BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 12 Issue 3(2020), Pages 46-59.

COMMON FIXED POINT FOR GENERALIZED CONTRACTION IN B-MULTIPLICATIVE METRIC SPACES WITH APPLICATIONS

ABDULLAH SHOAIB

ABSTRACT. The desired outcome of this paper is to extend the result of Al-Mazrooei et al. (Journal of Mathematical Analysis, 8(3):157-166, 2017) by applying new contractive condition only on a closed set instead of a whole set and by using *b*-multiplicative metric spaces instead of multiplicative metric spaces. We apply our result to obtain unique common solution of Fredholm multiplicative integral equations. An example and a result on *F*-contraction are also presented. Our results generate many new results in *b*-multiplicative metric spaces.

1. INTRODUCTION AND PRELIMINARIES

Bakhtin [7] was the first who had given the idea of *b*-metric. After that, Czerwik [9] gave an axiom and formally defined a b-metric space. For further results on b-metric space, see [17, 27]. Ozaksar and Cevical [16] investigated multiplicative metric space and proved its topological properties. Mongkolkeha et al. [15] described the concept of multiplicative proximal contraction mapping and proved best proximity point theorems for such mappings. Recently, Abbas et al. [1] proved some common fixed points results of quasi weak commutative mappings on a closed ball in the setting of multiplicative metric spaces. For further results on multiplicative metric space, see [2, 4, 10, 11, 14]. In 2017, Ali et al. [5] introduced the notion of b-multiplicative and proved some fixed point result. As an application, they established an existence theorem for the solution of a system of Fredholm multiplicative integral equations. Shoaib et al. [27] discussed some results for mappings satisfying contraction condition only on a closed ball in *b*-metric spaces. For further results on closed ball, see [18, 19, 21, 22, 23, 24, 25, 26, 28, 29]. In this paper, we proved a result in [4] by applying contractive condition only on a closed set instead of a whole space and for *b*-multiplicative metric space instead of multiplicative metric space. Moreover, we obtained corresponding new results on closed ball in *b*-metric spaces. Example is given which shows the effectiveness of the new results. We also showed that a specific type of generalization of F-contraction is not real. An

²⁰⁰⁰ Mathematics Subject Classification. 47H10; 54H25.

Key words and phrases. Common fixed point; closed ball; b-multiplicative metric space; b-metric space; contractive condition.

^{©2020} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 16, 2019. Published March 16, 2020.

Communicated by Nawab Hussain.

application on integral equations is also given. The following definitions and results are used to understand the paper.

Definition 1.1 [5] Let W be a non-empty set and let $s \ge 1$ be a given real number. A mapping $m_b: W \times W \to [1, \infty)$ is called a *b*-multiplicative metric with coefficient s, if the following conditions hold:

(i) $m_b(w, y) > 1$ for all $w, y \in W$ with $w \neq y$ and $m_b(w, y) = 1$ if and only if w = y.

(ii) $m_b(w, y) = m_b(y, w)$ for all $w, y \in W$.

(*iii*) $m_b(w, z) \leq [m_b(w, y) \cdot m_b(y, z)]^s$ for all $w, y, z \in W$.

The triplet (W, m_b) is called *b*-multiplicative metric space. If r > 1, $u \in W$, then $\overline{B_{m_b}(u, r)} = \{v : m_b(u, v) < r\}$ is called a closed ball in (W, m_b) .

Example 1.2 [5] Let $W = [0, \infty)$. Define a mapping $m_a : W \times W \to [1, \infty)$

$$n_a(w,y) = a^{(w-y)^2}$$

where a > 1 is any fixed real number. Then for each a, m_a is b-multiplicative metric on W with s = 2. Note that m_a is a not multiplicative metric on W.

Definition 1.3 [5] Let (W, m_b) be a *b*-multiplicative metric space.

1

(i) A sequence $\{w_n\}$ is convergent iff there exist $w \in W$ such that

$$m_b(w_n, w) \to 1$$
, as $n \to +\infty$.

(*ii*) A sequence $\{w_n\}$ is called *b*-multiplicative Cauchy iff

$$m_b(w_m, w_n) \to 1$$
, as $m, n \to +\infty$.

(*iii*) A *b*-multiplicative metric space (W, m_b) is said to be complete if every multiplicative Cauchy sequence in Y is convergent to some $y \in W$.

Definition 1.4 [17] Let W be a non-empty set and $s \ge 1$ be a real number. A mapping $b: W \times W \to \mathbb{R}^+ \cup \{0\}$ is said to be *b*-metric with coefficient *s*, if for all $w, y, z \in W$, the following conditions hold:

(i) b(w, y) = 0 if and only if w = y;

$$(ii) \ b(w, y) = b(y, w);$$

(*iii*) $b(w, z) \le s [b(w, y) + b(y, z)]$.

The pair (W, b) is called *b*-metric space. If r > 0, $u \in W$, then $\overline{B_b(u, r)} = \{v : b(u, v) < r\}$ is called a closed ball in (W, b).

Remark 1.5 [5] Every *b*-metric space (W, b) generates a *b*-multiplicative metric space (W, m_b) defined as

$$m_b\left(x,y\right) = e^{b\left(x,y\right)}.$$

Remark 1.6 Let (W, m_b) be a *b*-multiplicative metric space generated by *b*-metric space (W, b), r > 0 and $x_0 \in W$. If $\overline{B_b(x_0, r)}$ and $\overline{B_{m_b}(x_0, e^r)}$ are closed balls in (W, b) and (W, m_b) respectively, then $\overline{B_b(x_0, r)} = \overline{B_{m_b}(x_0, e^r)}$.

Definition 1.7 Let $S, T : X \to X$, $A \subseteq X$ and $M_A(S,T)$ be the family of all functions $a : X \times X \to [0,1)$ with following assertions

$$a(TSx, y) \le a(x, y)$$
 and $a(x, STy) \le a(x, y)$, for all $x, y \in A$.

If we take A = X, then $M_A(S,T)$ become M(S,T), which is defined in [3]. Now, for a single mapping $S : X \to X$, we define the family $M_A(S)$ of all functions $a : X \times X \to [0, 1)$ with following assertions

$$a(S^2x, y) \leq a(x, y)$$
 and $a(x, S^2y) \leq a(x, y)$, for all $x, y \in A$.

