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ON UNIVALENCY AND CONVEXITY OF INTEGRAL

OPERATORS INVOLVING NORMALIZED RABOTNOV

FUNCTION

ANKIT KUMAR RATHORE, DEEPAK BANSAL, AMIT SONI, RAVINDER KRISHNA
RAINA

Abstract. The main objective of this paper is to obtain sufficiency conditions
for some families of integral operators involving the normalized form of Rabot-
nov functions to satisfy basic characteristics in Geometric Function Theory of
univalency and convexity in the open unit disk. We consider several corol-
laries and special cases of our main results. In particular, we mention cases
which give useful applications by including also some examples yielding cor-
responding simpler conditions for integral operators involving the exponential

and hyperbolic functions. Relevance with known results are also pointed out.

1. Introduction and preliminaries

Yu. N. Rabotnov [33] in his work on viscoelasticity introduced a function of time
t which depends on two parameters α and β, where α ∈ (−1, 0] is related to the
type of viscoelasticity and β ∈ R(set of real numbers). This function is defined by

Rα,β(t) = tα
∞∑

k=0

βk

Γ((k + 1)(1 + α))
tk(1+α), t ≥ 0. (1.1)

For more details about the function (1.1), one may refer to [36]. Rabotnov called
the function (1.1) as the fractional exponential function mainly because of the fact
that for α = 0, this function reduces to the standard exponential function exp(βt).
The relation of this function with the Mittag-Leffler function in two parameters is
quite obvious. Indeed, we have the relation that

Rα,β(z) = zαE1+α,1+α(βz
1+α),

where α, β, z ∈ C, and the function E is the Mittag-Leffler function [24].
Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, and

let A denote the class of functions f that are analytic in U and normalized by the
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conditions f(0) = f ′(0)− 1 = 0. Thus, each function f ∈ A has the following series
representation:

f(z) = z +

∞∑

k=2

akz
k (z ∈ U).

We denote by S the subclass of A consisting of functions f that are univalent in U.
A function f ∈ A that maps U onto a convex domain (i.e. the line segment joining
any two points in f(U) lies completely inside f(U)) is called a convex function.
We denote by K the class of all functions f ∈ A that are convex. The analytic
characterization of K is

K =

{
f : f ∈ A,R

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U

}
.

It is clear that the Rabotnov function Rα,β(z) does not belong to the family A.
Therefore, for the purpose of this paper, we consider the following normalization of
Rabotnov functions [16]:

Rα,β(z) = Γ(1 + α)z1/(1+α)Rα,β(z
1/(1+α))

= z +

∞∑

k=2

βk−1Γ(1 + α)

Γ((1 + α)k)
zk (1.2)

=

∞∑

k=1

βk−1Γ(1 + α)

Γ((1 + α)k)
zk.

We mention below some special cases of Rα,β(z) for particular values of the param-
eters α and β.

(1) By putting α = 0 in (1.2), we have

R0,β(z) =

∞∑

k=1

βk−1

Γ(k)
zk = z

∞∑

k=1

(βz)k−1

(k − 1)!
= zeβz. (1.3)

(2) Next, if we set α = 1 in (1.2), we have then

R1,β(z) =

∞∑

k=1

Γ(2)βk−1

Γ(2k)
zk = z

∞∑

k=1

(βz)k−1

(2k − 1)!

= z
∞∑

k=1

(
√
βz)2k−2

(2k − 1)!
=

z√
βz

∞∑

k=1

(
√
βz)2k−1

(2k − 1)!

=

√
z

β
sinh(

√
βz). (1.4)

The geometric properties of various special functions were studied in many ear-
lier works. Such investigations appeared for hypergeometric function, incomplete
beta function, Laguerre polynomials, Bessel function, Lommel and Sturve func-
tions, Mittag-Leffler function and Wright function. See, the related works in [2],
[3],[4],[5],[6],[7],[12],[13],[16] [22] and [34].
An important field in the geometric function theory is also the field of integral
operators on spaces of analytic functions. Several integral operators have been in-
vestigated by many authors. One may refer to the works of Bernardi [7], Libera
[19], Causey [14, 15], Kim and Merkes [18], Merkes and Wright [20], Miller, Mocanu
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and Reade [21, 22, 23], Owa and Srivastava [26], Pascu [27], Pfaltzgraff [32], Pescar
[28, 29] and many others.

Our aim in this paper is to determine some sufficient conditions for certain
families of integral operators defined in terms of the normalized form of the Rabot-
nov functions (1.2) (see below) to be univalent and convex in the open unit disk
U. We also consider various special cases of our main results and point out specific
applications of some of the deduced corollaries.

We mention now necessary details of various families of integral operators which
have been studied in recent past in Geometric Function Theory.

