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ON A FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSION OF

CAPUTO-KATUGAMPOLA TYPE

AURELIAN CERNEA

Abstract. We study an initial value problem associated to a fractional integro-

differential inclusion involving Caputo-Katugampola fractional derivative and
a set-valued map with non convex values. We establish a Filippov type exis-

tence theorem.

1. Introduction

This note is devoted to the following Cauchy problem

Dα,ρ
c x(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]), x(0) = x0, (1.1)

where α ∈ (0, 1], ρ > 0, Dα,ρ
c is the Caputo-Katugampola fractional derivative,

F : [0, T ]×R×R→ P(R) is a set-valued map, V : C([0, T ],R)→ C([0, T ],R) is

a nonlinear Volterra integral operator defined by V (x)(t) =
∫ t

0
k(t, s, x(s))ds with

k(., ., .) : [0, T ]×R×R→ R a given function and x0 ∈ R.
If F does not depend on the last variable, problem (1.1) reduces to

Dα,ρ
c x(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0. (1.2)

Recently, a generalized Caputo-Katugampola fractional derivative was proposed
in [10] by Katugampola and further he proved the existence of solutions for frac-
tional differential equations defined by this derivative. This Caputo-Katugampola
fractional derivative extends the well known Caputo and Caputo-Hadamard frac-
tional derivatives. Also, in some recent papers [1,13], several qualitative properties
of solutions of fractional differential equations defined by Caputo-Katugampola de-
rivative were obtained.

In the present paper we consider the set-valued framework and our aim is to show
that Filippov’s ideas ( [9]) can be suitably adapted in order to obtain the existence
of solutions for problem (1.1). We recall that for a differential inclusion defined
by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ( [9])
consists in proving the existence of a solution starting from a given almost solution.
Moreover, the result provides an estimate between the starting almost solution and
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the solution of the differential inclusion. In this way we extend Katugampola’s ex-
istence result obtained for fractional differential equations to fractional differential
inclusions.

We note that similar results for other classes of fractional differential inclusions
defined by Riemann-Liouville, Caputo or Hadamard fractional derivatives exists in
the literature [4–7] etc.. The present paper extends and unifies all these results in
the case of the more general problem (1.1).

Finally, we mention that in the last years one may see a strong development
of the theory of differential equations and inclusions of fractional order ( [3, 8, 11]
etc.). The main reason is that fractional differential equations are very useful tools
in order to model many physical phenomena.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In what follows we denote by I the interval [0, T ], C(I,R) is the Banach space
of all continuous functions from I to R with the norm ||x||C = supt∈I |x(t)| and
L1(I,R) is the Banach space of integrable functions u(.) : I → R endowed with

the norm ||u||1 =
∫ T

0
|u(t)|dt.

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance of
the closed subsets A,B ⊂ X is defined by

D(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = infy∈B d(x, y).

Let ρ > 0. The next notions were introduced in [10].

Definition. a) The generalized left-sided fractional integral of order α > 0 of a
Lebesgue integrable function f : (0,∞)→ R is defined by

Iα,ρf(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1f(s)ds, (2.1)

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(α) =

∫∞
0
tα−1e−tdt.

b) The generalized fractional derivative, corresponding to the generalized left-
sided fractional integral in (2.1) of a function f : [0,∞)→ R is defined by

Dα,ρf(t) = (t1−ρ
d

dt
)n(In−α,ρ)(t) =

ρα−n+1

Γ(n− α)
(t1−ρ

d

dt
)n

∫ t

0

sρ−1f(s)

(tρ − sρ)α−n+1
ds

if the integral exists and n = [α] + 1.
c) The Caputo-Katugampola generalized fractional derivative is defined by

Dα,ρ
c f(t) = (Dα,ρ[f(s)−

n−1∑
k=0

f (k)(0)

k!
sk])(t),

with n = [α] + 1.