Proposition 1.8 Let $S, T : X \to X$ be self mappings, $A \subseteq X$ and $x_0 \in X$, we define the sequence $\{x_n\}$ by $x_{2n+1} = Sx_{2n}$, $x_{2n+2} = Tx_{2n+1}$ for all integers $n \ge 0$. If $\{x_n\}$ is a sequence in A and $a \in M_A(S,T)$, then $a(x_{2n},y) \le a(x_0,y)$ and $a(x, x_{2n+1}) \le a(x, x_1)$ for all $x, y \in A$ and integers $n \ge 0$. Also, same is valid if $a \in M_A(S)$.

2. Main Result

Theorem 2.1 Let (X, m_b) be a complete *b*- multiplicative metric space and $S, T : X \to X$ be self-mappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S, T)$, $A = \overline{B_{m_b}(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}},$$

where sh < 1, $h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)}$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

$$m_b(Sx, Ty) \le (m_b(x, y))^{\alpha(x, y)} \cdot (m_b(x, Sx))^{\beta(x, y)} \cdot (m_b(y, Ty))^{\nu(x, y)}.$$
$$(m_b(y, Sx) \cdot m_b(x, Ty))^{\xi(x, y)}.$$
(2.1)

Then S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$.

Proof. Let x_0 be a given point in X. Let we construct sequence $\{x_n\}$ in X such that

$$x_{2n+1} = Sx_{2n}, \ x_{2n+2} = Tx_{2n+1},$$

for n = 0, 1, 2, ... Now we show that $\{x_n\}$ is a sequence in $\overline{B_{m_b}(x_0, r)}$. Note that

$$m_b(x_0, x_1) = m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}} \le r.$$
 (2.2)

Hence $x_1 \in \overline{B_{m_b}(x_0, r)}$. Assume $x_2, x_3, \dots x_j \in \overline{B_{m_b}(x_0, r)}$ for some $j \in \mathbb{N}$. Then, if j = 2k + 1

$$\begin{split} m_b(x_{2k+1}, x_{2k+2}) &= m_b(Sx_{2k}, Tx_{2k+1}) \\ &\leq (m_b(x_{2k}, x_{2k+1}))^{\alpha(x_{2k}, x_{2k+1})} . (m_b(x_{2k}, Sx_{2k}))^{\beta(x_{2k}, x_{2k+1})} \\ &. (m_b(x_{2k+1}, Tx_{2k+1}))^{\nu(x_{2k}, x_{2k+1})} \\ &. (m_b(x_{2k+1}, Sx_{2k}) . m_b(x_{2k}, Tx_{2k+1}))^{\xi(x_{2k}, x_{2k+1})} \\ &\leq (m_b(x_{2k}, x_{2k+1}))^{\alpha(x_{2k}, x_{2k+1})} . (m_b(x_{2k}, x_{2k+1}))^{\beta(x_{2k}, x_{2k+1})} \\ &. (m_b(x_{2k+1}, x_{2k+2}))^{\nu(x_{2k}, x_{2k+1})} . (m_b(x_{2k}, x_{2k+2}))^{\xi(x_{2k}, x_{2k+1})} \end{split}$$

From the Proposition 1.8 and by triangle inequality, we have

$$\begin{array}{l} m_b(x_{2k+1}, x_{2k+2}) \\ \leq & (m_b(x_{2k}, x_{2k+1}))^{\alpha(x_0, x_{2k+1})} . (m_b(x_{2k}, x_{2k+1}))^{\beta(x_0, x_{2k+1})} \\ & . (m_b(x_{2k+1}, x_{2k+2}))^{\nu(x_0, x_{2k+1})} . (m_b(x_{2k}, x_{2k+1})^s . m_b(x_{2k+1}, x_{2k+2})^s)^{\xi(x_0, x_{2k+1})}. \end{array}$$

Again from the Proposition 1.8, we have

$$\begin{split} & m_b(x_{2k+1}, x_{2k+2}) \\ \leq & (m_b(x_{2k}, x_{2k+1}))^{\alpha(x_0, x_1)} . (m_b(x_{2k}, x_{2k+1}))^{\beta(x_0, x_1)} \\ & . (m_b(x_{2k+1}, x_{2k+2}))^{\nu(x_0, x_1)} . (m_b(x_{2k}, x_{2k+1})^s . m_b(x_{2k+1}, x_{2k+2})^s)^{\xi(x_0, x_1)} \\ \leq & (m_b(x_{2k}, x_{2k+1}))^{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)} . (m_b(x_{2k+1}, x_{2k+2}))^{\nu(x_0, x_1) + s\xi(x_0, x_1)} \end{split}$$

$$\leq (m_b(x_{2k}, x_{2k+1}))^{\frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}} = (m_b(x_{2k}, x_{2k+1}))^{h_1}$$

$$m_b(x_{2k+1}, x_{2k+2}) \le (m_b(x_{2k}, x_{2k+1})^h.$$
 (2.3)

Similarly If j = 2k, we have

$$\begin{split} m_b(x_{2k}, x_{2k+1}) &= m_b(Tx_{2k-1}, Sx_{2k}) = m_b(Sx_{2k}, Tx_{2k-1}) \\ &\leq (m_b(x_{2k-1}, x_{2k}))^{\alpha(x_{2k}, x_{2k-1})} . (m_b(x_{2k}, x_{2k+1}))^{\beta(x_{2k}, x_{2k-1})} \\ &. (m_b(x_{2k-1}, x_{2k}))^{\nu(x_{2k}, x_{2k-1})} . m_b(x_{2k-1}, x_{2k+1}))^{\xi(x_{2k}, x_{2k-1})}. \end{split}$$

Again from the Proposition 1.8, we have

$$\begin{split} m_b(x_{2k}, x_{2k+1}) \\ &\leq (m_b(x_{2k-1}, x_{2k}))^{\alpha(x_0, x_1)} . (m_b(x_{2k}, x_{2k+1}))^{\beta(x_0, x_1)} \\ &. (m_b(x_{2k-1}, x_{2k}))^{\nu(x_0, x_1)} . (m_b(x_{2k-1}, x_{2k}) . m_b(x_{2k}, x_{2k+1}))^{s\xi(x_0, x_1)} \\ &\leq (m_b(x_{2k-1}, x_{2k}))^{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)} \\ &. (m_b(x_{2k}, x_{2k+1}))^{\beta(x_0, x_1) + s\xi(x_0, x_1)} \\ &\leq (m_b(x_{2k-1}, x_{2k}))^{\frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - [\beta(x_0, x_1) + s\xi(x_0, x_1)]}} = (m_b(x_{2k-1}, x_{2k})^{h_2}. \end{split}$$

$$m_b(x_{2k}, x_{2k+1}) \le (m_b(x_{2k-1}, x_{2k})^h.$$
 (2.4)

