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INTERPOLATORY MINIMAL SERIES FOR RECONSTRUCTING

AN INFINITE FOURIER SERIES

NASSAR H. S. HAIDAR

Abstract. Based on the continuity of functions of two variables, we provide
a new qualitative proof of the well known fast convergence of Fourier series

representations of most continuous periodic functions. Our proof is based on

a representation of this infinite Fourier series, even when it diverges, by a
five-term, with 17 interpolation points, minimal harmonic series with a new

minimal series interpolation (MSI) algorithm for an iterative approximant. A
smoothing linear summation minimal series is also demonstrated to be con-

structible by the same algorithm.

1. Introduction

Pointwise convergence of partial Fourier sums for continuous functions, f(x) ∈
C(R), was ruled out in 1873, [6], by the du Bois-Reymond counterexample of a
2π-periodic continuous function with a Fourier series that diverges at a given point,
x = 0. It was not possible, however, to represent this function by a curve or
to explain geometrically the divergence of its series at 0. In the following years
many simpler similar examples were constructed. One of these, due to Fejér, is for
an even 2π-periodic everywhere continuous, f ∈ C(R), but nowhere differentiable,
f /∈ C1(R), function defined on [0, π] by

f(x) =

∞∑
p =1

1
p2 sin

[
(2 p3 + 1)x2

]
, (1.1)

with a co-sinusoidal Fourier series

a0
2 +

∞∑
k = 1

ak cos kx = f(x),∀x 6= 0, (1.2)

which diverges at x = 0.
It was finally in 1966 when Carleson proved, [3], a conjecture by Luzin,

that the Fourier series of f(x) ∈ C(R) converges to f(x), a.e.( everywhere with
the exception of a set of measure zero). Moreover, a fairly easy Baire-category
argument, [2], shows that the Fourier series of ”most” functions in C(R) are not
everywhere convergent.
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Therefore, although continuity, f ∈ C(R), is not enough for the associated
Fourier series to converge, Weierstrass [2, 17] proved that if f ∈ C1(R),i.e. both
continuous and differentiable, this convergence is assured. This is the reason for
the phrase: ”most” functions, to stand in the abstract of this paper.

Young & Young [20] showed how the subtle relationship between the continuity
of functions of several variables and continuity of their traces can be a platform for
research into various questions in functional analysis. This paper is a contribution
to such research on the qualitative convergence of Fourier series for most continuous
periodic functions. A contribution that invokes the Kolmogorov-Arnold theorem,
[10], to develop a representation of such infinite series, even when it diverges, by a
five-term, with 17 interpolation points, minimal series with a new algorithm for its
iterative approximation.

The paper is organized as follows. Section 2 contains a focused study on con-
tinuity of pointwise traces of functions of two variables. Section 3 introduces the
Kolmogorov-Arnold theorem for representing such traces, in their infinite Fourier
series, by a finite minimal series. The main result of this paper is that the infinite
Fourier series of f ∈ C(R) can be reconstructed by varying only its first few har-
monics, of a minimal series representation, via a newly devised iterative algorithm.
Section 4 addresses the question of possible divergence of such series. The question
of C1 linear summability of this series and construction of its minimal smoothing
summation series is entertained in section 5. Here a conjecture the relation between
the direct and summation minimal series is stated. The conclusion, in section 6
reports on two emerging open problems.

2. TRACES OF FUNCTIONS OF TWO VARIABLES

Definition 2.1. Let φ : Ω → R,where Ω ⊂ R2, be a real function z = φ(x, y)
in a Banach space B(Ω).The trace of φ(x, y) on a vertical surface y = β(x),
(x, β(x)) ∈ V ⊂ Ω , is a restriction φ | V, on the surface z = φ(x, y), representing a
curve Q defined as the set
Q =

{
(x, β(x), z(x, β(x))) ∈ R3 : (x, β(x)) ∈ V

}
.

Accordingly, φ(x, 0) and φ(0, y) are respectively the x−trace and y−trace
of φ. Moreover, of particular interest in this work, is the trace of φ corresponding
to β(x) = x, V =M(median line), and Q =

{
[x, x, z(x, x)] ∈ R3 : (x, x) ∈M

}
,

φ(x, x), which is called the pointwise trace of φ, in accord with the trace notation

: tr φ =

∫
φ(x, x) dx, which is often used in function space theory.