Definition 1.1. The first family of integral operators studied by Seenivasagan and
Breaz [37] is defined as follows (see also the recent investigations on this subject by
Baricz and Frasin [4] and Srivastava et al. [39]):

Fλ1,...,λn,µ(z) =


µ

∫ z

0

tµ−1
n∏

j=1

(
fj(t)

t

)1/λj

dt



1/µ

, (1.5)

where each of the functions fj (j = 1, · · · , n) belongs to the class A and the param-
eters λj ∈ C/{0} (j = 1, ..., n) and µ ∈ C are so constrained such that the integral
operators in (1.5) exist. We note that if λj = λ (j = 1, ..., n), then the integral
operator Fλ1,...,λn,µ(z) reduces to the operator Fλ,µ(z) which is related closely to
some known integral operators investigated earlier in Geometric Functions Theory
(see, for details, [38]). The operators Fλ,µ(z) and Fλ,λ(z) were studied by Breaz
and Breaz [10] and Pescar [29], respectively. Upon setting µ = 1 and also λ = 1 in
Fλ,µ(z), we obtain the operators Fλ,1(z) and F1,1(z), which were studied by Breaz
and Breaz [9] and Alexander [2], respectively.
Furthermore, in their special cases when

n = µ = 1 and λj =
1

λ
(j = 1, , n),

then the integral operator in (1.5) would obviously reduce to the operator F1/λ,1(z),
which was studied earlier by Pescar and Owa [30]. In particular, for λ ∈ [0, 1], a
special case of the operator F1/λ,1(z) was also studied by Miller et al. [22].

Definition 1.2. The second family of integral operators was introduced by Breaz
and Breaz [11] and it has the following form (see also a recent investigation on this
subject by Breaz et al. [12]):

Gn,γ(z) =


(nγ + 1)

∫ z

0

n∏

j=1

[gj(t)]
γ
dt



1/(nγ+1)

, (1.6)

where the functions gj ∈ A (j = 1, ..., n) and the parameter γ ∈ C is so constrained
such that the integral operators in (1.6) exist. In particular, for n = 1, the integral
operator G1,γ(z) was earlier studied by Moldoveanu and Pascu [25].

Definition 1.3. The third family of integral operators was introduced by Breaz and
Breaz [8] and it has the following form:

Hν1,...,νn,ξ(z) =


ξ

∫ z

0

tξ−1
n∏

j=1

[
h′j(t)

]νj
dt



1/ξ

, (1.7)
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where the functions hj ∈ A (j = 1, ..., n) and the parameters ξ ∈ C and νj ∈
C (j = 1, ..., n) are so constrained that the integral operators in (1.7) exist. In
particular, for ξ = 1 in (1.7), the integral operator Hν1,...,νn,ξ(z) reduces to the
operator Hν1,...,νn(z) which was studied by Breaz et al. [13]. We observe also that
for n = ξ = 1, the integral operator H(z) was introduced and studied by Kim and
Merkes [18]; see also Pfaltzgraff [32].

Definition 1.4. The fourth family of integral operators was introduced by Pescar
[31] as follows:

Qδ(z) =

[
δ

∫ z

0

tδ−1
(
eq(t)

)δ

dt

]1/δ
, (1.8)

where the function q ∈ A and the parameter δ ∈ C are so constrained that the
integral operators in (1.8) exist.

Two of the most important and known univalence criteria for analytic func-
tions defined in the open unit disk U were obtained by Ahlfors [1] and Becker [5].
Some extensions of these two univalence criteria were given by Pescar [28] involv-
ing a parameter µ (which for µ = 1 yields the Ahlfors-Becker univalence criterion)
and another criteria by Pascu [27] involving two parameters λ and µ (which for
µ = λ = 1, yields the Beckers univalence criterion).
Further, in this paper we have mentioned sufficient conditions in terms of the Lam-
bert function W (x), also called omega function or product logarithm is a multival-
ued function. The Lambert function W (x) is defined by

W (x) = f−1(x) where f(x) = xex. (1.9)

Evidentaly, then W (xex) = x and W (e) = 1. One can use ProductLog function
of Wolfram Mathematica to evaluate value of Lambert function at any point of its
domain. We shall make use of the following lemmas in order to prove our main
results.

Lemma 1.1. ([28] ). Let µ and c be complex numbers such that

R(µ) > 0 and |c| ≤ 1 (|c| 6= −1).

If the function f ∈ A satisfies the following inequality:
∣∣∣∣c|z|

2µ +
(
1− |z|2µ

) zf ′′(z)

µf ′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function Fµ defined by

Fµ(z) =

(
µ

∫ z

0

tµ−1f ′(t)dt

)1/µ

(1.10)

is in the class S of normalized univalent functions in U.

Lemma 1.2. ([27]). If f ∈ A satisfies the following inequality:
(
1− |z|2R(γ)

R(γ)

) ∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (z ∈ U,R(γ) > 0),

then for all µ ∈ C such that R(µ) ≥ R(γ), the function Fµ defined by (1.10) is in
the class S of normalized univalent functions in U.
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Lemma 1.3. ([30]). Let the parameters δ ∈ C and θ ∈ R be so constrained that

R(δ) ≥ 1, θ > 1 and 2θ|δ| ≤ 3
√
3.

If the function q ∈ A satisfies the following inequality:

|zq′(z)| ≤ θ (z ∈ U),

then the function Qδ : U → C defined by

Qδ(z) =

[
δ

∫ z

0

tδ−1
(
eq(t)

)δ

dt

]1/δ

is in the class S of normalized univalent functions in U.

Lemma 1.3 follows from the Beckers univalence criterion [6, 27] and the well-known
Schwarz lemma [17, p.25]. We shall further require the following known results
proved recently in Theorem 2.4 and Theorem 2.5 of [16].