Thus from (2.3) and (2.4), we conclude that for all $k \in \mathbb{N}$

$$m_b(x_k, x_{k+1}) \le m_b(x_{k-1}, x_k)^h \le \dots \le m_b(x_0, x_1)^{h^k}.$$
 (2.5)

Now,

$$\begin{split} m_b(x_0, x_{j+1}) &\leq m_b(x_0, x_1)^s . m_b(x_1, x_2)^{s^2} ... m_b(x_j, x_{j+1})^{s^{j+1}} \\ &\leq m_b(x_0, x_1)^{sh^0} . m_b(x_0, x_1)^{s^{2h^1}} ... m_b(x_0, x_1)^{s^{j+1}h^{j}} \\ &\leq m_b(x_0, x_1)^{s(s^0h^0 + s^1h^1 + s^2h^2 + ... + s^{j}h^{j})} \\ m_b(x_0, x_{j+1}) &\leq m_b(x_0, x_1)^{s(\frac{1-(sh)^j}{1-sh})}. \end{split}$$

Since $x_1 \in \overline{B_{m_b}(x_0, r)}$, we have

$$m_b(x_0, x_{j+1}) \le (r^{\frac{1-sh}{s}})^{s(\frac{1-(sh)^j}{1-sh})}$$

= $(r)^{1-(sh)^j} \le r,$

This implies $x_{j+1} \in \overline{B_{m_b}(x_0, r)}$. By induction on n, we conclude that $\{x_n\} \in \overline{B_{m_b}(x_0, r)}$ for all $n \in \mathbb{N}$. Therefore

$$m_b(x_n, x_{n+1}) \le m_b(x_0, x_1)^{h^n}$$
 for all $n \in \mathbb{N}$. (2.6)

We claim that the sequence $\{x_n\}$ satisfies the multiplicative Cauchy criterion for convergence in $(\overline{B_{m_b}(x_0, r)}, m_b)$. Let m, n > 0 with m > n as m = n + p; $p \in \mathbb{N}$.

$$\begin{split} m_b(x_n, x_m) \\ &\leq m_b(x_n, x_{n+1})^s . m_b(x_{n+1}, x_{n+2})^{s^2} m_b(x_{n+p-1}, x_{n+p})^{s^p} \\ &\leq (m_b(x_0, x_1)^{sh^n} . (m_b(x_0, x_1)^{s^{2h^{n+1}}} (m_b(x_0, x_1))^{s^{ph^{n+p-1}}} \\ &\leq (m_b(x_0, x_1))^{sh^n + s^{2h^{n+1}} + + s^{ph^{n+p-1}}} \\ &< (m_b(x_0, x_1))^{sh^n + s^{2h^{n+1}}} = (m_b(x_0, x_1))^{\frac{sh^n}{1 - sh}} \\ &\leq (m_b(x_0, x_1))^{\frac{sh^n}{1 - sh}}. \end{split}$$

Taking limit as $m, n \to \infty$, we get $m_b(x_n, x_m) \to 1$. Hence the sequence $\{x_n\}$ is a multiplicative Cauchy sequence. As the closed set $(\overline{B_{m_b}(x_0, r)}, m_b)$ is complete. So, the completeness of $(\overline{B_{m_b}(x_0, r)}, m_b)$ follows that $x_n \to x^* \in \overline{B_{m_b}(x_0, r)}$. So

$$m_b(x_n, x^*) \to 1$$
, as $n \to +\infty$. (2.7)

Now, we have to show that x^* is a fixed point of mapping T.

$$\begin{split} & m_b(x_{2n+1},Tx^*) \\ \leq & (m_b(x_{2n},x^*))^{\alpha(x_{2n},x^*)} . (m_b(x_{2n},Sx_{2n}))^{\beta(x_{2n},x^*)} \\ & . (m_b(x^*,Tx^*))^{\nu(x_{2n},x^*)} . (m_b(x^*,Sx_{2n}).m_b(x_{2n},Tx^*))^{\xi(x_{2n},x^*)} \\ \leq & (m_b(x_{2n},x^*))^{\alpha(x_{2n},x^*)} . (m_b(x_{2n},x_{2n+1}))^{\beta(x_{2n},x^*)} \\ & . (m_b(x^*,Tx^*))^{\nu(x_{2n},x^*)} . (m_b(x^*,x_{2n+1}).m_b(x_{2n},Tx^*))^{\xi(x_{2n},x^*)}. \end{split}$$

From the Proposition 1.8, we have

$$\begin{split} & m_b(x_{2n+1},Tx^*) \\ \leq & (m_b(x_{2n},x^*))^{\alpha(x_0,x^*)}.(m_b(x_{2n},x_{2n+1}))^{\beta(x_0,x^*)} \\ & .(m_b(x^*,Tx^*))^{\nu(x_0,x^*)}.(m_b(x^*,x_{2n+1}).m_b(x_{2n},Tx^*))^{\xi(x_0,x^*)} \\ \leq & (m_b(x_{2n},x^*))^{\alpha(x_0,x^*)}.(m_b(x_{2n},x_{2n+1}))^{\beta(x_0,x^*)} \\ & .(m_b(x^*,Tx^*))^{\nu(x_0,x^*)}.(m_b(x^*,x_{2n+1}) \\ & .m_b(x_{2n},x^*)^s.m_b(x^*,Tx^*)^s)^{\xi(x_0,x^*)}. \end{split}$$

Taking limit as $n \to \infty$ and by inequality (2.7), we have

$$\lim_{n \to \infty} m_b(x_{2n+1}, Tx^*) \le (m_b(x^*, Tx^*))^{\nu(x_0, x^*) + s\xi(x_0, x^*)}.$$

Now,

$$m_b(x^*, Tx^*) \le (m_b(x^*, x_{2n+1}) \cdot m_b(x_{2n+1}, Tx^*))^s$$
.