In 1821, Augustin Cauchy made a historic wrong statement, see e.g. [20],
that a function of several variables which is continuous in each variable separately
is continuous as a function of all vriables. The first counterexample, [20], appeared
in 1873 as follows.

Example 1. The function φ : R×R→ R,defined by

z = φ(x, y) =

{ 2xy
x2 + y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)
, (2.1)

is continuous separately in its φ(x, 0) and φ(0, y) traces, but is jointly discontin-
uous at (0, 0). This example is a contradiction to the previous Cauchy’s assertion.

Indeed, this z, along any straight line y = β(x) = kx passing through the
origin, remains a constant value 2k

1 + k2 that depends on k. Thus φ(x, y) approaches

(0, 0) along different paths with different limits. I.e. it is discontinuous at (0, 0).
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In the example above, φ(x, x) = 1, with φ(0, 0) = 0 6= 1. So, distinctively from
the x−and y−traces, this pointwise trace is discontinuous at (0, 0), and regardless
of the commutativity, φ(x, y) = φ(y, x), or symmetry, of this φ(x, y).

On another note, the Dirichlet formula, which is of crucial importance in the
theory of Volterra integral equations, see e.g. [18] or [1], and in fractional calculus,
[14], is:

Dirichlet’s Formula [18, 14]. If φ(x, y) is jointly continuous over [a, b]× [a, b] ,
then its double integral over an isosceles triangle D of side [a, b] ⊂ R and with M,
as a hypotenuse, satisfies∫∫

D

φ(x, y) dD =

∫ b

a

∫ b

x

φ(x, y) dydx =

∫ b

a

∫ y

a

φ(x, y) dxdy. (2.2)

The proof of this formula can be made geometrical, by reversing the order
of integration in any side of (2.2), on the assumption of its validity, which implies
joint continuity by Fubini’s theorem.

Corollary 2.1. If φ(x, y) is jointly continuous over [a, b] × [a, b] , then its
pointwise trace φ(x, x) is necessarily continuous.

Proof. There exist several proofs for this corollary. A global proof [11] states
that if φ ∈ C(Ω), Ω ⊂ R2 and φ : Ω→ R, then (φ(x, x) : V →R) ∈ C(V),∀ V ⊂ Ω.�

The previous result is obviously irreversible. Indeed, if φ(x, y) is discontinu-
ous, then φ(x, x) may or may not be continuous. Anyway, Corollary 2.1 guarantees
validity of the Dirichlet formula whenever φ(x, y) is absolutely integrable, [17], over
D.

Remark 2.1. Hence, conversely, if the point trace φ(x, x) is jointly discontin-
uous over D,then the Dirichlet formula may (or may not) be satisfied by φ(x, y)
pending to its absolute integrability (or nonintegrability) over D.

Example 2. To illustrate this remark, consider

φ(x, y) =

{
y−2+ x , 0 < x < y < 1
0, elsewhere

,

in which φ(x, x) = 0, ∀x ∈ M ⊂ R. Note, however, that φ(x, x) is discontin-
uous across M over D despite the fact that φ(x, x) ∈ C(M). Moreover, it can,
straightforwardly, be shown that∫ 1

0

∫ y

0

(y−2 + x) dxdy −
∫ 1

0

∫ 1

x

(y−2 + x) dydx = 1 6= 0,

in violation of the Dirichlet formula. This happens to take place because

∫ 1

0

∫ y

0∣∣y−2 + x
∣∣ dxdy = ∞ , i.e. this φ(x, y) does not satisfy the condition for Fubini’s

theorem, [18], [11], over D, with [a, b] = [0, 1].
Example 3. Consider the function φ : R×R→ R, defined by
z = φ(x, y) = cos xy

x2 + 1 , (2.3)

which is continuous at every finite (x, y) ∈ R × R. Asymptotically, however,
φ(x,∞) is undefined while φ(∞, y) = 1. Moreover, φ(y, x) = cos xy

y2 + 1 6= φ(x, y),

nonsymmetric, with φ(y, ∞) = 1 while φ(∞, x) is undefined.
As for the traces of this z,we have:

i) the x−trace φ(x, 0) = 1, is continuous∀x.
ii) the y−trace φ(0, y) = 1, is continuous∀y.

iii) the pointwise trace φ(x, x) = cos x2

x2 + 1 is also continuous, with φ(0, 0) = 1,

and φ(±∞,±∞) = cos 1.
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The continuity of this φ(x, x) is a demonstration of the power of Corollary
2.1.