Lemma 1.4. ([16]). If the parameters α ≥ 0 and β > 0, then the function Rα,β(z) :
U → C defined by (1.2) satisfies the following inequalities:

∣∣∣∣R
′
α,β(z)−

Rα,β(z)

z

∣∣∣∣ ≤
β

(1 + α)
e

β
1+α , (1.11)

∣∣∣∣
zR′

α,β(z)

Rα,β(z)
− 1

∣∣∣∣ ≤
β

(1+α)e
β

1+α

2− e
β

1+α

(
provided that

β

1 + α
< ln(2)

)
(1.12)

and

∣∣∣∣
zR′′

α,β(z)

R′
α,β(z)

∣∣∣∣ ≤
β(2α+ β + 2)e

β
1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
(
provided that

β

1 + α
< W (2e)− 1

)
,

(1.13)
where W is a Lambert function defined by (1.9).

We also prove the following lemma in order to establish our main results.

Lemma 1.5. If α ≥ 0 and β > 0, then for z ∈ U:

2−
(
1 +

β

1 + α

)
e

β
1+α ≤ |zR′

α,β(z)| ≤
(
1 +

β

1 + α

)
e

β
1+α . (1.14)

The lower bound of (1.14) exists only when α ≥ β
W (2e)−1 − 1, where the function

W is defined by (1.9). Further,

∣∣z2R′′
α,β(z)

∣∣ ≤ β(2 + 2α+ β)

(1 + α)2
e

β
1+α . (1.15)

Proof. We begin with the inequality

Γ(1 + α)(1 + α)k−1(k − 1)! ≤ Γ((1 + α)k) ∀k ∈ N and α ≥ 0, (1.16)
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which is easy to verify (see [16, p. 1253, Lemma 2.5]). In view of (1.2), we have

|zR′

α,β(z)| =
∣∣∣∣∣z +

∞∑

k=2

kβk−1Γ(1 + α)

Γ((1 + α)k)
zk

∣∣∣∣∣ ≤ |z|+
∞∑

k=2

kβk−1Γ(1 + α)

Γ((1 + α)k)
|z|k

≤ 1 +

∞∑

k=2

kβk−1Γ(1 + α)

Γ((1 + α)k)
≤ 1 +

∞∑

k=2

kβk−1

(1 + α)k−1(k − 1)!
(on using (1.16))

= 1 +

∞∑

k=2

βk−1

(1 + α)k−1(k − 2)!
+

∞∑

k=2

βk−1

(1 + α)k−1(k − 1)!

=

(
1 +

β

1 + α

)
e

β
1+α .

Similarly, it follows from (1.2) that

|zR′

α,β(z)| =
∣∣∣∣∣z +

∞∑

k=2

kβk−1Γ(1 + α)

Γ((1 + α)k)
zk

∣∣∣∣∣ ≥ 1−
∞∑

k=2

kβk−1Γ(1 + α)

Γ((1 + α)k)

≥ 1−
∞∑

k=2

kβk−1

(1 + α)k−1(k − 1)!
= 1−

∞∑

k=2

((k − 1) + 1)βk−1

(1 + α)k−1(k − 1)!
(on using (1.16))

= 1− β

1 + α

∞∑

k=2

βk−2

(1 + α)k−2(k − 2)!
−

∞∑

k=2

βk−1

(1 + α)k−1(k − 1)!

= 2−
(
1 +

β

1 + α

)
e

β
1+α .

This completes the proof of (1.14). Further to establish (1.15), we obtain from
(1.2) that

∣∣z2R′′
α,β(z)

∣∣ =
∣∣∣∣∣

∞∑

k=1

k(k − 1)βk−1Γ(1 + α)

Γ((1 + α)k)
zk

∣∣∣∣∣ ≤
∞∑

k=1

k(k − 1)βk−1Γ(1 + α)

Γ((1 + α)k)
|z|k

≤
∞∑

k=1

k(k − 1)βk−1Γ(1 + α)

Γ((1 + α)k)
≤

∞∑

k=1

k(k − 1)βk−1

(1 + α)k−1(k − 1)!
(on using (1.16))

=

∞∑

k=1

(k − 2)(k − 1) + 2(k − 1)

(k − 1)!

βk−1

(1 + α)k−1

=

(
β

1 + α

)2 ∞∑

k=3

1

(k − 3)!

(
β

1 + α

)k−3

+ 2

(
β

1 + α

) ∞∑

k=2

1

(k − 2)!

(
β

1 + α

)k−2

=
β(2 + 2α+ β)

(1 + α)2
e

β
1+α .

This completes the proof of (1.15). �

2. Univalence of Integral Operators Involving Rabotnov Functions

Our first main result provides an application of Lemma 1.1 which gives sufficient
univalence conditions for the class of integral operators of the type (1.5) when
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the functions fj (j = 1, ..., n) are normalized forms of Rabotnov functions (1.2)
involving various parameters.

Theorem 2.1. Let the parameters αj ≥ 0, βj > 0 (j = 1, ..., n) and

β

1 + α
= max

{
βj

1 + αj

∣∣∣∣(j = 1, ..., n)

}
(2.1)

be so constrained that

β

1 + α
< ln(2) with α ≥ 0, β > 0.

