ)) = 0

ε′(L) (A(t, θ)) = b
(4.14)

and

0 = ε′(L) (a65(t, θ)) s 〈e1(t, θ), e6(t, θ)〉+s (a65(t, θ)) s 〈e5(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|ε′(L) (A(t, θ)) ε′(L) (a65(t, θ)) s 〈e5(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|ε′(L) (A(t, θ)) s (a65(t, θ)) s 〈e5(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) ε′(L) (a65(t, θ)) s 〈e5(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) s (a65(t, θ)) s 〈e5(t, θ), e6(t, θ)〉
+G1ε

′(L) (A(t, θ)) (s 〈e6(t, θ), e6(t, θ)〉)
+G1s (A(t, θ)) (s 〈e6(t, θ), e6(t, θ)〉) +G1s (A(t, θ))
+(−1)|t||A(t,θ)|ε′(L) (A(t, θ)) ε′(L) (a67(t, θ)) s 〈e53(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|ε′(L) (A(t, θ)) s (a67(t, θ)) s 〈e7(t, θ), e6(t, θ)〉
+(−1)|t||A(t,θ)|s (A(t, θ)) ε′(L) (a67(t, θ)) (s 〈e7(t, θ), e6(t, θ)〉)
+(−1)|t||A(t,θ)|s (A(t, θ)) s (a67(t, θ)) s 〈e7(t, θ), e6(t, θ)〉

(4.15)

where b is a superconstant. From the definition of the distance on total super-
Euclidean space, we can easily find

d(c(t, θ), c∗(t, θ)) = b (4.16)

where b is the superconstant. �

Theorem 4.3. Let M1,M2 be supersmooth supercurves which are given by coordi-
nate neighbourhoods (V, c) and (V, c∗) in

(
Bm+n
L

)
0
, respectively. Then, M1,M2 are

Bertrand supercurves if and only if

λε(L) (a21(t, θ)) + µε(L) (a23(t, θ)) = 1

where λ, µ are superconstants and a21(t, θ), a23(t, θ) are supercurvatures in M1.
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Proof. If (M1,M2) is Bertrand supercurve couple from Theorem 4.1, we have

e∗1(t, θ)dt
∗

dt = (1− (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ))))a21(t, θ))e1(t, θ)
+(−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ))))a23(t, θ)e3(t, θ)

(4.17)

where s(A(t, θ)) is a odd part of supervariable A(t, θ) and b is a superconstant.
Differentiating both sides of the expression (4.17) with respect to t and from the
equation (3.6), an equation

a∗12(t, θ)e∗2(t, θ)dt
∗

dt = G1A1(t, θ)e1(t, θ) +G1B1(t, θ)e3(t, θ)
+[(−1)|t||A1(t,θ)|a12(t, θ)
−(−1)|t||B1(t,θ)|B1(t, θ)a23(t, θ)]e2(t, θ)

(4.18)

is obtained that A1(t, θ) = (1− (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ)))a21(t, θ)) and
B1(t, θ) = (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ)))a23(t, θ). Since (M1,M2) is Bertrand
supercurve couple, we have

e∗1(t, θ) = A1(t, θ)e1(t, θ) +B1(t, θ)e3(t, θ) (4.19)

where A1(t, θ) and B1(t, θ) are supervariables. Let us differentiate the equation
(4.19) with respect to t and use the equation (3.5)

a∗12(t, θ)e∗2(t, θ)dt
∗

dt = G1A1(t, θ)e1(t, θ) +G1B1(t, θ)e3(t, θ)
+[(−1)|t||A1(t,θ)|A1(t, θ)a12(t, θ)
−(−1)|t||B1(t,θ)|B1(t, θ)a23(t, θ)]e3(t, θ)

(4.20)

is found. Since {e2(t, θ), e∗2(t, θ)} is a linearly dependent set and using the equation
(4.18), we get

ε(L) (G1A1(t, θ)) = 0 and ε(L) (G1B1(t, θ)) = 0. (4.21)

Then, using ε(L) (A1(t, θ)) =superconstant and ε(L) (B1(t, θ)) =superconstant

ε(L)
(
A1(t, θ)

B1(t, θ)

)
= a (4.22)

is written where a is a superconstant. From the equation (4.18) and (4.19),

B1(t, θ) = (−1)|t||A(t,θ)| (b+ s(A(t, θ)))a21(t, θ)B1(t, θ)
+(−1)|t||A(t,θ)|A1(t, θ) (b+ s(A(t, θ)))a23(t, θ).