Example 4. Let φ : R×R→ R,be defined by

z = φ(x, y) =

{ 2xy
x4 + y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)
. (2.4)

Unlike the z of example 1, this φ(x, y) 6= φ(y, x) is nonsymmetric, but is also
discontinuous at (0, 0) and continuous elsewhere.

Here along any parabola y = β(x) = k x2 passing through the origin, z retains
a constant value k

1 + k2 that depends on k.
As for the basic traces of this z, we have:

i) the x−trace φ(x, 0) = 0,∀x, including φ(0, 0) = 0. So it is continuous.
ii) the y−trace φ(0, y) = 0,∀y, including φ(0, 0) = 0,continuous.
iii) the trace corresponding to y = β(x) = x2 , i.e. φ(x, x2) = 1

2 ,∀x, including

φ(0, 0) = 1
2 6= 0,is discontinuous at (0, 0).

iv) the pointwise trace φ(x, x) = x
x2 + 1 , with φ(0, 0) = 0, is continuous

everywhere and despite the nonsymmetry of this φ(x, y).
It should be underlined that φ(x, y) in examples 1, 2 & 4 has been discontinu-

ous over R×R. While, in example 3, φ(x, x) has been continuous. Remarkably, this
variety in the continuity of these pointwise traces does not constitute any violation
of Corollary 2.1.

3. QUALITATIVE CONVERGENCE OF FOURIER SERIES

Let C(R) be the space of continuous functions over R. Assume f(x) ∈ C(R)
to be periodic with a period T = 2L. Then it is representable in the Fourier series

f(x) := S(x) = a0
2 +

∞∑
k = 1

(
ak cos k πLx+ bk sin k πLx

)
. (3.1)

The speed of convergence of this series crucially depends on the nature of the
infinite set {ak, bk}∞k = 0 of Fourier coefficients,{

ak
bk

}
= 1

L

L∫
−L

f(x)

{
cos
sin

}
k πLx dx,

even when the Fourier series (7) diverges.
Theorem 3.1. If f(x) ∈ C(R) is periodic with a period T = 2L , then its

infinite Fourier series S(x), when it converges, is always representable by a finite
five-term functional series:

S(x) = a0
2 +

∞∑
k = 1

(
ak cos k πLx+ bk sin k πLx

)
=

4∑
k = 0

Uk[uk(x)], (3.2)

consisting of a composition of some outer, U k[·], and inner uk(x) continuous
functions.

Proof. Let f(x) = φ(x, x) be the pointwise trace of a particular jointly continuous
φ(x, y). Then according to the Kolmogorov-Arnold representation theorem, [10],
highlighted in the Appendix. Such a function can always be represented as

φ(x, y) =

4∑
k = 0

Uk[ gk(x) + hk(y)], (3.3)
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where the gk’s and hk’s are some inner continuous functions of a single variable
and the U k[·]’s are some outer functions of the inner ones. The corresponding
pointwise trace

φ(x, x) =

4∑
k = 0

Uk[ gk(x) + hk(x)], (3.4)

should, by virtue of corollary 1, also be continuous and satisfy (6) when
uk(x) = gk(x) + hk(x). �

The previous result motivates the following proposition.
Proposition 3.1. For Fourier series representation of a 2L- periodic signal

f(x) ∈ C(R), variation of only the first 5 harmonics, forming a minimal series

representation, Ŝ(x), suffices to reproduce the entire signal.
Quantitatively,

Ŝ(x) =

4∑
k = 0

Uk[uk(x)] =

4∑
k = 0

A(ak, bk) cos k πLµk(x) +B(ak, bk) sin k πLwk(x)(3.5)

