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EXISTENCE OF SOLUTIONS FOR SINGULAR FRACTIONAL

NAVIER BOUNDARY VALUE PROBLEMS

SARA ALTALHI, ABDELWAHEB DHIFLI, ABDELJABBAR GHANMI

Abstract. In this paper, we are concerned with the following fractional Navier

boundary value problem:

Dβ(Dαu)(x) = −g(u), x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = −a, u(1) = b,

where α, β ∈ (0, 1] such that α + β > 1, Dα and Dβ stand for the standard

Riemann-Liouville fractional derivatives, the function g is continuous and non-

increasing on (0,∞) and the reals a, b ∈ (0,∞). Using Schäuder’s fixed point
theorem, we prove the existence of positive continuous solutions.

1. Introduction

Fractional differential equations have extensive applications in various fields of
science and engineering. Many phenomena in electrochemistry, control theory,
porous media, electromagnetism and other fields, can be modeled by fractional
differential equations. Concerning the development of theory methods and appli-
cations of fractional calculus, we refer to [4, 7, 8, 9, 10, 11, 13, 21, 22, 24] and the
references therein for discussions of various applications.

The theory of fractional differential equations with various boundary conditions
has been developed very quickly and the investigation for the existence, uniqueness
and asymptotic behavior of positive continuous solutions attracted a considerable
attention of researchers; see, for instance [1, 2, 3, 5, 6, 12, 14, 15, 16, 17, 18, 19, 20,
23, 25, 26] and the references therein..

Recently, in [18] the authors studied the following fractional Navier boundary
value problem {

Dβ(Dαu)(x) = −p(x)uσ, x ∈ (0, 1),
limx→0+ x1−βDαu(x) = 0, u(1) = 0,

(1.1)

where α, β ∈ (0, 1] such that α + β > 1, σ ∈ (−1, 1) and p is a nonnegative
continuous function on (0, 1). Under some appropriate condition on the function p
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and using the Schäuder fixed point theorem, the authors proved the existence of a
unique positive solution to problem (1.1).

Inspired by the above-mentioned works, in this paper, we consider the following
nonlinear Navier boundary value problem{

Dβ(Dαu)(x) = −g(u(x)), x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = −a, u(1) = b, (1.2)

where α, β ∈ (0, 1] such that α+β > 1, Dα and Dβ stand for the standard Riemann-
Liouville fractional derivatives and a, b are positive real numbers. The nonlinear
term g is a nonnegative function defined on (0,∞) and satisfying the following
hypotheses

(H1) g : (0,∞) −→ (0,∞) is continuous and nonincreasing.

(H2)
∫ 1

0
(1− t)α+β−1g(btα−1)dt <∞.

(H3) There exists c > 0, such that |g(btα−1)| ≤ ct−δ for t near 0 with δ < 1.

To illustrate, let us present the following example

Example 1.1. Let σ > 0 and let g(t) = t−σ, t > 0. Then g satisfies (H1)-(H3).

To state our main results in this paper, we need to introduce some convenient
notations. For λ ∈ R, we put λ+ = max(λ, 0) and for α, β ∈ (0, 1], such that
α+β > 1, we denote by G(x, t) the Green function of the operator u→ −Dβ(Dαu),
with boundary conditions lim

x−→0
x1−βDαu(x) = u(1) = 0. From [18], G(x, t) is

explicitly given by

G(x, t) =
1

Γ(α+ β)

(
xα−1(1− t)α+β−1 − ((x− t)+)α+β−1

)
(1.3)

where Γ is the Euler gamma function.
We denote by B((0, 1)) the set of Borel measurable functions in (0, 1), by B+((0, 1))

the set of nonnegative ones and by C((0, 1)) the space of all continuous real func-
tions on (0, 1). For a positive real number r, we use Cr([0, 1]) to denote the set of
continuous functions f on (0, 1] such that x→ xrf(x) is continuous on [0, 1].

Moreover, for f ∈ B+((0, 1)) and x ∈ (0, 1), we put

V f(x) :=

∫ 1

0

G(x, t)f(t)dt.

The authors in ([18, 19]) proved the following results,

Lemma 1.2. (i) For (x, t) ∈ (0, 1)× (0, 1), the Green’s function G(x, t) satis-
fies

(α+ β − 1)xα−1(1− x)(1− t)α+β−1

βΓ(α+ β)

≤ G(x, t)

≤ xα−1(1− t)α+β−2 min(1− t, 1− x)

Γ(α+ β)
.

(ii) Let f ∈ B+((0, 1)), then the function x → V f(x) is in C1−α([0, 1]) if and

only if
∫ 1

0
(1− t)α+β−1f(t)dt<∞.
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(iii) Let α, β ∈ (0, 1] such that α+ β > 1. Let f ∈ C((0, 1)) such that the map
t → (1 − t)α+β−1f(t) is integrable and |f(t)| ≤ t−δ near 0, with δ < 1.
Then V f is the unique solution in C1−α([0, 1]) of the following boundary
value problem{

Dβ(Dαu)(x) = −f(x), x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = 0, u(1) = 0. (1.4)

In the sequel, we denote by ω the unique solution of the homogeneous problem
corresponding to (1.2). We can easily verify that, for x ∈ (0, 1)

ω(x) = a
Γ(β)

Γ(α+ β)
xα−1(1− xβ) + bxα−1. (1.5)

Our main results are the following.

