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EXISTENCE RESULTS FOR A NEW FRACTIONAL PROBLEM

TAHAR BELHADI, HAKIM LAKHAL, KAMEL SLIMANI

Abstract. In the present paper, we prove the existence and uniqueness result

of non-trivial weak solutions to a new class of fractional linear and nonlinear
fractional problems, the main tool used here is the variational method com-

bined with the theory of new fractional Sobolev spaces.

1. Introduction

This paper is devoted to studying the existence and uniqueness of weak solutions
for the fractional Laplacian problem{

−divs(Dsu) = −Ds.(Dsu) = f(x, u) in Ω,
u = 0 on RN \ Ω,

(1.1)

where Ω is a bounded Lipschitz domain in RN , s is a fixed number between 0, 1
and divs(D

su) is the fractional version of a 2-Laplacian and defined by (see [1])

divs(D
su) = Ds.(Dsu) =

N∑
i=1

∂s

∂xsi
(
∂su

∂xsi
)

Shieh and Spector have recently studied a novel class of fractional partial differen-
tial equations based on the distributional Riesz fractional derivatives in a pair of two
fascinating works [14] and [15]. Instead of using the well-known fractional Lapla-
cian, their starting concept is the distributional Riesz fractional gradient of order
s ∈ (0, 1), which will be called here the s-gradient Ds, for brevity: for u ∈ Lp(RN ),
p ∈ (1,∞), we set

Ds
ju =

∂su

∂xsj
=

∂

∂xj
(I1−s ∗ u), 0 < s < 1, j = 1, · · · , N,

where
∂

∂xj
is taken in the distributional sense, for every v ∈ C∞c (RN ),

〈∂
su

∂xsj
, v〉 = (−1)〈(I1−s ∗ u),

∂v

∂xj
〉 = −

∫
RN

(I1−s ∗ u)
∂v

∂xj
dx,
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with Is denoting the Riesz potential of order s, 0 < s < 1:

Is(x) :=
γ(N, 1− s)
|x|N−s

,

where

γ(N, s) :=
2sΓ(N+s+1

2 )

π
N
2 Γ( 1−s

2 )
.

Thus, we can write the s-gradient (Ds) and the s-divergence (Ds.) for sufficiently
regular functions u and vector ϕ ([7], [14], [15], [11]) in integral form, respectively,
by

Dsu(x) := γ(N, s) lim
ε→0

∫
RN

zu(x+ z)

|z|N+s+1
χε(0, z)dz = γ(N, s)

∫
RN

u(x)− u(y)

|x− y|N+s

x− y
|x− y|

dy

and

Ds.ϕ(x) := γ(N, s) lim
ε→0

∫
RN

z.ϕ(x+ z)

|z|N+s+1
χε(0, z)dz = γ(N, s)

∫
RN

ϕ(x)− ϕ(y)

|x− y|N+s
.
x− y
|x− y|

dy,

where χε(x, z) is the characteristic function of the set {(x, z) : |z − x| > ε} for
ε > 0. As it was shown in [14], Ds has nice properties for u ∈ C∞c (RN ), namely it
coincides with the fractional Laplacian as follows:

(−∆)su(x) = −Ds.Dsu,

where, 0 < s < 1,

(−∆)su(x) = γ2(N, s) lim
ε→0

∫
RN

u(x)− u(y)

|x− y|N+2s
χε(x, y)dy

=
1

2
γ2(N, s)

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2S
dy.

The study of elliptic equations involving fractional operators is an exciting field of
nonlinear analysis. These problems have recently received a lot of attention, both
for pure mathematical research and for practical applications in the real world.
Indeed, this sort of operator appears in a variety of contexts, including the rep-
resentation of a variety of physical processes, optimization, population dynamics,
and mathematics nance. We have already mentioned that the −Ds.Dsu operator
coincides with the (−∆)su operator in the case u ∈ C∞c (RN ), and the last oper-
ator has many applications in various fields, for example, the fractional Laplacian
operator (−∆)s, 0 < s < 1, provides a simple model to describe some jump Levy
processes in probability theory (see for example [4, 2, 10, 6, 8] and the references
therein). As examples of applications of the problem (1.1) (u ∈ C∞c (RN )), we state
the following two models:
• Model 1. Filtration in a porous medium. The filtration phenomena of

fluids in porous media are modeled by the following equation,

∂c(p)