(4.23)

If we divide the equation (4.23) with B1(t, θ) and seperate into the even and odd
parts, then we get

(−1)|t||A(t,θ)| = (b+ s(A(t, θ)))
[
ε(L) (a21(t, θ)) + s (a21(t, θ))

]
+
[
ε(L)

(
A1(t,θ)
B1(t,θ)

)
+ s

(
A1(t,θ)
B1(t,θ)

)]
(b+ s(A(t, θ)))

·
[
ε(L) (a23(t, θ)) + s (a23(t, θ))

]
.

(4.24)

From even and odd parts of the equation (4.24), we get

λε(L) (a21(t, θ)) + µε(L) (a23(t, θ)) = 1 (4.25)

and

0 = b · s (a21(t, θ)) +s(A(t, θ)[ε(L) (a21(t, θ)) +s (a21(t, θ))]

+ε(L)
(
A1(t,θ)
B1(t,θ)

)
b · s (a23(t, θ))

+s
(
A1(t,θ)
B1(t,θ)

)
[b · {ε(L) (a23(t, θ)) +s (a23(t, θ))}

+s(A(t, θ){s (a23(t, θ)) +ε(L) (a23(t, θ))}].

(4.26)
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�

Theorem 4.4. Let M1,M2 be supersmooth supercurves which are given by coordi-
nate neighbourhoods (V, c) and (V, c∗) in

(
Bm+n
L

)
1
, respectively. Then (M1,M2) is

Bertrand supercurve couple if and only if

λε(L) (a65(t, θ)) + µε(L) (a67(t, θ)) = 1

where λ, µ are superconstants and a65(t, θ), a67(t, θ) are supercurvatures in M1.

Proof. If (M1,M2) is Bertrand supercurve couple from Theorem 4.2, we have

e∗5(t, θ)dt
∗

dt = (1− (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ))))a65(t, θ))e5(t, θ)
+(−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ))))a67(t, θ)e7(t, θ)

(4.27)

where s(A(t, θ)) is a odd part of supervariable A(t, θ) and where b is a superconstant.
Differentiating both sides of the expression (4.27) with respect to t and from the
equation (3.13), an equation

a∗67(t, θ)e∗6(t, θ)dt
∗

dt = G1A1(t, θ)e5(t, θ) +G1B1(t, θ)e3(t, θ)
+[(−1)|t||A1(t,θ)|a56(t, θ)
−(−1)|t||B1(t,θ)|B1(t, θ)a67(t, θ)]e6(t, θ)

(4.28)

is obtained that A1(t, θ) = (1− (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ)))a65(t, θ)) and
B1(t, θ) = (−1)|t||b+s(A(t,θ))| (b+ s(A(t, θ)))a67(t, θ). Since (M1,M2) is Bertrand
supercurve couple, we have

e∗5(t, θ) = A1(t, θ)e5(t, θ) +B1(t, θ)e7(t, θ) (4.29)

where A1(t, θ) and B1(t, θ) are supervariables. Differentiating the equation (4.29)
with respect to t and using the equation (3.9) gives

a∗65(t, θ)e∗6(t, θ)dt
∗

dt = G1A1(t, θ)e5(t, θ) +G1B1(t, θ)e7(t, θ)
+ [A1(t, θ)a56(t, θ)−B1(t, θ)a67(t, θ)] e7(t, θ).