Consider the functions Rαj ,βj
: U → C defined by

Rαj ,βj
(z) = z +

∞∑

k=2

βk−1
j Γ(1 + αj)

Γ((1 + αj)k)
zk. (2.2)

Suppose also that

R(µ) > 0, c ∈ C\{−1} with |c| ≤ 1 and λj ∈ C\{0} (j = 1, ..., n)

satisfy the following inequality:

|c|+ βe
β

1+α

(1 + α)
(
2− e

β
1+α

)
n∑

j=1

1

|µλj |
≤ 1.

Then the function Fα1,...,αn,β1,...,βn,λ1,...,λn,µ(z) : U → C, defined by

Fα1,...,αn,β1,...,βn,λ1,...,λn,µ(z) =


µ

∫ z

0

tµ−1
n∏

j=1

(
Rαj ,βj

(t)

t

)1/λj

dt



1/µ

(2.3)

is in the class S of normalized univalent functions in U.

Proof. Let us set µ = 1 in (2.3), then we have

Fα1,...,αn,β1,...,βn,λ1,...,λn,1(z) =

∫ z

0

n∏

j=1

(
Rαj ,βj

(t)

t

)1/λj

dt. (2.4)

We observe that since Rαj ,βj
∈ A (j = 1, ..., n) and also Rαj ,βj

(0) = R′
αj ,βj

(0)−1 =
0, therefore Fα1,...,αn,β1,...,βn,λ1,...,λn,1 ∈ A, that is

Fα1,....αn,β1,...,βn,λ1,...,λn,1(0) = F ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(0)− 1 = 0.

Differentiating (2.4) with respect to z, we have

F ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z) =

n∏

j=1

(
Rαj ,βj

(z)

z

)1/λj

. (2.5)

Again differentiating (2.5) with respect to z, we obtain

F ′′
α1,...,αn,β1,...,βn,λ1,...,,λn,1(z) =

n∑

j=1

1

λj

(
Rαj ,βj

(z)

z

)(1−λj)/λj

·
(
zR′

αj ,βj
(z)− Rαj ,βj

(z)

z2

) n∏

k=1
(k 6=j)

(
Rαk,βk

(z)

z

)1/λk

. (2.6)
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Using (2.5) and (2.6), we get

zF ′′
α1,....αn,β1,...,βn,λ1,....,λn,1(z)

F ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

=

n∑

j=1

1

λj

(
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

)
.

Now applying the inequality (1.12) in Lemma 1.4 for each αj , βj (j = 1, ..., n), we
get

∣∣∣∣
zF ′′

α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

F ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

∣∣∣∣ ≤
n∑

j=1

1

|λj |

∣∣∣∣
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

∣∣∣∣

≤
n∑

j=1

1

|λj |

βj

(1+αj)
e

βj
1+αj

2− e
βj

1+αj

. (2.7)

Suppose

φ(x) =
xex

2− ex
, (2.8)

then

φ′(x) =
ex

(2− ex)
2 · (2x+ 2− ex).

Clearly φ′(x) is positive for x ∈ (0, ln 2), and hence φ(x) is an increasing function
of x. Hence, in view of (2.1), we have

φ

(
βj

1 + αj

)
≤ φ

(
β

1 + α

)
.

Therefore from (2.7) and (2.8), we get

∣∣∣∣
zF ′′

α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

F ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

∣∣∣∣ ≤
n∑

j=1

1

|λj |

β
(1+α)e

β
1+α

2− e
β

1+α

.

Finally, by using the triangle inequality and the assertion of Theorem 2.1, we obtain
∣∣∣∣c|z|

2µ +
(
1− |z|2µ

) zF ′′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

µF ′
α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

∣∣∣∣

≤ |c|+ 1

|µ|

∣∣∣∣
zF ′′

α1,...,αn,β1,...,βn,λ1,...,λn,1(z)

F ′
α1,....αn,β1,...,βn,λ1,...,λn,1(z)

∣∣∣∣

≤ |c|+ 1

|µ|

β
(1+α)e

β
1+α

2− e
β

1+α

n∑

j=1

1

|λj |

= |c|+ βe
β

1+α

(1 + α)
(
2− e

β
1+α

)
n∑

j=1

1

|µλj |
≤ 1,

which in view of Lemma 1.1 implies that Fα1,...,αn,β1,...,βn,λ1,...,λn,µ(z) ∈ S. This
completes the proof of Theorem 2.1. �

If we put n = 1, λ1 = λ, µ = 1, α1 = α and β1 = β in Theorem 2.1, then we get the
following corollary:
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Corollary 2.1. Let the parameters α ≥ 0, β > 0 be so constrained that

β

1 + α
< ln(2).

Consider the functions Rα,β : U → C defined by (1.2). Suppose also that c ∈
C\{−1} with |c| ≤ 1 and λ ∈ C\{0} satisfy the following inequality:

|c|+ βe
β

1+α

|λ|(1 + α)
(
2− e

β
1+α

) ≤ 1.

Then the function Fα,β,λ(z) : U → C, defined by

Fα,β,λ(z) =

∫ z

0

(
Rα,β(t)

t

)1/λ

dt

is in the class S of normalized univalent functions in U.