∂t
= ∇a[k(c(p))(∇p+ e)], (1.2)

where p is the unknown pressure, c volumetric moisture content, k the hydraulic
conductivity of the porous medium, a the heterogeneity matrix and −e is the di-
rection of gravity.
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• Model 2. Fluid ow through porous media. This model is governed by
the following equation,

∂θ

∂t
− div(|∇ϕ(θ)−K(θ)e|p−2(∇ϕ(θ)−K(θ)e)) = 0, (1.3)

where θ is the volumetric content of moisture, K(θ) the hydraulic conductivity,
ϕ(θ) the hydrostatic potential and e is the unit vector in the vertical direction.

The existence and uniqueness of weak solutions to problems involving the frac-
tional Laplacian (−∆)s have been studied in many articles, for example, [13, 12]

Our paper’s structure is separated into three sections, as follows: Section 2 intro-
duces some preliminaries on fractional Sobolev spaces, as well as some fundamental
tools for proving Theorem 3.1 and Theorem 3.2. We explain the assumptions and
define the weak solution of the problem (1.1) in Part 3, and we conclude this section
by demonstrating the main result.

2. Preliminaries

We recall in what follows some definitions and basic properties of the Bessel
potential spaces Ls,2(RN ) and spaces Xs,p(RN ). In that context, we refer to the
book of E. Stein [5] and the papers of [14] and [15]. We start with the Bessel
potentials %s, for s ∈ RN+ . The Bessel potentials %s are defined by

%s(x) :=
1

(4π)
s
2 Γ( s2 )

∫ ∞
0

e
−π|x|2

t e
−t
4π t

s−N
2
dt

t
.

And can be shown to satisfy, for t, s > 0

%s ∗ %t = %s+t
%̂s(ζ) = (1 + 4π2|ζ|2)−

s
2

‖%s‖L1(RN )

Then the Bessel potential spaces Ls,2(RN ) are defined as follows.

Definition 2.1. For s ∈ (0, 1), we define Ls,2(RN ) by

Ls,2(RN ) := %s(L
2(RN )) = {%s ∗ f : f ∈ L2(RN}.

with the norm

‖u‖Ls,2(RN ) = ‖f‖L2(RN ).

Theorem 2.1. [14] The following statements hold.

1) If s > 0⇒ C∞0 (RN )
Ls,2(RN )

= Ls,2(RN ).

2) If s > 0⇒
[
Ls,2(RN )

]′
= L−s,2(RN ).

3) If t < s⇒ Ls,2(RN ) ↪→ Lt,2(RN ).
4) If s ∈ (0, 1)⇒ Ls,2(RN ) coincides with the space W s,2(RN ),

where

W s,2(RN ) :=

{
u ∈ L2(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞

}
.

5) If t > 0, s > 0 with s > t⇒ Ls+t,2(RN ) ↪→W s,2(RN ) ↪→ Ls−t,2(RN ).

Theorem 2.2. [14] Let s ∈ (0, 1). If u ∈ C∞0 (RN ), then

Dsu = I1−s ∗Du.
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Definition 2.2. For s ∈ (0, 1). If u ∈ C∞c (RN ), we define

Xs,2(RN ) := C∞c (RN )
‖.‖Xs,2(RN )

with the norm

‖u‖2Xs,2(RN ) = ‖u‖2L2(RN ) + ‖Dsu‖2L2(RN ).

Proposition 2.3. [14] If s ∈ (0, 1), then

Xs,2(RN ) = Ls,2(RN ).

By Ls,20 (Ω), we denote the subspace of Ls,2(RN ) i.e.

Ls,20 (Ω) :=
{
u ∈ Ls,2(RN ) : u = 0, on RN \ Ω

}
.

Theorem 2.4. [14] Let s ∈ (0, 1), and 1 ≤ q < 2N

N − 2s
, then there exists a constant

C = C(Ω, N, s) > 0 such that(∫
Ω

|u|qdx
) 1
q

≤ C‖Dsu‖L2(RN )

for all u ∈ Ls,2(RN ).

