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REGULARIZATION FOR A CLASS OF BACKWARD
PARABOLIC PROBLEMS

NGUYEN HUY TUAN

Abstract. The backward Cauchy problem ut +Au(t) = 0, u(T ) = f, where A
is a positive self-adjoint unbounded operator,which has continuous spectrum

and f is a given function being given is regularized by the well-posed problem

the truncation method. The new error estimates of the regularized solution
are obtained. The main purpose of this paper is to improve the earlier results

by [2, 19].

1. Introduction

Let H be a Hilbert space. For a positive number T , we shall consider the problem
of finding the function u : [0, T ] → H from the system{

ut + Au = 0, 0 < t < T

u(T ) = f
(1.1)

for some prescribed final value f in H. The operator A is a positive self-adjoint
operator such that 0 ∈ ρ(A). This problem is well known to be severely ill-posed
and regularization methods for it are required.

The case A be a self-adjoint operator having the discrete spectrum on H has
been considered by many authors, using different approaches. Such authors as
Latt‘es and Lions [9],Miller [10], Payne [12] have approximated (1) by perturbing
the operator A. This method is called Quasi-reversibility method (QR). The main
ideas of the method is of adding a ”corrector” into the main equation. In fact, they
considered the problem{

ut + Au− εA∗Au = 0, 0 < t < T

u(T ) = f
(1.2)

The stability magnitude of the method are of order ecε−1
. In [7], the problem is

approximated with {
ut + Au + εAut = 0, 0 < t < T

u(T ) = f
(1.3)
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Ames and Hughes [1] gave a survey about an association between the operator-
theoretic methods and the QR method to treat the abstract Cauchy problem

du

dt
= Au, u(T ) = χ, 0 < t < T.

The authors considered the problem in both the Hilbert space and in the Banach
space. They also gave many structural stability results. Very recently, using the
QR method, Yongzhong Huang and Quan Zheng, in [17], considered the problem in
an abstract setting, i.e., −A is the generator of an analytic semigroup in a Banach
space.

In [14], Showalter presented a different method called the quasiboundary value
(QBV) method to regularize that linear homogeneous problem which gave a sta-
bility estimate better than the one of discussed methods. The main ideas of the
method is of adding an appropriate ”corrector” into the final data. Using the
method, Clark-Oppenheimer, in [3]in regularizing the problem (1.1) by the non-
local boundary value problem{

ut + Au = 0, 0 < t < T

εu(0) + u(T ) = f
(1.4)

Very recently, Denche-Bessila in [18], regularized the backward problem by pertub-
ing the final condition as follows{

ut + Au = 0, 0 < t < T

εut(0) + u(T ) = f
(1.5)

In our knowledge, the case A has discrete spectrum has been treated in many recent
papers, such as [16, 18]. However, the literature on the homogeneous case of the
problem in the case A has continuous spectrum are quite scarce. For some related
works on this type of such problem, we refer the reader to N.Boussetila and F.
Rebbani [2], Denche and S. Djezzar [19].

In the present paper, we shall use new truncated method to extend the continuous
dependence results of [2, 19]. Recently,the truncated regularization method has
been effectively applied to solve the sideways heat equation [4], a more general
sideways parabolic equation [5] and backward heat [6]. This regularization method
is rather simple and convenient for dealing with some ill-posed problems. However,
as far as we know, there are not any results of truncated method for treating the
problem (1) until now. Moreover, we establish some new error estimates including
the order of Holder type. Especially, the convergence of the approximate solution
at t = 0 is also proved.

This paper is organized as follows. In the next section, for ease of the reading, we
summarize some well-known facts in semigroup of operator. The stability estimates
of the regularized solution will be presented in Section 3.

Before going to the details of next sections, we shall give the precise formula
of the operator S(t). We assume that H is a separable Hilbert space and A is
self-adjoint and that 0 is in the resolvent set of A. S(t) is the compact contraction
semi group generated by −A. We denote by {Eλ, λ ≥ 0} the spectral resolution of
the identity associated to A. Then S(t) = e−tA =

∫∞
0

e−tλ dEλ ∈ L(H), t ≥ 0, the
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C0-semigroup generated by −A. Then from [13], we get

Au =
∫ +∞

0

λdEλu (1.6)

for all u ∈ D(A). In this connection, u ∈ D(A) iff the integral (1.6) exists,i.e.,∫ +∞

0

λ2d‖Eλu‖2 < ∞.

2. The main results

A solution of (1.1) on the interval [0, T ] is a function u ∈ C([0, T ];H)∩C1((0, T );H)
such that for all t ∈ (0, T ), u(t) ∈ D(A) and u(T ) = f holds. It is useful to know
exactly the admissible set for which (1.1) has a solution. The following lemma gives
an answer to this question.

Lemma 2.1. Problem (1.1) has a solution if and only if∫ ∞

0

e2λT d‖Eλf‖2 < ∞

and its unique solution is represented by

u(t) = e(T−t)Af. (2.1)

If the problem (1.1) admits a solution u then this solution can be represented by

u(t) = e(T−t)Af =
∫ ∞

0

eλ(T−t)dEλf. (2.2)

Since t < T , we know from (2.2) that the terms e−(t−T )λ is the unstability cause.
So, to regularize problem (2.2),we should replace it by the better terms. In [19], the
authors replaced e−(t−T )λ by the better term e−tλ

ελ+e−T λ . In this paper, we hope to
recover the stability of problem (2.2) by filtering the high frequencies with suitable
method. The essence of our regularization method is just to eliminate all high
frequencies from the solution, and instead consider (2.2) only for λ ≤ β, where β is
an appropriate positive constant depend on ε which will be selected appropriately
as regularization parameter. Let f and fε denote the exact and measured data at
t = T, respectively, which satisfy

‖f − fε‖ ≤ ε.