Remark 2.1. If we put c = 0, λ = 1 in Corollary 2.1, we obtain then a known result
Theorem 3.3 of [35].

We consider below few examples to illustrate the applications of Corollary 2.1.

Example 2.1. Next, if we choose α = 0, β = 1/4, c = 0 and λ = 1/2 in Corollary
2.1 and use (1.3), then we have

F0,1/4,1/2(z) =

∫ z

0

(
et/4

)2

dt = 2
[
ez/2 − 1

]
∈ S.

Example 2.2. Putting α = 1, β = 1/4, c = 0 and λ = 1 in Corollary 2.1 and using
(1.4), we have

F1,1/4,1(z) = 2

∫ z

0

sinh
(√

t
2

)

√
t

dt = 8

[
cosh

(√
z

2

)
− 1

]
∈ S.

Our second main result contains sufficient univalence conditions for integral oper-
ators of the type (1.6) when the functions gj (j = 1, ..., n) are normalized forms of
Rabotnov functions involving various parameters. The key tools in the proof are
Lemma 1.2 and the inequality (1.12) of Lemma 1.4.

Theorem 2.2. Let the parameters αj ≥ 0, βj > 0 (j = 1, ..., n) and

β

1 + α
= max

{
βj

1 + αj

∣∣∣∣(j = 1, ..., n)

}

be so constrained that

β

1 + α
< ln(2) with α ≥ 0, β > 0.

Consider the functions Rαj ,βj
: U → C defined by (2.2), and let R(γ) > 0. More-

over, suppose that the following inequality holds true:

|γ| ≤
(1 + α)

(
2− e

β
1+α

)

nβe
β

1+α

R(γ).
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Then the function Gα1,...,αn,β1,...,βn,n,γ(z) : U → C defined by

Gα1,...,αn,β1,...,βn,n,γ(z) =


(nγ + 1)

∫ z

0

n∏

j=1

(
Rαj ,βj

(t)
)γ
dt



1/(nγ+1)

is in the class S of normalized univalent functions in U.

Proof. Let us consider the function G̃α1,...,αn,β1,...,βn,n,γ(z) : U → C defined by

G̃α1,...,αn,β1,...,βn,n,γ(z) =

∫ z

0

n∏

j=1

(
Rαj ,βj

(t)

t

)γ

dt.

Observe that G̃α1,...,αn,β1,...,βn,n,γ ∈ A, that is
G̃α1,...,αn,β1,...,βn,n,γ(0) = G̃′

α1,...,αn,β1,...,βn,n,γ(0)− 1 = 0.

Using (1.12) of Lemma 1.4 for each αj , βj (j = 1, ..., n) and hypothesis of Theorem
2.2, we have

1− |z|2R(γ)

R(γ)

∣∣∣∣∣
zG̃′′

α1,...,αn,β1,...,βn,n,γ(z)

G̃′
α1,...,αn,β1,...,βn,n,γ(z)

∣∣∣∣∣ ≤
|γ|

R(γ)

n∑

j=1

∣∣∣∣
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

∣∣∣∣

≤ |γ|
R(γ)

n∑

j=1

βj

(1+αj)
e

βj

1+αj

2− e
βj

1+αj

≤ |γ|
R(γ)

n∑

j=1

β
(1+α)e

β
1+α

2− e
β

1+α

=
|γ|

R(γ)

nβe
β

1+α

(1 + α)
(
2− e

β
1+α

) ≤ 1.

Applying now Lemma 1.2 and the fact that R(nγ + 1) > R(γ), the function
Gα1,...,αn,β1,...,βn,n,γ(z) defined by

Gα1,...,αn,β1,...,βn,n,γ(z) =


(nγ + 1)

∫ z

0

tnγ
n∏

j=1

(
Rαj ,βj

(t)

t

)γ

dt



1/(nγ+1)

,

then belongs to the class S. The proof of Theorem 2.2 is complete. �

By choosing n = 1, and also α1 = α, β1 = β in Theorem 2.2, we have the
following result.

Corollary 2.2. Let the parameters α ≥ 0, β > 0 be so constrained that

β

1 + α
< ln(2).

Consider the functions Rα,β : U → C defined by (1.2), and let R(γ) > 0 be such
that the following inequality holds true:

|γ| ≤
(1 + α)

(
2− e

β
1+α

)

βe
β

1+α

R(γ).
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Then the function Gα,β,γ(z) : U → C defined by

Gα,β,γ(z) =

[
(γ + 1)

∫ z

0

(Rα,β(t))
γ
dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

By setting n = 1, α1 = α, β1 = β and γ = 1 in Theorem 2.2, we get the following
result.

Corollary 2.3. Let the parameters α ≥ 0, β > 0 be so constrained that

β

1 + α
≤W (2e)− 1,

where W(2e) is given by (1.9). Consider the functions Rα,β : U → C defined by
(1.2), then the function Gα,β(z) : U → C defined by

Gα,β(z) =

[
2

∫ z

0

Rα,β(t)dt

]1/2

is in the class S of normalized univalent functions in U.

As before, we give below few examples of Corollary 2.3.