Taking limit as $n \to \infty$ and by inequality (2.7), we have

$$m_b(x^*, Tx^*) \le (m_b(x^*, Tx^*))^{s\nu(x_0, x^*) + s^2\xi(x_0, x^*)},$$

which implies that

$$(m_b(x^*, Tx^*))^{1-[s\nu(x_0, x^*)+s^2\xi(x_0, x^*)]} \le 1,$$

which further implies that

$$(m_b(x^*, Tx^*)) \le 1^{\frac{1}{1 - [s\nu(x_0, x^*) + s^2 \xi(x_0, x^*)]}} \le 1.$$

Thus x^* is a fixed point of mapping T. Now,

$$\begin{split} & m_b(Sx^*, x_{2n+2}) \\ \leq & (m_b(x^*, x_{2n+1}))^{\alpha(x^*, x_{2n+1})} \cdot (m_b(x^*, Sx^*))^{\beta(x^*, x_{2n+1})} \\ & \cdot (m_b(x_{2n+1}, Tx_{2n+1}))^{\nu(x^*, x_{2n+1})} \cdot (m_b(x_{2n+1}, Sx^*) \cdot m_b(x^*, Tx_{2n+1}))^{\xi(x^*, x_{2n+1})} \\ \leq & (m_b(x^*, x_{2n+1}))^{\alpha(x^*, x_{2n+1})} \cdot (m_b(x^*, Sx^*))^{\beta(x^*, x_{2n+1})} \end{split}$$

$$(m_b(x_{2n+1}, x_{2n+2}))^{\nu(x^*, x_{2n+1})} (m_b(x_{2n+1}, Sx^*) . m_b(x^*, x_{2n+2}))^{\xi(x^*, x_{2n+1})}.$$

From Proposition 1.8, We have

$$\begin{split} & m_b(Sx^*, x_{2n+2}) \\ \leq & (m_b(x^*, x_{2n+1}))^{\alpha(x^*, x_1)} . (m_b(x^*, Sx^*))^{\beta(x^*, x_1)} \\ & . (m_b(x_{2n+1}, x_{2n+2}))^{\nu(x^*, x_1)} . (m_b(x_{2n+1}, Sx^*) . m_b(x^*, x_{2n+2}))^{\xi(x^*, x_1)} \\ \leq & (m_b(x^*, x_{2n+1}))^{\alpha(x^*, x_1)} . (m_b(x^*, Sx^*))^{\beta(x^*, x_1)} . (m_b(x_{2n+1}, x_{2n+2}))^{\nu(x^*, x_1)} \\ & . (m_b(x_{2n+1}, x^*)^s . m_b(x^*, Sx^*)^s . m_b(x^*, x_{2n+2}))^{\xi(x^*, x_1)}. \end{split}$$

Taking the limit as $n \longrightarrow \infty$, we get

$$\lim_{n \to \infty} m_b(Sx^*, x_{2n+2}) \le (m_b(x^*, Sx^*))^{\beta(x^*, x_1) + s\xi(x^*, x_1)}.$$

By using above inequality and the triangle inequality, we have

$$(m_b(x^*, Sx^*))^{1-[s\beta(x_o, x^*)+s^2\xi(x_o, x^*)]} \le 1,$$

which further implies that

$$(m_b(x^*, Sx^*)) \leq (1)^{\frac{1}{1 - [\beta(x_\circ, x^*) + s\delta(x_\circ, x^*)]}} \leq 1.$$

Thus x^* is a fixed point of mapping S. Hence x^* is a common fixed point of mapping S and T. Let u be another common fixed point of the mappings S and T other than x^* . Now consider

$$\begin{split} m_b(x^*, u) &= m_b(Sx^*, Tu) \\ &\leq (m_b(x^*, u))^{\alpha(x^*, u)} . (m_b(x^*, Sx^*))^{\beta(x^*, u)} \\ &. (m_b(u, Tu))^{\nu(x^*, u)} . (m_b(u, Sx^*) . m_b(x^*, Tu))^{\xi(x^*, u)} \\ &\leq (m_b(x^*, u))^{\alpha(x^*, u)} . (m_b(x^*, x^*))^{\beta(x^*, u)} . (m_b(u, u))^{\nu(x^*, u)} \\ &. (m_b(u, x^*) . m_b(x^*, u))^{\xi(x^*, u)} \\ &\leq (m_b(x^*, u))^{\alpha(x^*, u) + 2\xi(x^*, u)} . \end{split}$$

This implies that

$$(m_b(x^*, u))^{1 - [\alpha(x^*, u) + 2\xi(x^*, u)]} \le 1,$$

which further implies that

$$m_b(x^*, u) \le (1)^{\frac{1}{1 - [\alpha(x^*, u) + 2\xi(x^*, u)]}} \le 1.$$

which is a contradiction to the fact that $x^* \neq u$. Thus x^* is a unique common fixed point of the mapping S and T in $\overline{B_{m_b}(x_0, r)}$.

Example 2.2 Let $X = [0, \infty)$ be endowed with a *b*-multiplicative metric with s = 2.

$$m_b(x,y) = \left\{ \begin{array}{ll} 2^{(x+y)^2} & \text{if } x \neq y \\ 1 & \text{if } x = y \end{array} \right\}.$$

Define

$$S: X \rightarrow X, \ Sx = \begin{cases} \frac{3x}{10} & \text{if } 0 \le x \le 3\\ x^5 + \sqrt{x} + 6 & \text{otherwise.} \end{cases}$$
$$T: X \rightarrow X, \ Tx = \begin{cases} \frac{x}{9} & \text{if } 0 \le x \le 3\\ 4x^6 + \sqrt{7x} + 9 & \text{otherwise.} \end{cases}$$

Define $\alpha(x,y) = \frac{3}{10}$, $\beta(x,y) = xy^4$, $\xi(x,y) = \frac{x+y}{70}$, $\nu(x,y) = \frac{(x-2y)^3}{40}$. Consider $x_0 = 1, r = 2^{16}$, then $\overline{B_{m_b}(x_0,r)} = [0,3]$. Clearly $\alpha, \beta, \xi, \nu \in M_A(S,T)$, where $A = \overline{B_{m_b}(x_0,r)}$. Now $x_1 = S1 = \frac{3}{10}$, $\alpha(x_0, x_1) = \frac{3}{10}$, $\beta(x_0, x_1) = \frac{81}{10000}$, $\xi(x_0, x_1) = \frac{13}{700}$, $\nu(x_0, x_1) = \frac{1}{625}$. Now, $h = \max\{h_1, h_2\} \approx \max\{0.355, 0.359\} = 0.359$. So, sh < 1. We know that

$$\begin{pmatrix} 1+\frac{3}{10} \end{pmatrix}^2 < \frac{16(1-2(0.359))}{2} \\ \text{or } 2^{\left(1+\frac{3}{10}\right)^2} < 2^{\frac{16(1-2(0.359))}{2}} \\ \text{or } m_b(x_0, Sx_0) \leq r^{\frac{(1-sh)}{s}}.$$