(4.30)

From the equation (4.28) and {e6(t, θ), e∗6(t, θ)} is a linearly dependent set, we get

ε′(L) (G1A1(t, θ)) = 0 and ε′(L) (G1B1(t, θ)) = 0. (4.31)

Then, using ε′(L) (A1(t, θ)) =superconstant and ε′(L) (B1(t, θ)) =superconstant

ε′(L)
(
A1(t, θ)

B1(t, θ)

)
= a (4.32)

is written where a is a supernumber. From the equation (4.28) and (4.29), we have

B1(t, θ) = (−1)|t||A(t,θ)| (b+ s(A(t, θ))))a65(t, θ)B1(t, θ)
+(−1)|t||A(t,θ)|A1(t, θ) (b+ s(A(t, θ))))a67(t, θ).

(4.33)

If we divide the equation (4.33) with B1(t, θ) and seperate into the even and odd
parts, then we get

(−1)|t||A(t,θ)| = (b+ s(A(t, θ)))
[
ε′(L) (a65(t, θ)) + s (a65(t, θ))

]
+
[
ε′(L)

(
A1(t,θ)
B1(t,θ)

)
+ s

(
A1(t,θ)
B1(t,θ)

)]
· (b+ s(A(t, θ)))
·
[
ε′(L) (a67(t, θ)) + s (a67(t, θ))

]
.

(4.34)

From even and odd parts of the equation (4.34), we get

λε′(L) (a65(t, θ)) + µε′(L) (a67(t, θ)) = 1 (4.35)
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and

0 = b · s (a65(t, θ)) +s(A(t, θ)[ε′(L) (a65(t, θ)) +s (a65(t, θ))]

+ε′(L)
(
A1(t,θ)
B1(t,θ)

)
b · s (a67(t, θ))

+s
(
A1(t,θ)
B1(t,θ)

)
[b · {ε′(L) (a67(t, θ)) +s (a67(t, θ))}

+s(A(t, θ){s (a67(t, θ)) +ε′(L) (a67(t, θ))}].

(4.36)

�

Example LetB2+2
L be a (2, 2) dimensional total super-Euclidean space, V ⊂ B1,1

L

be an open subset,

c : V ⊂ B1,1
L → B2,2

L

(t, θ) 7→ c(t, θ) =
(
t2 + 2, θβ2, θ + 2β1t− 3, θt2

) (4.37)

be a supercurve. Supercurve c(t, θ) is supersmooth because the functions

c1(t, θ) = t2 + 2, c2(t, θ) = θβ2, c3(t, θ) = θ + 2β1t− 3, c4(t, θ) = θt2 (4.38)

are supersmooth. If we compute G1c(t, θ), G2c(t, θ) and G1G2c(t, θ), then we have

G1c(t, θ) =
(
2t, 0, 2β1, 2θ · t

)
(4.39)

G2c(t, θ) =
(
0, β2, 1, t2

)
G1G2c(t, θ) = (0, 0, 0, 2t)

Because of satisfying the equation (3.5), we get

ε(L) (〈G2c(t, θ), G1G2c(t, θ)〉) = 2t > 0
ε(L) (〈G2c(t, θ), G2c(t, θ)〉) = 0
ε(L) (〈G1G2c(t, θ), G1G2c(t, θ)〉) = 0

e1(t, θ), e3(t, θ) and e4(t, θ) are obtained by

e1(t, θ) =
(

1, 0, 2β1 · (2t)−1 , θ
)

e3(t, θ) =
(

0, β2 · (2t)−1 , (2t)−1 , 2−1t
)

e4(t, θ) = (0, 0, 0, 2t) .

(4.40)

Computing G1c(t, θ), G2c(t, θ) and G1G2c(t, θ), the supervectors

{G1c(t, θ), G2c(t, θ), G1G2c(t, θ)}
are linearly independent and then, system of the supervectors

{e1(t, θ), e2(t, θ), e3(t, θ), e4(t, θ)}
is Frenet frame of supercurve c. Let the matrix M(t, θ) be

M(t, θ) =

 1 0 θ −2β1 (2t)
−1

0 β2 (2t)
−1

2−1t − (2t)
−1

0 0 2t 0

 (4.41)

and e2(t, θ) =
(
−2β2β1 (2t)