= a0
2 +

∞∑
k = 1

(
ak cos k πLx+ bk sin k πLx

)
= S(x) = f(x),

in which

A(ak, bk) =

(
p(ak) =

{
1
2 (a0 + α0), k = 0
(ak + αk), k ≥ 1

, 0

)
,

B(ak, bk) =

(
0, q(bk) =

{
0, k = 0
(bk + νk), k ≥ 1

)
,

uk(x) = ak cos 2k πLµk(x) + bk cos 2k πLwk(x),
µk(x) = x+ δk and wk(x) = x+ εk , (3.6)
holds with the Uk[·] operator’s set

F =
{
Uk[·] = A(ak, bk)

√
1

4kπ µk(x)
cos−1(·) + 1

2 (·)

+B(ak, bk)
√

1
4kπ wk(x)

cos−1(·)− 1
2 (·)

}4

k = 0
. (3.7)

Proof. The perturbational relations (3.5)-(3.7) happen to represent the only
parametrized (Uk, uk) pair that preserves its harmonicity and can tend to a0

2 or(
ak cos k πLx+ bk sin k πLx

)
by varying (or indexing) its αk, νk , δk, and εk parameters.�

To demonstrate the utility of the previous theorem and proposition, we
construct a new minimal series interpolation (MSI) algorithm which turns out to
be iterative.

Algorithm (MSI) 1. Let f(x) ∈ C(R) be a periodic function with a period T =

2L. The set F = {Uk[·] , uk(x)}4k = 0 for its five-term minimal series representation,

Ŝ(x),can be constructed via the following two steps.
Step 1: Approximate solution. Reconsider the proposition with some iterative

superindexing of the F set to Fi, i = 1, 2, 3, ....., N. Accordingly, we define

Q0(x) = a0
2 +

4∑
k = 1

ak cos k πLx+ bk sin k πLx ≈ f(x), (3.8)

associated with F0 , δ0k = ε0k = α0
k = σ0

k = 0,∀k. Then

Q1(x) = 1
2 (a0 +α1

0)+

4∑
k = 1

[(ak +α1
k) cos k πL (x+ δ1k)+(bk + ν1k) sin k πL (x+ε1k)] ≈

f(x) , (3.9)
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with the set F1 =
{
α1
0, δ

1
k, ε

1
k, α

1
k, ν

1
k

}4
k = 1

of 17 unknown parameters, which
may be determined numerically by solving the system

1
2 (a0 +α1

0) +

4∑
k = 1

[(ak +α1
k) cos k πL (x1j + δ1k) + (bk + ν1k) sin k πL (x1j + ε1k)] ≈ f(x1j ),

j = 1, 2, 3, ....., 17, (3.10)
of 17 interpolation equations. Here the set {x1j}17j =1 corresponds to the 1-st

randomized selection of 17 numbers from the interval [0, 2L].
We proceed in this manner to arrive at the i−th set {xij}17j =1 ⊂ [0, 2L],in the

sense of [8], i = 1, 2, 3, ....., N , where N is a certain iteration termination number.
Hence

Qi(x) = 1
2 (a0 +αi0) +

4∑
k = 1

[(ak +αik) cos k πL (x+ δik) + (bk + νik) sin k πL (x+ εik)] ≈

f(x) , (3.11)

with the set Fi =
{
αi0, δ

i
k, ε

i
k, α

i
k, ν

i
k

}4
k = 1

determined via solving the system

1
2 (a0 +αi0) +

4∑
k = 1

[(ak +αik) cos k πL (xij + δik) + (bk + νik) sin k πL (xij + εik)] ≈ f(xij),

j = 1, 2, 3, ....., 17. (3.12)
The stopping rule, i = N , for the iterations is when∥∥Qi(x)−Qi−1(x)

∥∥ ≤ εs ,
where the tolerance ε is defined essentially by the numerical accuracy of solving

the system (3.12) of transcendental equations. The quality of the approximant
QN (x) is expected, [20], moreover, to be intimately related to the choice of the
norm ‖.‖ .

Step 2: Fine tuning. The term (ak + αik) cos k πL (x+ δik) of (3.11) is the same as

(ak + αik)
[
(cos k πLδ

i
k) cos k πLx− (sin k πLδ

i
k) sin k πLx

]
.