We note that if ρ = 1, the Caputo-Katugampola fractional derivative becames
the well known Caputo fractional derivative. On the other hand, passing to the
limit with ρ → 0+, the above definition yields the Caputo-Hadamard fractional
derivative.
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In what follows ρ > 0 and α ∈ [0, 1]

Lemma 2.1. For a given integrable function f(.) : [0, T ]→ R, the unique solution
of the initial value problem

Dα,ρ
c x(t) = f(t) a.e. ([0, T ]), x(0) = x0,

is given by

x(t) = x0 +
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1f(s)ds

For the proof of Lemma 2.2, see [10]; namely, Lemma 4.2.

A function x ∈ C(I,R) is called a solution of problem (1.1) if there exists a
function f ∈ L1(I,R) with f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I) such that Dα,ρ

c x(t) =
f(t) a.e. (I) and x(0) = x0.

3. The main result

First we recall a selection result which is a version ( [2]) of the celebrated Kura-
towski and Ryll-Nardzewski selection theorem ( [12]).

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in
X, H : I → P(X) is a set-valued map with nonempty closed values and g : I →
X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In the sequel we assume the following conditions on F and V .

Hypothesis H1. i) F (., .) : I ×R ×R → P(R) has nonempty closed values and
is L(I)⊗ B(R×R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .) is
L(t)-Lipschitz in the sense that

D(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

iii) k(., ., .) : I ×R ×R → R is a function such that ∀x ∈ R, (t, s) → k(t, s, x)
is measurable.

iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

We use next the following notation

M(t) := L(t)(1 +

∫ t

0

L(u)du), t ∈ I.

We are now ready to prove the main result of this section.

Theorem 3.2. Assume that Hypothesis H1 is satisfied, assume that Iα,ρM(T ) < 1
and let y ∈ C(I,R) be such that there exists q(.) ∈ L1(I,R) with Iα,ρq(T ) < +∞
and d(Dα,ρ

c y(t), F (t, y(t), V (y)(t))) ≤ q(t) a.e. (I).
Then there exists x(.) ∈ C(I,R) a solution of problem (1.1) satisfying for all

t ∈ I
|x(t)− y(t)| ≤ 1

1− Iα,ρM(T )
(|x0 − y(0)|+ Iα,ρq(T )). (3.1)
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Proof. The set-valued map t→ F (t, y(t), V (y)(t)) is measurable with closed values
and

F (t, y(t), V (y)(t)) ∩ {Dα,ρ
c y(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t), V (y)(t)) a.e. (I) such that

|f1(t)−Dα,ρ
c y(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = x0 + ρ1−α

Γ(α)

∫ t
0
(tρ − sρ)α−1sρ−1f1(s)ds and one has

|x1(t)− y(t)| = |x0 − y(0) + ρ1−α

Γ(α)

∫ t
0
(tρ − sρ)α−1sρ−1(f1(s)−Dα,ρ

c y(s))ds

≤ |x0 − y(0)|+ Iα,ρq(T ).

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) = x0 +
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. (I), (3.4)

|fn+1(t)− fn(t)| ≤ L(t)(|xn(t)− xn−1(t)|+
∫ t

0

L(s)|xn(s)− xn−1(s)|ds) a.e. (I)

(3.5)
If this construction is realized then from (3.2)-(3.5) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤ (Iα,ρM(T ))n(|x0 − y(0)|+ Iα,ρq(T )) ∀n ∈ N.

Indeed, assume that the last inequality is true for n − 1 and we prove it for n.
One has

|xn+1(t)− xn(t)| ≤ ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1|fn+1(s)− fn(s)|ds ≤

ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1L(s)[|xn(s)− xn−1(s)|+
∫ s

0

L(u)|xn(u)− xn−1(u)|du]ds

≤ ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1M(s)(Iα,ρM(T ))n−1(|x0 − y(0)|+ Iα,ρq(T ))ds

= (Iα,ρM(T ))n(|x0 − y(0)|+ Iα,ρq(T )).