For each $x, y \in \overline{B_{m_b}(x_0, r)}$, we have

$$2^{(\frac{3x}{10}+\frac{y}{9})^2} \leq (2^{(x+y)^2})^{\frac{3}{10}} \cdot (2^{(x+\frac{3x}{10})^2})^{xy^4} \cdot (2^{(y+\frac{y}{9})^2})^{\frac{(x-2y)^3}{40}} \cdot (2^{(y+\frac{3x}{10})^2} \cdot 2^{(x+\frac{y}{9})^2})^{\frac{x+y}{70}}$$

or $m_b(Sx,Ty) \leq (m_b(x,y))^{\alpha(x,y)} \cdot (m_b(x,Sx))^{\beta(x,y)} \cdot (m_b(y,Ty))^{\nu(x,y)}$
 $\cdot (m_b(y,Sx) \cdot m_b(x,Ty))^{\xi(x,y)}.$

Thus, all conditions of Theorem 2.1 hold. Therefore, S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$. Note that $\alpha, \beta, \xi, \nu \notin M(S, T)$, so the result in [4] can not be applied to ensure the existence of a unique common fixed point.

If we take $\beta(x, y) = 0$ in Theorem 2.1, then we obtain the following result. **Theorem 2.3** Let (X, m_b) be a complete *b*- multiplicative metric space and $S, T : X \to X$ be self-mappings. If there exist mappings $\alpha, \nu, \xi \in M_A(S, T), A = \overline{B_{m_b}(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}},$$

where sh < 1, $h = \max\{h_1, h_2\}$ and

1

$$h_1 = \frac{\alpha(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - s\xi(x_0, x_1)}.$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

$$n_b(Sx,Ty) \leq (m_b(x,y))^{\alpha(x,y)} . (m_b(y,Ty))^{\nu(x,y)}.$$

 $(m_b(y,Sx) . m_b(x,Ty))^{\xi(x,y)}.$

Then S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$.

If we take $\beta(x, y) = \nu(x, y) = 0$ in Theorem 2.1, then we obtain the following result.

Theorem 2.4 Let (X, m_b) be a complete *b*- multiplicative metric space and S, T: $X \to X$ be self-mappings. If there exist mappings $\alpha, \xi \in M_A(S, T), A = \overline{B_{m_b}(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}},$$

52

where $sh < 1, h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + s\xi(x_0, x_1)}{1 - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + s\xi(x_0, x_1)}{1 - s\xi(x_0, x_1)}$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

$$m_b(Sx,Ty) \le (m_b(x,y))^{\alpha(x,y)} . (m_b(y,Sx) . m_b(x,Ty))^{\xi(x,y)}.$$

Then S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$.

If we take $\beta(x,y) = \xi(x,y) = 0$ in Theorem 2.1, then we obtain the following result.

Theorem 2.5 Let (X, m_b) be a complete *b*- multiplicative metric space and S, T: $X \to X$ be self-mappings. If there exist mappings $\alpha, \nu \in M_A(S, T), A = \overline{B_{m_b}(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}}.$$

where sh < 1, $h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1)}{1 - \nu(x_0, x_1)}, \ h_2 = \alpha(x_0, x_1) + \nu(x_0, x_1).$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

 $m_b(Sx, Ty) \le (m_b(x, y))^{\alpha(x, y)} . (m_b(y, Ty))^{\nu(x, y)}.$

Then S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$.

If we take $\beta(x, y) = \nu(x, y) = \xi(x, y) = 0$ in Theorem 2.1, then we obtain the following result.

Theorem 2.6 Let (X, m_b) be a complete *b*- multiplicative metric space and S, T: $X \to X$ be self-mappings. If there exist mappings $\alpha \in M_A(S,T)$, $A = \overline{B_{m_b}(x_0,r)}$, $x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-s\alpha(x_0, x_1))}{s}},$$

where $s\alpha(x_0, x_1) < 1$. Also, if $\overline{B_{m_b}(x_0, r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0, r)}$, then this implies

$$m_b(Sx, Ty) \le (m_b(x, y))^{\alpha(x, y)}.$$

Then S and T have a unique common fixed point in $B_{m_b}(x_0, r)$.

If we take S = T in Theorem 2.1, then we obtain the following result.

Theorem 2.7 Let (X, m_b) be a complete *b*- multiplicative metric space and $S : X \to X$ be self-mappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S), A = \overline{B_{m_b}(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$n_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}},$$

where $sh < 1, h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)}$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

$$m_b(Sx, Sy) \leq (m_b(x, y))^{\alpha(x, y)} . (m_b(x, Sx))^{\beta(x, y)} . (m_b(y, Sy))^{\nu(x, y)} (m_b(y, Sx) . m_b(x, Sy))^{\xi(x, y)} .$$

Then S has a unique fixed point in $B_{m_b}(x_0, r)$.

If we take whole space instead of closed ball in Theorem 2.1, then we obtain the following result.

Theorem 2.8 Let (X, m_b) be a complete *b*- multiplicative metric space and $S, T : X \to X$ be self-mappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S, T), x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{\frac{(1-sh)}{s}},$$

where $sh < 1, h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)}$$

Also, if $\overline{B_{m_b}(x_0,r)}$ is closed and x, y belongs to $\overline{B_{m_b}(x_0,r)}$, then this implies

$$m_b(Sx,Ty) \leq (m_b(x,y))^{\alpha(x,y)} . (m_b(x,Sx))^{\beta(x,y)} . (m_b(y,Ty))^{\nu(x,y)} . \\ (m_b(y,Sx) . m_b(x,Ty))^{\xi(x,y)} .$$

Then S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, r)}$.

If we take multiplicative metric space instead of b- multiplicative metric space in Theorem 2.1, then we obtain the following result.

Theorem 2.9 Let (X, m) be a complete multiplicative metric space and $S, T : X \to X$ be self-mappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S, T), A = \overline{B_m(x_0, r)}, x_0 \in X$ and r > 1 such that:

$$m_b(x_0, Sx_0) \le r^{(1-h)},$$

where $h < 1, h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + \xi(x_0, x_1)}{1 - \nu(x_0, x_1) - \xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + \xi(x_0, x_1)}{1 - \beta(x_0, x_1) - \xi(x_0, x_1)}.$$

Also, if $\overline{B_m(x_0,r)}$ is closed and x, y belongs to $\overline{B_m(x_0,r)}$, then this implies

$$m(Sx,Ty) \leq (m(x,y))^{\alpha(x,y)} . (m(x,Sx))^{\beta(x,y)} . (m(y,Ty))^{\nu(x,y)} . (m(y,Sx).m(x,Ty))^{\xi(x,y)} .$$

Then S and T have a unique common fixed point in $\overline{B_m(x_0,r)}$.