Using the Theorem 2.4, we remark that the norm |u|L2(RN ) + |Dsu|L2(RN ) is

equivalent to |Dsu|L2(RN ) in Ls,20 (Ω). The space Ls,20 (Ω) with the inner product

〈u, v〉 =

∫
RN

Dsu.Dsvdx,

is a Hilbert space.
Next, we recall some embedding results

Theorem 2.5. [14](Fractional Sobolev inequality). Let s ∈ (0, 1) be such that
2s < N . Then there exists a constant C = C(N, s) > 0 such that

‖u‖L2∗ (RN ) 6 C‖Dsu‖L2(RN )

for all u ∈ Ls,2(RN ), where 2∗ = 2N
N−2s .

Proposition 2.6. [3] Let s ∈ (0, 1). Then the embedding

L
s,2
0 (Ω) ↪→ Lq(Ω)

is compact for 1 ≤ q < 2∗.

We recall also the following propositions, which will be needed later:

Lemma 2.7. [3] ∫
RN

ADsu.Dsv = 〈−Ds.ADsu, v〉. (2.1)

holds true for A(x) being a bounded measurable function and u, v ∈ Ls,20 (Ω).

Theorem 2.8. [3] Let A : RN −→ RN×N a matrix with coefficients bounded,
measurable and strictly elliptic, such that

c∗|y|2 ≤ A(x)y.y and A(x)y.y∗ ≤ c∗|y||y∗| (2.2)
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for some c∗, c
∗ > 0 for all x ∈ RN and all y, y∗ ∈ RN , there exists kA(x, y)

independent of u, v satisfying∫
RN

A(x)Dsu(x).Dsv(x)dx = P.V.

∫
RN

∫
RN

v(x)(u(x)− u(y))kA(x, y)dydx (2.3)

for all u, v ∈ Ls,20 (Ω), where kA(x, y) is given, for x 6= y, by

kA(x, y) = c2N,sP.V.

∫
RN

A(z)
y − z

|y − z|N+s+1
.

z − x
|z − x|N+s+1

dz. (2.4)

Theorem 2.9. [9] Let X be a reflexive real Banach space and T : X → X
′

be a
bounded operator, hemi-continuous, coercive and monotone on space X . Then, the
equation Tu = f∗ has at least one solution u ∈ X for each f∗ ∈ X ′ .

3. Existence of solutions

We will present the idea of weak solutions for problem (1.1) in this part, as well
as the existence and uniqueness results for these solutions. Firstly, we cite the
following assumptions:
(h1) s ∈ (0, 1) with 2s < N .

(h2) f ∈ Lα(Ω) with α >
2n

n+ 2s
.

(h3) f : Ω× R→ R satisfies Caratheodory condition and

|f(x, t)| 6 a(x) + b|t| ∀(x, t) ∈ Ω× R,
where a ∈ L2(Ω) and b ∈ R.
(h4) f : Ω× R→ R is a decreasing function with respect to the second variable.
(h5) There exists c0 > 0 such that

(f(x, t)− f(x, s))(t− s) 6 c0|t− s|2

for a.a. x ∈ Ω and all (t, s) ∈ R× R.
By substituting matrix A with the matrix I in the Lemma 2.7 and Theorem 2.8,

we then give the definition of the weak solution to problem (1.1)

Definition 3.1. We say that u ∈ Ls,20 (Ω) is a weak solution of (1.1), if∫
RN

Dsu.Dsvdx =

∫
Ω

f(x, u)v(x)dx, ∀v ∈ X := Ls,20 (Ω). (3.1)

3.1. f is independent of u. If f is independent of u, we have one of our main
result of this work is the following Theorem

Theorem 3.1. If f(x, u) = f(x) and if hypotheses (h1), (h2) hold, then, the prob-
lem (1.1) has a unique weak solution.

Proof. Existence part. Let the operator

L : Ls,20 (Ω) −→ (Ls,20 (Ω))
′
,

such that

〈L(u), η〉 =

∫
RN

Dsu.Dsηdx−
∫

Ω

f(x)η(x)dx

= 〈L1(u), η〉 − 〈L2(u), η〉,

where (Ls,20 (Ω))
′

is the dual space of Ls,20 (Ω).
The proof of existence part of Theorem 3.1 is divided into several steps.
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• Step 1. The operator L is bounded.
On the one hand, we use Hölder-type inequality, we have for any u, η ∈ Ls,20 (Ω),

|〈L1(u), η〉| ≤
∫
RN
|Dsu.Dsη|dx

≤ |Dsu|L2(RN )|Dsη|L2(RN )

≤ |u|Ls,20 (Ω)|η|Ls,20 (Ω).