Example 2.3. Putting α1 = 0, β1 = 1/4 in Corollary 2.3 and using (1.3), we have

G0,1/4(z) =

[
2

∫ z

0

tet/4dt

]1/2
= 2

[
2 (z − 4) e

z
4 + 8

]1/2 ∈ S.

Example 2.4. Next, putting α = 1 and β = 1/4 in Corollary 2.3 and using (1.4),
we have

G1,1/4(z) = 2

[∫ z

0

√
t sinh

(√
t

2

)
dt

]1/2

= 4

[(
(z + 8) cosh

(√
z

2

)
− 4

√
z sinh

(√
z

2

))
− 8

]1/2
∈ S.

The following result contains another set of sufficient univalence conditions for inte-
gral operators of the type (1.7) when the functions hj (j = 1, ..., n) are normalized
forms of Rabotnov functions involving various parameters. We shall apply Lemma
1.1 and the inequality (1.13) of Lemma 1.4 to prove the following theorem.

Theorem 2.3. Let the parameters αj ≥ 0, βj > 0 and

β

1 + α
= max

{
βj

1 + αj

∣∣∣∣(j = 1, ..., n)

}
(2.9)

be so constrained that

β

1 + α
< W (2e)− 1 with α ≥ 0, β > 0,

where W (2e) is given by (1.9). Consider the functions Rαj ,βj
: U → C defined by

(2.2), and also let

R(ξ) > 0, c ∈ C\{−1} with |c| ≤ 1 and νj ∈ C\{0} (j = 1, ..., n)
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satisfy the following inequality:

|c|+ 1

|ξ|
β(2 + 2α+ β)e

β
1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
n∑

j=1

|νj | ≤ 1.

Then the function Hα1,...,αn,β1,...,βn,ν1,...,νn,ξ(z) : U → C defined by

Hα1,...,αn,β1,...,βn,ν1,...,νn,ξ(z) =


ξ

∫ z

0

tξ−1
n∏

j=1

(
R

′
αj ,βj

(t)
)νj

dt



1/ξ

is in the class S of normalized univalent functions in U.

Proof. Our demonstration of proof of Theorem 2.3 is similar to that of Theorem 2.1.
Indeed, by considering the function Hα1,...,αn,β1,...,βn,ν1,...,νn(z) : U → C defined by

Hα1,...,αn,β1,...,βn,ν1,...,νn(z) =

∫ z

0

n∏

j=1

(
R

′
αj ,βj

(t)
)νj

dt,

we observe that Hα1,...,αn,β1,...,βn,ν1,...,νn ∈ A, that is
Hα1,...,αn,β1,...,βn,ν1,...,νn(0) = H′

α1,...,αn,β1,...,βn,ν1,...,νn(0)− 1 = 0.

On the other hand, it is easy to see that

H′
α1,...αn,β1,...,βn,ν1,...,νn(z) =

n∏

j=1

(
R

′
αj ,βj

(z)
)νj

(2.10)

and

H′′
α1,...,αn,β1,...,βn,ν1,...,νn(z) =

n∑

j=1

νj
(
R

′
αj ,βj

(z)
)νj−1

· R′′
αj ,βj

(z)

n∏

k=1
(k 6=j)

(R′
αk,βk

(z))
νk . (2.11)

Applying (2.10) and (2.11), we have

zH′′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

=

n∑

j=1

νj
zR′′

αj ,βj
(z)

R′
αj ,βj

(z)
.

Now, by making use of the inequality (1.13) of Lemma 1.4 for each αj , βj (j =
1, ..., n), we obtain
∣∣∣∣
zH′′

α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

∣∣∣∣ ≤
n∑

j=1

|νj |
∣∣∣∣
zR′′

αj ,βj
(z)

R′
αj ,βj

(z)

∣∣∣∣

≤
n∑

j=1

|νj |
β(2 + 2αj + βj)e

βj

1+αj

(1 + αj)

(
2(1 + αj)− (1 + αj + βj)e

βj
1+αj

) .

(2.12)

Let

ψ(x) =
x(2 + x)ex

2− (1 + x)ex
=⇒ ψ′(x) =

ex ·
[
2x2 + 8x+ 4−

(
x2 + 2x+ 2

)
ex
]

[2− (x+ 1) ex]
2 .
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Clearly, ψ′(x) is positive for x ∈ (0,W (2e) − 1) and hence ψ(x) is an increasing
function of x for x ∈ (0,W (2e)− 1). Thus, in view of (2.9), we have

ψ

(
βj

1 + αj

)
≤ ψ

(
β

1 + α

)
.

Using now (2.12), we obtain
∣∣∣∣
zH′′

α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

∣∣∣∣ ≤
β(2 + 2α+ β)e

β
1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
n∑

j=1

|νj |.

Finally, from the triangle inequality and the assertion of Theorem 2.3, we get∣∣∣∣c|z|
2ξ +

(
1− |z|2ξ

) zH′′
α1,...,αn,β1,...,βn,ν1,....,νn(z)

ξH′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

∣∣∣∣ ≤ |c|+ 1

|ξ|

∣∣∣∣
zH′′

α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

∣∣∣∣

≤ |c|+ β(2 + 2α+ β)e
β

1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
n∑

j=1

|νj |
|ξ| ≤ 1,

which in view of Lemma 1.1 implies that Hα1,...,αn,β1,...,βn,ν1,...,νn,ξ(z) ∈ S. This
evidently completes the proof of Theorem 2.3. �

By setting n = 1, and also α1 = α, β1 = β, ν1 = ν and ξ = 1 in Theorem 2.3, we
immediately obtain the following result.