If we take whole space instead of closed ball and multiplicative metric space instead of *b*- multiplicative metric space in Theorem 2.1, then we obtain the following result. In this result, we have omitted the condition $m_b(x_0, Sx_0) \leq r^{\frac{(1-sh)}{s}}$, because it was applied to restrict the sequence in a closed ball.

Theorem 2.10 Let (X, m) be a complete multiplicative metric space and $S, T : X \to X$ be self-mappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M(S, T), x_0 \in X$ and $\alpha(x_0, x_1) + \beta(x_0, x_1) + \nu(x_0, x_1) + 2\xi(x_0, x_1) < 1$ such that:

$$m(Sx,Ty) \leq (m(x,y))^{\alpha(x,y)} \cdot (m(x,Sx))^{\beta(x,y)} \cdot (m(y,Ty))^{\nu(x,y)} \cdot (m(y,Sx) \cdot m(x,Ty))^{\xi(x,y)}, \text{ for all } x, y \in X.$$

Then S and T have a unique common fixed point in X.

Proof. (X, m) is a complete b-multiplicative metric space with s = 1. Now,

$$\alpha(x_0, x_1) + \beta(x_0, x_1) + \nu(x_0, x_1) + 2\xi(x_0, x_1) < 1$$

implies

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1) + s\xi(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)} < 1,$$

$$h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1) + s\xi(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)} < 1.$$

Hence sh < 1, $h = \max\{h_1, h_2\}$. As the condition holds for all $x, y \in X$ then it obviously holds for it's closed subsets. Now, by Theorem 2.1, S and T have a unique common fixed point in X.

Now, we present the *b*-metric version of Theorem 2.1.

Theorem 2.11 Let (X, b) be a complete *b*-metric space and $S, T : X \to X$ be selfmappings. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S,T), A = \overline{B_b(x_0, r)}, x_0 \in X$ and r > 0 such that:

$$b(x_0, Sx_0) \le \frac{r(1-sh)}{s},$$
(2.8)

where sh < 1, $h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)}$$

Also, if $\overline{B_b(x_0,r)}$ is closed and x, y belongs to $\overline{B_b(x_0,r)}$, then this implies

$$b(Sx, Ty) \le \alpha(x, y)b(x, y) + \beta(x, y)b(x, Sx) + \nu(x, y)b(y, Ty) + \xi(x, y)(b(y, Sx) + b(x, Ty)).$$
(2.9)

Then S and T have a unique common fixed point in $\overline{B_b(x_0, r)}$.

or

Proof. Define $m_b(x, y) = e^{b(x,y)}$. Then by Remark 1.5 (W, m_b) is a *b*-multiplicative metric space. By taking exponential on both sides of inequality (2.7), we have

$$e^{b(x_0, Sx_0)} \leq e^{\frac{r(1-sh)}{s}}$$
$$m_b(x_0, Sx_0) \leq \varepsilon^{\frac{(1-sh)}{s}}$$

where $\varepsilon = e^r > 1$. Now, by taking exponential on both sides of inequality (2.8) and by using Remark 1.6, we have

$$e^{b(Sx,Ty)} \leq e^{\alpha(x,y)b(x,y)} \cdot e^{\beta(x,y)b(x,Sx)} \cdot e^{\nu(x,y)b(y,Ty)} \cdot e^{\xi(x,y)(b(y,Sx)+b(x,Ty))}$$

for all x, y belong to the closed set $B_b(x_0, r)$. Now by using Remark 1.5 and Remark 1.6, we have

$$m_b(Sx,Ty) \leq (m_b(x,y))^{\alpha(x,y)} . (m_b(x,Sx))^{\beta(x,y)} . (m_b(y,Ty))^{\nu(x,y)} . (m_b(y,Sx) . m_b(x,Ty))^{\xi(x,y)} .$$

for all x, y belong to the closed set $\overline{B_{m_b}(x_0, \varepsilon)}$. Now by Theorem 2.1, S and T have a unique common fixed point in $\overline{B_{m_b}(x_0, \varepsilon)}$ or $\overline{B_b(x_0, r)}$.

Now, we present a corresponding result for a strictly increasing mapping F. We give a short and simple proof. Other recent results in literature see [3, 8, 19] can be proved and improved in a similar way by using strictly increasing mapping F instead of mapping F introduced by Wardowski [32]. This also shows that this type of generalization of the result of Wardowski is not a real generalization.

Theorem 2.12 Let (X, b) be a complete *b*-metric space, $S, T : X \to X$ be self-mappings and F be a strictly increasing mapping. If there exist mappings $\alpha, \beta, \nu, \xi \in M_A(S,T), A = \overline{B_b(x_0, r)}, x_0 \in X$ and r > 0 such that:

$$b(x_0, Sx_0) \le \frac{r(1-sh)}{s},$$

where sh < 1, $h = \max\{h_1, h_2\}$ and

$$h_1 = \frac{\alpha(x_0, x_1) + \beta(x_0, x_1)}{1 - \nu(x_0, x_1) - s\xi(x_0, x_1)}, \ h_2 = \frac{\alpha(x_0, x_1) + \nu(x_0, x_1)}{1 - \beta(x_0, x_1) - s\xi(x_0, x_1)}$$

Also, if $\overline{B_b(x_0,r)}$ is closed, x, y belongs to $\overline{B_b(x_0,r)}$ and $\tau > 0$, then this implies

$$\tau + F\left(b(Sx,Ty)\right) \le F\left(\begin{array}{c}\alpha(x,y)b(x,y) + \beta(x,y)b(x,Sx) + \nu(x,y)b(y,Ty)\\ +\xi(x,y)(b(y,Sx) + b(x,Ty))\end{array}\right).$$
(2.10)

Then S and T have a unique common fixed point in $\overline{B_b(x_0, r)}$.