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.5), for almost all
t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1
i=1 |xi+1(t)− xi(t)| ≤ |x0 − y(0)|+

Iα,ρq(T ) +
∑n−1
i=1 (Iα,ρM(T ))i(|x0 − y(0)|+ Iα,ρq(T )) = |x0−y(0)|+Iα,ρq(T )

1−Iα,ρM(T ) .

(3.6)
On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all t ∈ I

|fn(t)−Dα,ρ
c y(t)| ≤

∑n−1
i=1 |fi+1(t)− fi(t)|+ |f1(t)−Dα,ρ

c y(t)| ≤
L(t) |x0−y(0)|+Iα,ρq(T )

1−Iα,ρM(T ) + q(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
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Using Lebesgue’s dominated convergence theorem and taking the limit in (3.3),
(3.4) we deduce that x(.) is a solution of (1.1). Finally, passing to the limit in (3.6)
we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.3)-
(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we already
constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satisfying (3.3),
(3.5), (3.3) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N − 1. The set-valued map
t → F (t, xN (t), V (xN )(t)) is measurable. Moreover, the map t → L(t)(|xN (t) −
xN−1(t)| +

∫ t
0
L(s)|xN (s) − xN−1(s)|ds) is measurable. By the lipschitzianity of

F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+∫ t
0
L(s)|xN (s)− xN−1(s)|ds)[−1, 1]} 6= ∅.

Lemma 3.1 yields that there exist a measurable selection fN+1(.) of F (., xN (.),
V (xN )(.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0

L(s)|xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (3.3) with n = N + 1. Thus fN+1(.) satisfies (3.4) and
(3.5) and the proof is complete. �

If F does not depend on the last variable, Hypothesis H1 becames

Hypothesis H2. i) F (., .) : I × R → P(R) has nonempty closed values and is
L(I)⊗ B(R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

D(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R.

Theorem 3.2 has, in this case, the following statement.

Theorem 3.3. Assume that Hypothesis H2 is satisfied, Iα,ρL(T ) < 1 and let
y ∈ C(I,R) be such that there exists q(.) ∈ L1(I,R) with Iα,ρq(T ) < +∞ and
d(Dα,ρ

c y(t), F (t, y(t))) ≤ q(t) a.e. (I).
Then there exists x(.) ∈ C(I,R) a solution of problem (1.2) satisfying for all

t ∈ I

|x(t)− y(t)| ≤ 1

1− Iα,ρL(T )
(|x0 − y(0)|+ Iα,ρq(T )).

The assumptions in Theorem 3.3 are satisfied, in particular, for y(.) = 0 and
with q(.) = L(.). We obtain the following consequence of Theorem 3.3.

Corollary 3.4. Assume that Hypothesis H2 is satisfied, Iα,ρL(T ) < 1 and d(0, F (t, 0)) ≤
L(t) a.e. (I).

Then there exists x(.) a solution of problem (1.2) satisfying for all t ∈ I

|x(t)| ≤ |x0|+ Iα,ρL(T )

1− Iα,ρL(T )
.
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4. Conclusions

In this paper we obtained an existence result for fractional integro-differential in-
clusion involving Caputo-Katugampola fractional derivative in the situation when
the values of the set-valued map are not convex employing a method originally
introduced by Filippov. Afterwards, this result may be useful in order to obtain
qualitative results concerning the solutions of fractional differential inclusions de-
fined by Caputo-Katugampola fractional derivative such as: controllability along a
reference trajectory, differentiability of solutions with respect to the initial condi-
tions of the problem considered. At the same time the technique presented in this
paper may be suitable adapted to the study of Darboux problems associated to
fractional hyperbolic integro-differential inclusion defined by Caputo-Kutagampola
fractional derivative.

Concerning numerical methods, in the literature there exists adaptations of the
classical techinques to the set-valued framework (e.g., a version of Newton’s method
in [2]) but it is difficult to implement it for our problem which contains a nonlinear
integral operator. However, the case when F is single valued and does not depend
on the last variable is studied in [2], where certain general discretization steps and
error analysis are provided.
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