It should be noted that ak cos k πLx are even terms in theQi(x) functional approxi-

mant to the associated f(x). But here the term ηi(x) = −(ak+αik)(sin k πLδ
i
k) sin k πLx

happens to serve as a measure of the induced, by the increments δik and αik ,
odd symmetry into the previous even terms. Similarly bk sin k πLx are odd terms in

Qi(x),while (bk + νik) sin k πL (x+ εik) of (3.11) is the same as

(bk + νik)
[
(cos k πLε

i
k) sin k πLx+ (sin k πLε

i
k) cos k πLx

]
,

and the term ζi(x) = (bk + νik)(sin k πLε
i
k) cos k πLx serves as a measure of the

induced, by the increments 1
2α

i
0, ε

i
k and νik, even symmetry into the odd terms.

Accordingly, the process F0 → Fi → FN can be modified to minimize the sum of
certain norms of ηi(x) and ζi(x) such as∥∥ ηi(x)

∥∥ =

4∑
k = 0

∫ L

−L

∣∣(ak + αik)(sin k πLδ
i
k) sin k πLx

∣∣ dx,
∥∥ ζi(x)

∥∥ =
∣∣ 1
2α

i
0

∣∣+ 4∑
k = 1

∫ L

−L

∣∣(bk + νik)(sin k πLε
i
k) cos k πLx

∣∣ dx. (3.13)

Hence, instead of (3.12) for determining the Fi set in (3.11), we may solve the
nonlinear programming problem
Minimize

Fi

∥∥ ηi(x)
∥∥+

∥∥ ζi(x)
∥∥ , (3.14)

Subject to : (3.12), j = 1, 2, 3, ....., 17. (3.15)
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The faster the convergence of this F0 → FN process, the smaller N should
be ; a fact that can be proved by contradiction. For large N , however, because
of the coercive nature of the representation (3.2), one can always modify the F0

→ Fi → FN process to a F̃0 → F̃i =
{
α̃i0, δ̃

i
k, ε̃

i
k , α̃ik, ν̃

i
k)
}4

k = 1
→ F̃N process,

comprising a replacement of (3.11)-(3.12) by

Q̃i(x) = 1
2 (a0 + α̃i0) +

4∑
k = 1

[(ak + α̃ik) cos k πL (x+ δ̃ik) + (bk + ν̃ik) sin k πL (x+ ε̃ik)] ≈

f(x) , (3.16)
with

1
2 (a0+α̃i0)+

4∑
k = 1

[(ak+α̃ik) cos k πL (xij+δ̃
i
k)+(bk + ν̃ik) sin k πL (xij+ε̃

i
k)] ≈ Q̃i−1(xij),

j = 1, 2, 3, ....., 17. (3.17)
The stopping rule obviously transforms then to∥∥∥Q̃i(x)− Q̃i−1

∥∥∥ ≤ εs,
but the subtle relationship between QN (x) and Q̃N (x) seems to remain as an

open question.

Also here, instead of (3.17) for determining the F̃i set in (3.16), we may
solve the nonlinear programming problem

Minimize
F̃i

∥∥ η̃i∥∥+
∥∥∥ ζ̃i∥∥∥ (3.18)

Subject to : (3.17), j = 1, 2, 3, ....., 17. (3.19)

Definition 3.1. The five-terms harmonic series Ŝ(x) = QN (x), or Q̃N (x),
generated by the MSI algorithm, is called the minimal series representation of the
infinite series S(x).

Remark 3.1. The superscript 4 in (3.3) appears remarkably to be rather like
a magical number. Indeed why 4 ? and not 75, for example. Also why the MSI
algorithm requires only 17 interpolation points? A magic that perhaps stems from
the underlying Hilbert’s Thirteenth problem, [11], solvable by a more general form
of (3.3). The validity of the previous result is unquestionably a qualitative indicator
of the expected fast convergence of the Fourier series for most periodic f(x) ∈ C(R).

Remark 3.2. Our theorem, proposition and algorithm do not hold, of course,
for discontinuous periodic functions, i.e. when f(x) /∈ C(R). A consequence of the
well known slow convergence of the pertaining Fourier series associated with the
accompanying Gibbs effects [9].