Proof. Since $\tau > 0$, then inequality (2.10) implies

$$F\left(b(Sx,Ty)\right) < F\left(\begin{array}{c}\alpha(x,y)b(x,y) + \beta(x,y)b(x,Sx) + \nu(x,y)b(y,Ty) \\ +\xi(x,y)(b(y,Sx) + b(x,Ty))\end{array}\right).$$

As F is a strictly increasing mapping, so

$$b(Sx,Ty) < \alpha(x,y)b(x,y) + \beta(x,y)b(x,Sx) + \nu(x,y)b(y,Ty) +\xi(x,y)(b(y,Sx) + b(x,Ty)).$$

So, all hypotheses of Theorem 2.11 are satisfied and hence S and T have a unique common fixed point in $\overline{B_b(x_0, r)}$.

Example 2.13 Let $X = \mathbb{R}$ endowed with the *b*-metric b(x, y) = |x - y| for all $x, y \in X$ and $f : X \to X$ be defined by

$$fx = \left\{ \begin{array}{cc} -\frac{1}{2}x \text{ if } & x \in [-9,11] \\ 2x \text{ if } x \in \mathbb{R} \setminus [-9,11] \end{array} \right\}$$

Let r = 10 and $x_0 = 1$, then $\overline{B_b(x_0, r)} = [-9, 11]$ is closed. Take $\alpha(x, y) = \frac{1}{2}$, $\beta(x, y) = \nu(x, y) = \frac{1}{9}$, $\xi(x, y) = \frac{1}{18}$, then

$$sh = h_1 = h_2 = \frac{\frac{1}{2} + \frac{1}{9} + \frac{1}{18}}{1 - \frac{1}{9} - \frac{1}{18}} < 1$$

If x, y belong to $\overline{B_b(x_0, r)}$, then

$$\begin{array}{ll} b(fx,fy) &\leq & \alpha(x,y)b(x,y) + \beta(x,y)b(x,fx) + \nu(x,y)b(y,fy) + \\ & & \xi(x,y)(b(y,fx) + b(x,fy)). \end{array}$$

So, inequality (2.8) holds. Also,

$$b(x_0, fx_0) \le \frac{r(1-sh)}{s}.$$

So, all hypotheses of Theorem 2.11 are satisfied and therefore, f has a unique fixed point.

3. Application

Let $X = C([a, b], \mathbb{R}_+)$, a > 0 and $\mathbb{R}_+ = (0, \infty)$, be the space of all positive, continuous real valued functions, endowed with the *b*-multiplicative metric

$$m_b(x,y) = \sup_{t \in [a,b]} \left\{ \max\left\{ \left| \frac{x(t)}{y(t)} \right|^2, \left| \frac{y(t)}{x(t)} \right|^2 \right\} \right\}$$

Define $\overline{B(x_0(t),r)} = \{y(t) : \sup_{t \in [a,b]} \left\{ \max\left\{ \left| \frac{x_0(t)}{y(t)} \right|^2, \left| \frac{y(t)}{x_0(t)} \right|^2 \right\} \right\} \le r \}.$

As an application, we give an existence theorem for the Fredholm multiplicative integral equations of the following type.

$$x(t) = \int_{a}^{b} Q_{1}(t, s, x(s))^{ds}, \ t, s \in [a, b]$$
(3.1)

$$x(t) = \int_{a}^{b} Q_{2}(t, s, x(s))^{ds}, \ t, s \in [a, b]$$
(3.2)

where $Q_1, Q_2: [a, b] \times [a, b] \times \mathbb{R}_+ \to \mathbb{R}_+$ are integrable functions.

Theorem 3.1 Let $X = C([a, b], \mathbb{R}_+), a > 0$ and let the mappings $S, T: X \to X$,

$$Sx(t) = \int_{a}^{b} Q_{1}(t, s, x(s))^{ds}$$
$$Tx(t) = \int_{a}^{b} Q_{2}(t, s, x(s))^{ds}$$

where $Q_1, Q_2: [a, b] \times [a, b] \times \mathbb{R}_+ \to \mathbb{R}_+$ are integrable functions. Assume that the following conditions hold:

(i) for each $t, s \in [a, b]$ and $x, y \in \overline{B(x_0(t), r)}$, $x_0(t) \in X$, r > 1, there exists a function $\beta \in M_A(S, T)$, $A = \overline{B(x_0(t), r)}$, such that

$$\left|\frac{Q_1(t,s,x(s))}{Q_2(t,s,y(s))}\right| \le \left(\left|\frac{x(s)}{y(s)}\right|\right)^{\beta(x,y)};$$

(ii) the function $\beta(x, y)$ is such that $2\beta(x_0, x_1) < \frac{1}{b-a}$; (iii)

$$\sup_{t \in [a,b]} \left\{ \max\left\{ \left| \frac{x_0(t)}{x_1(t)} \right|^2, \left| \frac{x_1(t)}{x_0(t)} \right|^2 \right\} \right\} \le r^{\frac{1-2\beta(x_0,x_1)(b-a)}{2}};$$

Then the integral equations (3.1) and (3.2) have a unique common solution.

Proof. Let $x, y \in \overline{B(x_0(t), r)}$. Now, we have

$$\begin{aligned} \left|\frac{Sx(t)}{Ty(t)}\right|^2 &\leq \left(\int_a^b \left|\frac{Q_1(t,s,x(s))}{Q_2(t,s,y(s))}\right|^{ds}\right)^2 \\ &\leq \left(\int_a^b \left(\left|\frac{x(s)}{y(s)}\right|^{\beta(x,y)}\right)^{ds}\right)^2 \\ &\leq \left(\int_a^b \left(m_b(x,y)^{\frac{\beta(x,y)}{2}}\right)^{ds}\right)^2 \\ &= \left(\left(m_b(x,y)^{b-a}\right)^{\frac{\beta(x,y)}{2}}\right)^2 \\ &= m_b(x,y)^{\beta(x,y)(b-a)} \text{ for each } t \in [a,b]. \end{aligned}$$