Theorem 1.3. Assume (H1)-(H3), then problem (1.2) has a positive solution u in
C1−α([0, 1]) satisfying for x ∈ (0, 1],

ω(x) ≤ u(x) ≤ γω(x), (1.6)

where γ > 1.

This paper is organized as follows. In Section 2, we give some basic preliminary
results of fractional calculus. In Section 3 we prove our main results.

2. Fractional calculus

For the convenience of the reader, we recall in the following some basic definitions
and some elementary properties of fractional calculus (see [8, 22, 23]).

Definition 2.1. The Riemann-Liouville fractional integral of order γ > 0 for a
measurable function f : (0,∞)→ R is defined as

Iγf(x) =
1

Γ(γ)

∫ x

0

(x− t)γ−1f(t)dt, x > 0,

provided that the right-hand side is pointwise defined on (0,∞). Here Γ is the
Euler Gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative of order γ > 0 of a
measurable function f : (0,∞)→ R is defined as

Dγf(x) =
1

Γ(n− γ)

( d
dx

)n ∫ x

0

(x− t)n−γ−1f(t)dt =
( d
dx

)n
In−γf(x),

provided that the right-hand side is pointwise defined on (0,∞). Here n = [γ] + 1,
where [γ] denotes the integer part of the number γ.

Example 2.3. Let α > 0 and λ > −1 and let f(t) = tλ. Then by simple calculus,
we have for x ∈ (0, 1]

Iαf(x) =
Γ(λ+ 1)

Γ(λ+ α+ 1)
xλ+α

and

Dαf(x) =
Γ(λ+ 1)

Γ(λ− α+ 1)
xλ−α.

In particular Dαxα−m = 0, m = 1, 2, ..., N, where N is the smallest integer greater
than or equal to α.
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Lemma 2.4. (i) Let α > 0 and let v ∈ C ((0, 1)) ∩ L1(0, 1), then we have

DαIαv = v.

(ii) Let α > 0 and v ∈ C ((0, 1)) ∩ L1(0, 1), then

Dαv(x) = 0 if and only if v(x) =

N∑
j=1

cjx
α−j ,

where N is the smallest integer greater than or equal to α and (c1, ..., cN ) ∈
RN .

(iii) Let α > 0 and v ∈ C ((0, 1))∩L1(0, 1) such that Dαv ∈ C ((0, 1))∩L1(0, 1),
then

IαDαv(x) = v(x) +

N∑
j=1

cjx
α−j ,

where N is the smallest integer greater than or equal to α and (c1, ..., cN ) ∈
RN .

The following lemma due to [19]

Lemma 2.5. Let β ∈ (0, 1] and α ∈ (0,∞). Let f ∈ C((0, 1)) such that the map
t→ (1− t)α+β−1f(t) is integrable and |f(t)| ≤ t−δ for t near 0, with δ < 1. Then
the function x→ Iβf(x) ∈ C((0, 1))∩ L1((0, 1)) and lim

x→0
x1−βIβf(x) = 0.

3. Proofs of main results

In this section, we aim at proving Theorem 1.3. First we need the following

Proposition 3.1. Let ϕ be a nonnegative function that satisfies

∫ 1

0

(1−t)α+β−1ϕ(t)dt <

∞. Then the family of functions defined in (0, 1) by

F =

{
x −→ S(f)(x) :=

1

ω(x)

∫ 1

0

G(x, t)f(t)dt; |f | ≤ ϕ
}

is uniformly bounded and equicontinuous in [0, 1]. Consequently, F is relatively
compact in C([0, 1]).

Proof. Let ϕ be a nonnegative function that satisfies

∫ 1

0

(1 − t)α+β−1ϕ(t)dt < ∞

and let f be a measurable function such that |f | ≤ ϕ. By Lemma (1.2) (i) and
(1.5), we have ∣∣S(f)(x)

∣∣ ≤ 1

bΓ(α+ β)

∫ 1

0

(1− t)α+β−1ϕ(t)dt.

Hence, F is uniformly bounded.
Now, let’s show that the family F is equicontinuous in [0, 1]. For x, x′ ∈ (0, 1),

we have ∣∣S(f)(x)− S(f)(x′)
∣∣ =

∣∣ ∫ 1

0

(G(x, t)

ω(x)
− G(x′, t)

ω(x′)

)
f(t)dt

∣∣
≤

∫ 1

0

∣∣G(x, t)

ω(x)
− G(x′, t)

ω(x′)

∣∣ϕ(t)dt.
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Using the fact that ω is continuous on (0, 1] and the Green function G(x, t) is
continuous with respect to the first variable, then∣∣G(x, t)

ω(x)
− G(x′, t)

ω(x′)

∣∣ −→ 0 as
∣∣x− x′∣∣ −→ 0.