Corollary 2.4. Let the parameters α ≥ 0 and β > 0 be so constrained that

β

1 + α
< W (2e)− 1.

Consider the functions Rα,β : U → C defined by (1.2), and also let

c ∈ C\{−1} with |c| ≤ 1 and ν ∈ C\{0}
satisfy the following inequality:

|c|+ β(2 + 2α+ β)e
β

1+α

(1 + α)
(
2(1 + α) − (1 + α+ β)e

β
1+α

) |ν| ≤ 1.

Then the function Hα,β,ν(z) : U → C defined by

Hα,β,ν(z) =

∫ z

0

(R′
α,β(t))

ν
dt

is in the class S of normalized univalent functions in U.

Example 2.5. If we put α = 0, β = 1/8, c = 0 and ν = 2 in Corollary 2.4 and use
(1.3), we have then

H0,1/8,2(z) =

∫ z

0

(
t

8
+ 1

)2

et/4dt

=
1

16

[(
z2 + 8z + 32

)
ez/4 − 32

]
∈ S.

Example 2.6. Next, by setting α = 1, β = 1/4, c = 0 and ν = 1 in Corollary 2.4
and using (1.4), we have

H1,1/4,1(z) = R1,1/4(z) = 2
√
z sinh

(√
z

2

)
∈ S.
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By applying Lemma 1.3 and the inequality (1.11) of Lemma 1.4, we can establish
the following result which follows straightforwardly from the details mentioned in
the proof of Theorem 2.3.

Theorem 2.4. Let the parameters α ≥ 0 and β > 0 be so constrained that

β

1 + α
< W (2e)− 1,

where W (2e) is given by (1.9). Consider the functions Rα,β : U → C defined by
(1.2), and also let R(δ) ≥ 1 and

|δ| ≤ 3
√
3

2
(
1 + β

1+α

)
e

β
1+α

.

Then the function Qα,β,δ(z) : U → C defined by

Qα,β,δ(z) =

[
δ

∫ z

0

tδ−1
(
eRα,β(t)

)δ

dt

]1/δ

is in the class S of normalized univalent functions in U.

For δ = 1 in Theorem 2.4, we immediately have the following result.

Corollary 2.5. Let the parameters α ≥ 0 and β > 0 be so constrained that

β

1 + α
< W (2e)− 1.

Consider the functions Rα,β : U → C defined by (1.2). Then the function Qα,β(z) :
U → C defined by

Qα,β(z) =

∫ z

0

eRα,β(t)dt

is in the class S of normalized univalent functions in U.

3. Convexity Of Integral Operators Involving
The Rabotnov Functions

In this section, we first prove the following theorem which gives the sufficient
conditions of convexity for integral operators of the type (1.5) when the functions
fj (j = 1, , n) are normalized forms of Rabotnov functions. The proof is based on
the application of Lemma 1.1.

Theorem 3.1. Let the parameters αj ≥ 0, βj > 0 and

β

1 + α
= max

{
βj

1 + αj

∣∣∣∣(j = 1, ..., n)

}

be so constrained that
β

1 + α
< ln(2) with α ≥ 0, β > 0.

Consider the functions Rαj ,βj
: U → C defined by (2.2), and suppose also that

λj ∈ C\{0} (j = 1, ..., n)

satisfy the following inequality:

1−
β

(1+α)e
β

1+α

2− e
β

1+α

n∑

j=1

1

|λj |
≥ 0. (3.1)
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Then the function Fα1,...,αn,β1,...,βn,λ1,...,λn
(z) : U → C defined by

Fα1,...,αn,β1,...,βn,λ1,...,λn
(z) =

∫ z

0

n∏

j=1

(
Rαj ,βj

(t)

t

)1/λj

dt

is in the class K of normalized convex functions in U.

Proof. Proceeding similarly as in Theorem 2.1, we have

zF ′′
α1,....αn,β1,...,βn,λ1,....,λn

(z)

F ′
α1,....αn,β1,...,βn,λ1,....,λn

(z)
=

n∑

j=1

1

λj

(
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

)
.

Hence,

R

[
1 +

zF ′′
α1,...,αn,β1,...,βn,λ1,...,λn

(z)

F ′
α1,...,αn,β1,...,βn,λ1,...,λn

(z)

]
= R


1 +

n∑

j=1

1

λj

(
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

)


= 1 +R




n∑

j=1

1

λj

(
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

)


≥ 1−

∣∣∣∣∣∣

n∑

j=1

1

λj

(
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

)∣∣∣∣∣∣

≥ 1−
n∑

j=1

1

|λj |

∣∣∣∣
zR′

αj ,βj
(z)

Rαj ,βj
(z)

− 1

∣∣∣∣

≥ 1−
n∑

j=1

1

|λj |

βj

(1+αj)
e

βj

1+αj

2− e
βj

1+αj

(using (1.12))

≥ 1−
β

(1+α)e
β

1+α

2− e
β

1+α

n∑

j=1

1

|λj |
(in view of (2.8))

≥ 0 (in view of (3.1)).