4. DIVERGING FOURIER SERIES

Let us revisit Fejer’s example of f ∈ C(R) with a divergent, at x = 0, Fourier
series (1.2). Its Fourier coefficients can easily be shown to satisfy

ak = 2
π

∞∑
p =1

1
p2 µk, 2 p3−1 , (4.1)

with

µk, m =

π∫
0

sin
[
(2m + 1) t2

]
cos kt dt. (4.2)

Trying to draw f(x) via (1.2) using (4.1)-(4.2) with basic software could be
too slow, even for the first few terms. However, a celebrated theorem by Fejér [2]
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says that when f ∈ C(R), the Cesàro means σn(x) = σn(f) converge to f, not only
pointwise, but uniformly, [12]. Hence although the series (1.2) diverges at x = 0,
it is C1 summable. Moreover, if the Cesàro means turn out to be computationally
too expensive, then one can resort instead to Poisson-Abel summability [2].

Alternatively, λ−permutations, [4, 13], may be used to investigate this
divergent Fourier series.. Here, incidentally, identification of convergence preserving
permutations is a problem to be faced.

In concluding this subsection, it should be mentioned that the class of
linear summabilities is not restricted to σn(x) averaging. The Poisson-Abel, [2],
and Riesz-Nörlund, [19], summabilities are also linear but both are defined in the
context of a limiting asymptotic process. In particular, a sequence < Sn > is said
to be harmonically H1 summable ( in the Riesz-Nörlund sense) if

Ω(x) = lim
n → ∞

1
log n

n∑
k = 0

Sn − k (x)
(k + 1)

exists. Riesz proved, additionally, [19], that every S(x) that is H1 summable is
also C1 summable.

5. ENHANCED SMOOTHING BY SUMMATION

Despite the settlement, in section 3, of the question on existence of the
minimal series Ŝ(x) , its construction happens to be essentially computational. As
in any interpolational procedure, one should expect errors to follow the nature of
the set of interpolation points used, see e.g. [5]. This motivates a need for finding
an optimal subdivision scheme. A problem that is minimized, however, in the MSI

algorithm by resort to random sampling that is governed solely by the assigned
tolerance εs. Moreover, too high degree of interpolation may turn out some times
to be pathalogical, [16-7], by inducing virtual rapid oscillations. Such a problem is
anticipated to be avoided in the MSI by the fact that is intrinsically a low degree

(17 points) interpolation.
Additional smoothness, though may not be essential, can however be

guaranteed by processing a summation series e.g. the Cesàro-Fejér series σ(x), to
find a σ̂(x) , instead of the direct Fourier series S(x).It should be noted though

that any enhanced smoothing to be brought about by summation is tautologically
”forced”, and has nothing to do with estimation of the underlying derivatives of

f(x).
5.1. Smoothing enhancement by linear summation. It is well known that

S(x) of a 2L− periodic f ∈ C[0, 2L] , whose n−th partial sum is

Sn(x) = a0
2 +

n∑
k = 1

(
ak cos k πLx+ bk sin k πLx

)
, (5.1)

can be uniformly summable to f(x) by the Cesàro-Fejér method, see e.g. [17],
[2], of arithmetic means

σn(x) = 1
(n +1)

n∑
k = 0

Sk(x), (5.2)

which are representable , [2], in terms of the Fejér kernel

Fn(x) = 1
(n +1)

(
sinn +1

2
π
L x

sin 1
2
π
L x

)2
, (5.3)

as the Fejér integrals
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σn(x) = 1
2 L

L∫
−L

Fn(x) f(x+ τ) dτ. (5.4)

Furthermore, it can readily be shown , see e.g. [15], that

σn(x) = a0
2 +

n∑
k = 1

n +1−k
n +1

(
ak cos k πLx+ bk sin k πLx

)
, (5.5)

from which it follows that
lim

n → ∞
σn(x) = σ(x) = S(x). (5.6)

This takes place despite the fact that σn(x) differs from Sn(x) for finite n.
Moreover, σ(x) , like S(x), can converge in a norm to f(x) viz ‖f − σ‖ =

sup
[0,2L]

|f(x)− σ(x)| → 0.Hence the limit σ(x) can exist even when the sequence

< Sn(x) > may diverge. A limit that justifies saying that S(x) is C1 summable to
σ(x).

In an attempt towards enhanced smoothing of Ŝ(x) = QN (x), it is possible
now to conceive an associated σ̂(x), which can be derived starting from σ(x) of

(3.5).