−1
,−1, 0,−β2

)
is computed. a12(t, θ) and a33(t, θ),

a12(t, θ) = β1β2t−2 (4.42)

and

a33(t, θ) = −t−1 (4.43)
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are obtained. Finally, the matrix

A =


0 β1β2t−2 0 0

−β1β2t−2 0 0 0
0 0 −t−1 0
0 0 0 −t−1

 (4.44)

can be obtained.
Example LetB2+2

L be a (2, 2) dimensional total super-Euclidean space, V ⊂ B1,1
L

be an open subset and

c∗ : V ⊂ B1,1
L → B2,2

L

(t, θ) 7→ c∗(t, θ) = (t2+1, θβ2 − t

β2β1
, 2β1t+θ − 3, θt2 − t

β1
)

(4.45)

be a supercurve. c∗(t, θ) supercurve is supersmooth because the functions

c∗1(t, θ) = t2 + 1, c∗2(t, θ) = θβ2 −
(
β2β1

)−1
t,

c∗3(t, θ) = 2β1t+ θ − 3, c∗4(t, θ) = θ.t2 −
(
β1
)−1

t

are supersmooth. We compute G1c
∗(t, θ), G2c

∗(t, θ) and G1G2c
∗(t, θ) as

G1c
∗(t, θ) =

(
2t,−

(
β2β1

)−1
, 2β1, 2θt−

(
β1
)−1)

G2c
∗(t, θ) =

(
0, β2, 1, t2

)
G1G2c

∗(t, θ) = (0, 0, 0, 2t) .

Because of satisfying the equation (3.5),

ε(L) (〈G2c
∗(t, θ), G1G2c

∗(t, θ)〉) = 2t > 0
ε(L) (〈G2c

∗(t, θ), G2c
∗(t, θ)〉) = 0

ε(L) (〈G1G2c
∗(t, θ), G1G2c

∗(t, θ)〉) = 0

e∗1(t, θ), e∗3(t, θ) and e∗4(t, θ) are obtained as

e∗1(t, θ) =
(

1,−
(
β2β1

)−1
(2t)

−1
, 2β1 (2t)

−1
, θ −

(
β1
)−1

(2t)
−1
)

e∗3(t, θ) =
(

0, β2 (2t)
−1
, (2t)

−1
, 2−1t

)
e∗4(t, θ) = (0, 0, 0, 2t) .

Computing G1c
∗(t, θ), G2c

∗(t, θ) and G1G2c
∗(t, θ), the supervectors

{G1c
∗(t, θ), G2c

∗(t, θ), G1G2c
∗(t, θ)} are linearly independent and then system of

the supervectors {e∗1(t, θ), e∗2(t, θ), e∗3(t, θ), e∗4(t, θ)} is Frenet frame of supercurve c.
Let the matrix M(t, θ) be

M(t, θ) =

 1 −
(
β2β1

)−1
(2t)

−1
θ −

(
β1
)−1

(2t)
−1 −2β1 (2t)

−1

0 β2 (2t)
−1

2−1t − (2t)
−1

0 0 2t 0

 (4.46)

and e∗2(t, θ) =
(
−
((
β2β1

)−1
+ 2β2β1

)
(2t)

−1
,−1, 0,−β2

)
is computed. a∗12(t, θ)

and a∗33t, θ),

a∗12(t, θ) =
2
(
β2β1

)2 − 1

2β2β1t2
(4.47)

and

a∗33(t, θ) = −t−1 (4.48)
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are obtained. Finally, the matrix

A =


0

2
(
β2β1

)2 − 1

2β2β1t2
0 0

1− 2
(
β2β1

)2
2β2β1t2

0 0 0

0 0 −t−1 0
0 0 0 −t−1


(4.49)

can be obtained. Finally, since ε(L) {e2(t, θ), e∗2(t, θ)} is linearly dependent and

ε(L) 〈e∗1(t, θ), e2(t, θ)〉 = 0,

we can say that (c(t, θ), c∗(t, θ)) is Bertrand supercurve couple. The distance of
Bertrand supercurve couple, as in equation (4.23),

d(c(t, θ), c∗(t, θ)) = 1 (4.50)

is easily found.
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