This implies that L1 is bounded. On the other hand, using again Hölder-type
inequality, hypothesis (h1) and (h2), we get

|〈L2(u), η〉| ≤
∫

Ω

|f(x)η|dx

≤ |f |Lα(Ω)|η|Lα′ (Ω)

≤ M |f |Lα(Ω))|η|Ls,20 (Ω)

where M is constant of continuous embedding given by Theorem 2.4. Hence, the
operator L is bounded.
• Step 2. The operator L is hemi-continuous.
Let {un}n∈N ⊂ Ls,20 (Ω) and u ∈ Ls,20 (Ω) such that un converges strongly to u in

Ls,20 (Ω). Firstly, we will prove that L1 is continuous on Ls,20 (Ω), indeed,

|〈L1(un)− L1(u), η〉| = |
∫
RN

(Dsun −Dsu).Dsηdx|

≤ |Dsun −Dsu|L2(RN )|Dsη|L2(RN )

≤ |un − u|Ls,20 (Ω)|η|Ls,20 (Ω).

Consequently

L1(un) −→ L1(u) in (Ls,20 (Ω))
′
.

This implies that the operator L1 is continuous on Ls,20 (Ω). Therefore, L is hemi-

continuous on Ls,20 (Ω).
• Step 3 . The operator L is coercive.
For any u ∈ L

s,2
0 (Ω), we have

〈L(u), u〉 =

∫
RN
|Dsu|2dx−

∫
Ω

f(x)udx

> |u|2
Ls,20 (Ω)

− |f |Lα(Ω)|u|Lα′ (Ω)

> |u|2
Ls,20 (Ω)

−M |f |Lα(Ω)|u|Ls,20 (Ω).

Therefore
〈L(u), u〉
|u|Ls,20 (Ω)

−→ +∞ as |u|Ls,20 (Ω) −→ +∞.

Hence, the operator L is coercive.
• Step 4. The operator L is monotone.
For that, it suffices to prove that L1 is monotone

〈L1(u)− L1(v), u− v〉 =

∫
RN
|Dsu−Dsv|2dx > 0 for all u, v ∈ L

s,2
0 (Ω).
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Therefore L is monotone. Hence, the existence of weak solution for problem (1.1)
follows from Theorem 2.9.

Uniqueness part. Let u and w be two weak solutions of problem (1.1). As a
test function for the solution u, we take v = u − w in equality (3.1) and for the
solution w, we take v = w − u as a test function in (3.1), we have∫

RN
Dsu.Ds(u− w)dx =

∫
Ω

f(u− w)dx

and ∫
RN

Dsw.Ds(w − u)dx =

∫
Ω

f(w − u)dx.

By summing up the two above equalities, we get∫
RN
|Dsu−Dsw|2dx = 0.

This implies that

u = w a.e in Ω.

�

3.2. f is dependent of u. If f is dependent of u, we have

Theorem 3.2. If hypotheses (h1), (h2) and (h3) hold, then, the problem (1.1) has
a unique weak solution.

Proof. Existence part. Let the operator

T : Ls,20 (Ω) −→ (Ls,20 (Ω))
′

such that

〈T (u), η〉 =

∫
RN

Dsu.Dsηdx−
∫

Ω

f(x, u)η(x)dx

= 〈ψ(u), η〉 − 〈Φ(u), η〉

The proof of existence part of Theorem 3.2 is divided into several steps.
• Step 1. The operator T is bounded.
From step 1 in the proof of Theorem 3.1 we can see that the operator ψ is

bounded.
On the other hand, using again Hölder-type inequality, hypotheses (h1) − (h3),

we get

|〈Φ(u), η〉| ≤
∫

Ω

|f(x, u)η|dx

≤ |a(x) + b|u||L2(Ω)|η|L2(Ω)