Minimal Linear Summation Series.
Proposition 5.1. For Fourier series representation of a 2L- periodic sig-

nal f(x) ∈ C(R), variation of only the first 5 harmonics, forming a minimal C1
summation series representation, σ̂(x), suffices to reproduce the entire signal.

Quantitatively,

σ̂(x) =

4∑
k = 0

Vk[uk(x)] =

4∑
k = 0

[
A(ak, bk) cos k πLµk(x) +B(ak, bk) sin k πLwk(x)

]
(5.7)

= a0
2 +

∞∑
k = 1

n +1−k
n +1

(
ak cos k πLx+ bk sin k πLx

)
= σ(x) = f(x),

in which

A(ak, bk) =

(
p(ak) =

{
1
2 (a0 + α0), k = 0(
5 − k

5

)
(ak + αk), k ≥ 1

, 0

)
,

B(ak, bk) =

(
0, q(bk) =

{
0, k = 0(
5 − k

5

)
(bk + νk), k ≥ 1

)
,

uk(x) = ak cos 2k πLµk(x) + bk cos 2k πLwk(x),
µk(x) = x+ δk and wk(x) = x+ εk ,
holds with the Vk[·] operator’s set

G =
{
Vk[·] = A(ak, bk)

√
1

4kπ µk(x)
cos−1(·) + 1

2 (·)

+B(ak, bk)
√

1
4kπ wk(x)

cos−1(·)− 1
2 (·)

}4

k = 0
. (5.8)

As with S(x), σ(x) can be processed by the MSI algorithm to yield a σ̂(x).

Algorithm (Summation MSI) 2. The set G = {Uk[·] , uk(x)}4k = 0 for the five-
terms minimal summation series representation, σ̂(x),can be found as follows.

Step 1: Approximate solution. Proposition 5.2 motivates superindexing of the
G set to Gi, i = 1, 2, 3, ....., N.The i-th iteration of the interpolation set {xir}17r =1 ⊂
[0, 2L] , in the sense of [8], leads to

Gi(x) = 1
2 (a0 + αi0) +

4∑
k = 1

(
5 − k

5

)
[(ak + αik) cos k πL (x+ δik)

+(bk + νik) sin k πL (x+ εik)] ≈ σ(x) , (5.9)
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with the set Gi =
{
αi0, δ

i
k, ε

i
k, α

i
k, ν

i
k

}4
k = 1

determined via solving the system

1
2 (a0+αi0)+

4∑
k = 1

(
5 − k

5

)
[(ak+αik) cos k πL (xir+δik)+(bk + νik) sin k πL (xir+εik)] ≈

σ(xir),
r = 1, 2, 3, ....., 17. (5.10)

The stopping rule, i = N , for the iterations is when∥∥Gi(x)−Gi−1(x)
∥∥ ≤ εσ.

Step 2: Fine tuning. The summation series symmetry deformation measures of
(3.13) become∥∥ %i(x)

∥∥ =

4∑
k = 0

∫ L

−L

(
5 − k

5

) ∣∣(ak + αik)(sin k πLδ
i
k) sin k πLx

∣∣ dx,
∥∥ ϑi(x)

∥∥ =
∣∣ 1
2α

i
0

∣∣+ 4∑
k = 1

∫ L

−L

(
5 − k

5

) ∣∣(bk + νik)(sin k πLε
i
k) cos k πLx

∣∣ dx. (5.11)

Hence, instead of (5.10) for determining the Gi set in (5.9), we may solve the
nonlinear programming problem
Minimize

Gi

∥∥ %i(x)
∥∥+

∥∥ ϑi(x)
∥∥ , (5.12)

Subject to : (5.10), r = 1, 2, 3, ....., 17. (5.13)

Here also one can always modify the G0 → Gi → GN process to a G̃0

→ G̃i =
{
α̃i0, δ̃

i
k, ε̃

i
k , α̃ik, ν̃

i
k)
}4

k = 1
→ G̃N process, comprising a replacement of

(5.9)-(5.10) by

G̃i(x) = 1
2 (a0 + α̃i0) +

4∑
k = 1

(
5 − k

5

)
[(ak + α̃ik) cos k πL (x+ δ̃ik)

+(bk + ν̃ik) sin k πL (x+ ε̃ik)] ≈ σ(x) , (5.14)
with

1
2 (a0+ α̃i0)+

4∑
k = 1

(
5 − k

5

)
[(ak+ α̃ik) cos k πL (xir+ δ̃ik)+(bk + ν̃ik) sin k πL (xir+ ε̃ik)] ≈

Q̃i−1(xir),
r = 1, 2, 3, ....., 17. (5.15)
The stopping rule obviously transforms then to∥∥∥G̃i(x)− G̃i−1

∥∥∥ ≤ εσ,
with the relationship between GN (x) and G̃N (x) remaining as an open question.