This implies that Fα1,...,αn,β1,...,βn,λ1,...,λn
(z) ∈ K and the proof of Theorem 3.1 is

complete. �

Setting n = 1, λ1 = λ, and also α1 = α, β1 = β in Theorem 3.1, we immediately
obtain the following result.

Corollary 3.1. Let the parameters α ≥ 0, β > 0 and λ ∈ C\{0} be so constrained
that

β

1 + α
≤W (2|λ|e|λ|)− |λ|.

Consider the functions Rα,β : U → C defined by (1.2), then the function Fα,β,λ(z) :
U → C defined by

Fα,β,λ(z) =

∫ z

0

(
Rα,β(t)

t

)1/λ

dt

is in the class K of normalized convex functions in U.
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Remark 3.1. If we put λ = 1 in Corollary 3.1, we then get the same result as
obtained earlier in Theorem 3.4 of [35].

Example 3.1. Putting α = 0, β = 1/4 and λ = 1/2 in Corollary 3.1 and using (1.3),
we have

F0,1/4,1/2(z) =

∫ z

0

(
et/4

)2

dt = 2
[
ez/2 − 1

]
∈ K (See below Figure(a)).

Example 3.2. Next, putting α = 1 and β = 1/4 and λ = 1 in Corollary 3.1 and
using (1.4), we get

F1,1/4,1(z) = 2

∫ z

0

sinh
(√

t
2

)

√
t

dt = 8

[
cosh

(√
z

2

)
− 1

]
∈ K.

The following result contains another set of sufficient convexity conditions for
integral operators of the type (1.7) when the functions hj (j = 1, ..., n) are normal-
ized forms of Rabotnov functions involving various parameters. The key tools in
the proof are Lemma 1.1 and the inequality (1.13) of Lemma 1.4.

Theorem 3.2. Let the parameters αj ≥ 0, βj > 0 and

β

1 + α
= max

{
βj

1 + αj

∣∣∣∣(j = 1, ..., n)

}

be so constrained that
β

1 + α
< W (2e)− 1 with α ≥ 0, β > 0.

Consider the functions Rαj ,βj
: U → C defined by (2.2), also let

νj ∈ C\{0} (j = 1, ..., n)

satisfy the following inequality:

1− β(2 + 2α+ β)e
β

1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
n∑

j=1

|νj | ≥ 0.

Then the function Hα1,...,αn,β1,...,βn,ν1,...,νn(z) : U → C, defined by

Hα1,...,αn,β1,...,βn,ν1,...,νn(z) =

∫ z

0

n∏

j=1

(
R

′
αj ,βj

(t)
)νj

dt

is in the class K of normalized convex functions in U.

Proof. Proceeding similarly as in Theorem 2.3, we have

R

[
1 +

zH′′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

]
≥ 1−

∣∣∣∣
zH′′

α1,...,αn,β1,...,βn,ν1,...,νn(z)

H′
α1,...,αn,β1,...,βn,ν1,...,νn(z)

∣∣∣∣

≥ 1− β(2 + 2α+ β)e
β

1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

)
n∑

j=1

|νj | ≥ 0.

This implies that Hα1,...,αn,β1,...,βn,ν1,....,νn(z) ∈ K and the proof of Theorem 3.2 is
complete. �

If we set n = 1, and also α1 = α, β1 = β, ν1 = ν in Theorem 3.2, we immediately
obtain the following result.
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Corollary 3.2. Let the parameters α ≥ 0 and β > 0 be so constrained that

β

1 + α
< W (2e)− 1.

Consider the functions Rα,β : U → C defined by (1.2), and also ν ∈ C\{0} satisfy
the following inequality:

1− β(2 + 2α+ β)e
β

1+α

(1 + α)
(
2(1 + α)− (1 + α+ β)e

β
1+α

) |ν| ≥ 0.

Then the function Hα,β,ν(z) : U → C defined by

Hα,β,ν(z) =

∫ z

0

(R′
α,β(t))

ν
dt

is in the class K of normalized convex functions in U.

Remark 3.2. Setting n = 1, and also α1 = α, β1 = β, ν1 = 1 in Corollary 3.2, we
obtain the same result as obtained in Theorem 3.2 of [35].

Example 3.3. Next, putting α = 0, β = 1/8 and ν = 2 in above Corollary 3.2 and
using (1.3), we have

H0,1/8,2(z) =

∫ z

0

(
t

8
+ 1

)2

et/4dt

=
1

16

[(
z2 + 8z + 32

)
ez/4 − 32

]
∈ K.

Example 3.4. Further, putting α = 1, β = 1/4 and ν = 1 in Corollary 3.2 and using
(1.4), we have

H1,1/4,1(z) = R1,1/4(z) = 2
√
z sinh

(√
z

2

)
∈ K (See Figure(b)).

(a) Image of U under 2
(

ez/2 − 1
)

. (b) Image of U under R1,1/4(z).

Data availability statement: Data is available within the article.
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[5] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte funk-

tionen, J. Reine Angew. Math. 255 (1972) 23–43.
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