Thus, we get $m_b(Sx, Ty) \leq m_b(x, y)^{\alpha(x,y)}$, $\alpha(x, y) = \beta(x, y)(b-a)$. As $2\beta(x_0, x_1) < \frac{1}{b-a}$, so $s\alpha(x_0, x_1) < 1$. Also, hypothesis (iii) implies

$$m_b(x_0, Sx_0) \le r^{(\frac{1-s\alpha(x_0, x_1)}{s})}.$$

Therefore by Theorem 2.6, there exists a unique common fixed point of the operators S and T. Hence, the integral equations (3.1) and (3.2) have a unique common solution.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- M. Abbas, B. Ali, YI. Suleiman, Common Fixed Points of Locally Contractive Mappings in Multiplicative Metric Spaces with Application, Int. J. Math. Math. Sci. 2015 (2015) 1–7.
- [2] M. Abbas, M. D. Sen, T. Nazir, Common Fixed Points of Generalized Rational Type Cocyclic Mapping in Multiplicative Metric Spaces, Discrete Dyn. Nat. Soc. 2015 (2015) 1–10.
- [3] J. Ahmad, A. Al-Rawashdeh, A. Azam, New Fixed Point Theorems for Generalized F-Contractions in Complete Metric Spaces, Fixed Point Theory Appl. 2015 (2015) 1–18.
- [4] A. E. Al-Mazrooei, D. Lateef, J. Ahmad, Common Fixed point Theorems for Generalized Contractions, J. Math. Anal. 8 3 (2017) 157–166.
- [5] M. U. Ali, T. Kamran, A. Kurdi, Fixed Point in b-multiplicative Metric Spaces, U.P.B. Science. Bull. Series A 79 3 (2017) 107–116.
- [6] S. S. Alshoraify, A. Shoaib, M. Arshad, New Types of Contraction for Multivalued Mappings and Related Fixed Point Results in Abstract Spaces, J. Funct. Spaces 2019 (2019) 1–14.
- [7] I. A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal 30 (1989) 26–30.
- [8] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 4 (2014) 715–722.
- [9] S. Czerwick, Contraction Mapping in b-metric Spaces, Acta Math. Inf. Univ. Ostraviensis 1 (1993) 5-11.
- [10] T. Došenović, M. Postolache, S. Radenović, On multiplicative metric spaces: survey, Fixed Point Theory Appl. 2016 (2016).
- [11] H. Huang, G. Deng, T. Došenović, N. Hussain, Note on Recent Common Coupled Fixed Point Results in Multiplicative Metric Spaces, Applied Mathematics & Nonlinear Sciences 3 2 (2018) 659–668.
- [12] Q. Mahmood, A. Shoaib, T. Rasham, M. Arshad, Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces, Mathematics 7 1 (2019).

58

- [13] M. Mehmood, A. Shoaib, H. Khalid, Some Fixed Point Results for Multivalued Mappings in b- Multiplicative and b- Metric Space, Int. J. Anal. Appl. 18 3 (2020) 439–447.
- [14] C. Mongkolkeha, W. Sintunaravat, Optimal Approximate Solutions for Multiplicative Proximal Contraction Mappings in Multiplicative Metric Spaces, Proceedings of National Academy of Sciences 86 1 (2016) 15–20.
- [15] C. Mongkolkeha, W. Sintunavarat, Best Proximity Points for Multiplicative Proximal Contraction Mapping on Multiplicative Metric Spaces, J. Nonlinear Sci. Appl 8 6 (2015) 1134– 1140.
- [16] M. Ozavsar, A. C. Cervikel, Fixed Points of Multiplicative Contraction Mappings on Multiplicative Metric Spaces, arXiv: 1205.5131v1 [math.GN] (2012) 1–14.
- [17] M. Sarwar, M. Rahman, Fixed Point Theorems for Ciric's and Generalized Contractions in b-metric spaces, Int. J. Anal. Appl. 7 1 (2015) 70–78.
- [18] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, Fixed point results for a pair of α_∗-dominated multivalued mappings with applications, U.P.B. Sci. Bull., Series A 81 3 (2019) 3–12.
- [19] T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued Fixed Point Results in Dislocated b- Metric Spaces with Application to the System of Nonlinear Integral Equations, Symmetry 11 1 (2019) 1–16.
- [20] A. Shoaib, α η Dominated Mappings and Related Common Fixed Point Results in Closed Ball, Journal of Concrete and Applicable Mathematics, 13 (2015) 152–170.
- [21] A. Shoaib, Fixed Point Results for $\alpha_* \psi$ -multivalued Mappings, Bulletin of Mathematical Analysis and Applications 8 4 (2016) 43–55.
- [22] A. Shoaib, A. Hussain, M. Arshad, A. Azam, Fixed point results for α_{*}-ψ-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph, J. Math. Anal. 7 (2016) 41–50.
- [23] A. Shoaib, A. Azam, M. Arshad, A. Shahzad, Fixed point results for the multivalued mapping on closed ball in dislocated fuzzy metric space, J. Math. Anal. 8 2 (2017) 98–106.
- [24] A. Shoaib. A. Azam and A. Shahzad, Common fixed point results for the family of multivalued mappings satisfying contraction on a sequence in Hausdorff fuzzy metric space, J. Comp. Anal. Appl. 24 4 (2018) 692–699.
- [25] A. Shoaib, T. Rasham, N. Hussain, M. Arshad, α_* -dominated set-valued mappings and some generalised fixed point results, Journal of the National Science Foundation of Sri Lanka **47 2** (2019) 235–243.
- [26] A. Shoaib, A. Azam, M. Arshad, E. Ameer, Fixed Point Results For Multivalued Mappings on a Sequence in a Closed Ball with Application, J. Math. Computer Sci. 17 (2017) 308–316.
- [27] A. Shoaib, P. Kumam, A. Shahzad, S. Phiangsungnoen, Q. Mahmood, Fixed Point Results for Fuzzy Mappings in a b-metric Space, Fixed Point Theory Appl. 2018 (2018).
- [28] A. Shoaib, M. Arshad, A. Azam, Fixed Points of a Pair of Locally Contractive Mappings in Ordered Partial Metric Spaces, Matematički Vesnik 67 1 (2015) 26–38.
- [29] A. Shoaib, M. Arshad, M. A. Kutbi, Common fixed points of a pair of Hardy Rogers Type Mappings on a Closed Ball in Ordered Partial Metric Spaces, J. Comput. Anal. Appl. 17 2 (2014) 255–264.
- [30] A. Shoaib, Q. Mehmood, Fixed Point Results in Js Multiplicative Metric Spaces, Turkish Journal of Analysis and Number Theory 6 6 (2018) 159–163.
- [31] A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally cotractive mappings in ordered quasi-partial metric spaces, The Scientific World Journal 2013 (2013) 1–8.
- [32] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012).

Abdullah Shoaib

DEPARTMENT OF MATHEMATICS AND STATISTICS, RIPHAH INTERNATIONAL UNIVERSITY, I-14, IS-LAMABAD, PAKISTAN

E-mail address: abdullahshoaib15@yahoo.com