≤ M(|a|L2(Ω) + |b||u|L2(Ω))|η|Ls,20 (Ω),

where M is constant of continuous embedding given by Theorem 2.4. Hence, the
operator T is bounded.
• Step 2. The operator T is hemi-continuous.
Let {un}n∈N ⊂ Ls,20 (Ω) and u ∈ Ls,20 (Ω) such that un converges strongly to u in

Ls,20 (Ω).
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We conclude by proving step 2 in proving Theorem 3.1 that the operator ψ is
continuous in space Ls,20 (Ω). We then suffice to prove the continuity of the operator
Φ

|〈Φ(un)− Φ(u), η〉| = |
∫

Ω

(f(x, un)− f(x, u))ηdx|

≤ |f(x, un)− f(x, u)|L2(Ω)|η|L2(Ω)

≤ M |f(x, un)− f(x, u)|L2(Ω)|η|Ls,2(Ω).

By Theorem 2.4,

un −→ u in Ls,20 (Ω)⇒ un −→ u in L2(Ω). (3.2)

Using Lebesgues convergence inverse theorem, we get{
un(.) −→ u(.) a.e. on Ω

∃g(.) ∈ L2(Ω) : |un(x)| 6 g(x) ∀n, a.e. on Ω,
(3.3)

Now, using Lebesgues convergence theorem and hypothesis (h3), we derive

f(x, un) −→ f(x, un) in L2(Ω). (3.4)

So, Φ(un) −→ Φ(u) in Ls,20 (Ω). Then Φ is continuous. Therefore, T is hemi-

continuous on Ls,20 (Ω).
• Step 3. The operator T is coercive.
For any u ∈ L

s,2
0 (Ω), we have

〈T (u), u〉 =

∫
RN
|Dsu|2dx−

∫
Ω

f(x, u)udx

> |u|2
Ls,20 (Ω)

− (|a|L2(Ω) + |b||u|L2(Ω))|u|L2(Ω)

> |u|2
Ls,20 (Ω)

−M(|a|L2(Ω) + |b||u|L2(Ω))|u|Ls,20 (Ω).

Therefore
〈T (u), u〉
|u|Ls,20 (Ω)

−→ +∞ as |u|Ls,20 (Ω) −→ +∞.

Hence, the operator T is coercive.
• Step 4. The operator T is monotone.
Applying hypothesis (h4), it is for each u, v ∈ Ls,20 (Ω),

〈T (u)− T (v), u− v〉 =

∫
RN
|Dsu−Dsv|2dx−

∫
Ω

(f(x, v)− f(x, u))(v − u)dx > 0.

Therefore T is monotone. Hence, the existence of weak solution for problem (1.1)
follows from Theorem 2.9.

Uniqueness part. Let u, v ∈ Ls,20 (Ω) be two weak solutions of (1.1). Consid-
ering the weak formulation of u and v, by choosing w = u − v as a test function,
we have ∫

RN
Dsu.Ds(u− v)dx =

∫
Ω

f(x, u)(u− v)dx

and ∫
RN

Dsv.Ds(u− v)dx =

∫
Ω

f(x, v)(u− v)dx.

Subtracting the above two equations, we have∫
RN

(Dsu−Dsv).Ds(u− v)dx =

∫
Ω

(f(x, u)− f(x, v))(u− v)dx. (3.5)
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For all x ∈ RN , then we have the following inequality:

(Dsu−Dsv).Ds(u− v) >
1

4
|Ds(u− v)|2. (3.6)

Using assumption (h5) in (3.6), then it follows that

1

4

∫
RN
|Ds(u− v)|2dx 6

∫
RN

(Dsu−Dsv).Ds(u− v)dx

=

∫
Ω

(f(x, u)− f(x, v))(u− v)dx

6 c0

∫
Ω

|u− v|2dx

6 c0M

∫
RN
|Ds(u− v)|2dx.

Consequently, when 4c0M < 1, it follows from the above inequality that u = v
and so the solution of (1.1) is unique. The proof is complete. �

Conclusion

In this work, we have studied the existence and uniqueness of weak solutions
to two problems, one of which is linear and the other is non-linear by working
on new fractional Sobolev spaces. We hope in the future to generalize this study
to fractional spaces with a variable exponent using the p(x)-Laplacian fractional
operator.
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