Also here, instead of (5.15) for determining the G̃i set in (5.14), we may
solve the nonlinear programming problem

Minimize
G̃i

∥∥ %̃i∥∥+
∥∥∥ ϑ̃i∥∥∥

Subject to : (5.15), j = 1, 2, 3, ....., 17.
Definition 5.1. The five-terms linear summation series σ̂(x), generated by the

MSI algorithm, is called the minimal C1 summation series representation of the
infinite series S(x).

Conjecture 5.1. The reported five-terms iterative minimal series Ŝ(x) approx-
imant to a continuous function with a divergent Fourier series S(x) can equate the
minimal summation estimate σ̂(x) for such series.



44 NASSAR H. S. HAIDAR

Only a sketch of the proof to this conjecture can possibly be contemplated
in the mean time. On one hand, the Kolmogorov-Arnold theorem, that underlies
the five-term representation (3.4) or (3.5), is exact when φ(x, x) = f(x) ∈ C(R).
On the other hand, all summability methods eliminate the divergence trend in the
infinite Fourier series. This paves the way towards a possibility for a confluence
between the two facts. Moreover, both Ŝ(x) and σ̂(x) are derived, within possibly
the same tolerance εs = εσ , from the same series S(x) = σ(x). A fact that in no
way suggests that σn(x) = Sn(x), for finite n.

6. CONCLUSION

In this paper, we employ the Kolmogorov-Arnold theorem to represent infinite
the Fourier series for most continuous periodic functions. The emerging, from the
MSI algorithm, five-term, with 17 interpolation points, minimal series Ŝ(x) and
associated minimal summation series σ̂(x) are respectively defined by the random
interpolation sets {xij}17j =1 and {xir}17r =1. Sets that are controllable, though indi-
rectly, by the tolerances εs , εσ and pose a number of new open problems. One of

them, is the relationship between the QN (x) and Q̃N (x) (or the GN (x) and G̃N (x))
approximants of the reported MSI algorithm. This also includes the relationship
between QN (x) and GN (x), especially for div egent S(x). The other is a rigorous
proof for the above summability conjectue.

Appendix. On the Kolmogorov-Arnold Theorem.
The special forms of φ(x, y), most encountered in mathematical physics or engi-

neering, are:
(i) Additively separable : φ(x, y) = g(x) + g(y).
(ii) Multiplicatively separable : φ(x, y) = g(x)h(y).
(iii) Travelling waves : φ(x, y) = g(x+ y) + h(x− y).
(iv) Homogeneous of n−th degree : φ(x, y) = t−n φ(tx, ty).
(v) Bose-Einstein particle symmetric amplitude : φ(x, y) = g(x)h(y)+g(y)h(x) =

φ(y, x),
Fermi particle skew symmetric amplitude : φ(x, y) = g(x)h(y)−g(y)h(x) = −

φ(y, x).
All these forms, and many others, can be derived as special cases, by the

Kolmogorov-Arnold theorem (3.3):

φ(x, y) =

4∑
k = 0

Uk[ gk(x) + hk(y)].

Obviously, case (i) corresponds to (3.3) when
g1(x) = g(x), h1(y) = h(y), U1 = 1; U0 = 0, U2 = U3 = U4 = 0.
Case (ii) derives from (9) via the map φ(x, y) = ep(x,y) when p(x, y) is identified,

like in case (i), with (9). Finally, case (iii) corresponds to (9) when
g1(x) = x, h1(y) = y, U1 = g ; g2(x) = x, h2(y) = −y, U2 = h ;U0 = U3 = U4 =

0.
We stop here and refer the interested reader to [10] for a detailed account

on this fundamental theorem.
AcknowledgmentsThe author is grateful to an anonymous referee for his
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