On the other hand, by using (1.3) and (1.5) for t ∈ (0, 1), we have∣∣G(x, t)

ω(x)
− G(x′, t)

ω(x′)

∣∣ ≤ 2

bΓ(α+ β)
(1− t)α+β−1.

So, by the dominated convergence theorem, we deduce that
∣∣S(f)(x) − S(f)(x′)

∣∣
tends to zero as

∣∣x − x′∣∣ −→ 0, uniformly with respect to f ∈ F . This implies
that, the family F is equicontinuous in (0, 1). Finally, we need to verify that the
function S(f) has a limits at x = 0 and x = 1. From Lemma (1.2) (i) and (1.5) for
x ∈ (0, 1), we have∣∣S(f)(x)

∣∣ ≤ 1

bΓ(α+ β)

∫ 1

0

(1− t)α+β−2 min(1− t, 1− x)ϕ(t)dt.

Hence, we deduce that limx→1− S(f)(x) = 0, uniformly with respect to f ∈ F .
Moreover, by (1.3) and (1.5), we have∣∣S(f)(x)− 1

aΓ(β) + bΓ(α+ β)

∫ 1

0

(1− t)α+β−1f(t)dt
∣∣

=
∣∣ ∫ 1

0

(G(x, t)

ω(x)
− (1− t)α+β−1

aΓ(β) + bΓ(α+ β)

)∣∣∣∣f(t)
∣∣dt

and ∣∣G(x, t)

ω(x)
− (1− t)α+β−1

aΓ(β) + bΓ(α+ β)

∣∣ =
∣∣ (1− t)α+β−1 − x1−α((x− t)+)α+β−1

aΓ(β)(1− xβ) + bΓ(α+ β)

− (1− t)α+β−1

aΓ(β) + bΓ(α+ β)

∣∣
≤ 3

bΓ(α+ β)
(1− t)α+β−1.

It follows from the dominated convergence theorem that
∣∣S(f)(x)− 1

aΓ(β)+bΓ(α+β)

∫ 1

0
(1−

t)α+β−1f(t)dt
∣∣ tend to zero as x −→ 0+, uniformly with respect to f ∈ F .

Hence, we conclude the family F is equicontinuous in [0, 1] and by Ascoli’s the-
orem F is relatively compact in C([0, 1]). This ends the proof. �

Proof of Theorem 1.3. Let α, β ∈ (0, 1] such that α + β > 1 and let a, b ∈ (0,∞).
We shall use a fixed point argument to construct a solution to problem (1.2). For

this end, put γ = 1 + 1
bΓ(α+β)

∫ 1

0
(1 − t)α+β−1g(btα−1)dt and consider the closed

convex set
Λ = {v ∈ C([0, 1]) : 1 ≤ v(x) ≤ γ}.

We define the operator T on Λ by

Tv(x) = 1 +
1

ω(x)

∫ 1

0

G(x, t)g(ω(t)v(t))dt, x ∈ (0, 1). (3.1)

We shall prove that T has a fixed point in Λ. First, we have clearly that for v ∈ Λ
1 ≤ Tv ≤ γ. By same arguments as in the Proof of Proposition (3.1), we show that
TΛ is relatively compact in C([0, 1]). So, we deduce that TΛ ⊂ Λ.
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Next, let us prove the continuity of the operator T in Λ. Consider a sequence (vk)
in Λ which converges uniformly to a function v ∈ Λ and let x ∈ [0, 1]. We have∣∣Tvk(x)− Tv(x)

∣∣ ≤ 1

ω(x)

∫ 1

0

G(x, t)
∣∣g(ω(t)vk(t))− g(ω(t)v(t))

∣∣dt
and using the hypothesis (H1), we get∣∣g(ω(t)vk(t))− g(ω(t)v(t))

∣∣ ≤ 2g(ω(t)) ≤ 2g(btα−1).

Now, since g is continuous, we deduce by the dominated convergence theorem that
for x ∈ [0, 1], Tvk(x) −→ Tv(x) as k −→∞. Since TΛ is relatively compact family
in C([0, 1]), we have the uniform convergence, namely

‖Tvk − Tv‖∞ −→ 0 as k −→∞.
Thus we have proved that T is a compact mapping from Λ to itself. So, by the
Schäuder fixed point theorem, T has a fixed point v ∈ Λ. Put u(x) = ω(x)v(x), for
x ∈ (0, 1]. Then u ∈ C1−α([0, 1]) and satisfies for x ∈ (0, 1]

u(x) = V (g(u))(x) + ω(x)

and

ω(x) ≤ u(x) ≤ γω(x). (3.2)

It remains to prove that u is a positive solution of problem (1.2). Indeed, by (3.2)
u(x) ≥ ω(x) ≥ bxα−1 and since the function g is nonnegative and nonincreasing, we
have obviously g(u(x)) ≤ g(bxα−1). We deduce from (H2),(H3) and Lemma (1.2)
(ii) that V (g(u)) is a positive continuous solution of the following boundary value
problem {

Dβ(Dαu)(x) = −g(u(x)), x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = 0, u(1) = 0.

In addition, since ω is the unique solution of the homogeneous problem associated
to (1.2), then u is a positive solution of problem (1.2). This completes the proof. �
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