Hence, the ill-posed problem (1.1) can be approximated by the problem

uε(t) =
∫ ∞

0

eλ(T−t)χ[0,β]dEλf (2.3)

where χ[a,b] is the characteristic function of interval [a, b] for a < b.
The approximated solution vε corresponding to the final value fε is given the form

vε(t) =
∫ ∞

0

eλ(T−t)χ[0,β]dEλfε. (2.4)

For clarity, from now on, we denote the solution of (1) by u(t), and the solution of
(2.4) by vε(t). Our first main theorem is the following
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Theorem 2.2. The solution defined in (2.4) depends continuously (in C([0, T ];H))
on fε. Let vε and wε be two solutions of problem (2.4) corresponding to the final
values fε and gε respectively, then

‖vε(t)− wε(t)‖ ≤ e(T−t)β‖fε − gε‖.

Remark. 1) If β = 1
T ln( T

ε(1+ln( T
ε ))

), the stability magnitude is

E1(ε, t) = C1e
(T−t)β = C1ε

t
T −1

(
T−1 ln(Teε−1)

) t
T −1

.

Note that the stability order in [19] is the form E2(ε) = C2
T

ε(1+ln( T
ε ))

. Comparing
E1(ε, t) and E2(ε, t), we see that the stability order of our method is less than its in
[19].
2. Using Theorem 2.2, we have the error

‖uε(t)− vε(t)‖ ≤ e(T−t)β‖f − fε‖ ≤ e(T−t)βε. (2.5)

Theorem 2.3. Let u ∈ C([0, T ];H) be a solution of (1.1). Then

‖u(t)− vε(t)‖ ≤ e(T−t)βε + e−tβ‖u(0)‖, ∀t ∈ (0, T ]. (2.6)

Remark. 1. If we choose β = 1
T ln( 1

ε ) then the estimates (2.6) becomes

‖u(t)− uε(t)‖ ≤ ε
t
T (1 + ‖u(0)‖). (2.7)

This error is also given by Clark and Oppenheimer [3], Tautenhahn [20].
2. The error in t = 0 is not considered in (2.6). In the next Theorem, we shall
establish some estimates which convergences to zero in t = 0.

Theorem 2.4. Assume that u has the eigenfunction expansion u(t) =
∫∞
0

dEλu(t).
a) Assume that there exist some positive constants p and I1 such that∫ ∞

0

λ2pd‖Eλu(t)‖2 < I2
1 . (2.8)

If we choose β = a
T ln( 1

ε ), (0 < a < 1), then for every t ∈ [0, T ]

‖u(t)− vε(t)‖ ≤ ε
at
T +1−a + (

T

a
)pI1

(
ln(

1
ε
)
)−p

. (2.9)

b) Assume that there exist some positive constants q and I2 such that∫ ∞

0

e2qλd‖Eλu(t)‖2 < I2
2 . (2.10)

If we choose β = 1
T+q ln( 1

ε ), then for every t ∈ [0, T ]

‖u(t)− vε(t)‖ ≤ ε
q

T+q

(
ε

t
T+q + I2

)
. (2.11)

Remark. 1. We know that the exact solution u of (1.1) is unknown. Therefore, in
practice, the assumptions a) and b) in Theorem 2.4 are very difficult to check. To
improve this, we give the different conditions on the known function f as follows∫ ∞

0

λ2pe2(T−t)λd‖Eλf‖2 < I2
3 . (2.12)

and ∫ ∞

0

e2(T−t+q)λd‖Eλf‖2 < I2
4 . (2.13)
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where I3 and I4 are the positive numbers. Then, by similar way, we obtain the same
convergence result.

2. One superficial advantage of this method is that there is a error estimation in
the original time t = 0, which is not given in [22]. We have the following estimate
in t = 0

‖u(0)− vε(0)‖ ≤ ε1−a + (
T

a
)pI1

(
ln(

1
ε
)
)−p

. (2.14)

and

‖u(0)− vε(0)‖ ≤ ε
q

T+q (1 + I2). (2.15)

3. It follows from (2.14) that if ε → 0 then the second term on the righthand side
of the inequality approaches zero with a logarithmic speed, and the first one as a
power.So, the terms in (2.14) is logarithmic stability estimates. This logarithmic
order is also given in [2, 6, 16, 20, 21].

4. Notice that the error is in [19] (See Theorem 2.6 , page 5).

‖u(0)− uε(0)‖ ≤ NTekT

(
1 + ln

T

ε
)
)−1

. (2.16)

In [2] (see Theorem 4.14, p.12), the authors established the optimal order error of
their method. With the condition ‖Au(0)‖2 =

∫ +∞
γ

λ2e2Tλ d‖Eλϕ‖2 < ∞, and that
γ ≥ 1, they estimated ‖uσ(0)− u(0)‖2 as follows

‖uσ(0)− u(0)‖2 ≤ 2
(( T

1 + ln(γT
β )

)2 + Tα
)
‖Au(0)‖2. (2.17)

The error orders are same in (2.14).
5. It follows from (2.15) we obtain the Holder stability. As we know, the error of

Holder form is the optimal error. Thus,the convergence to zero of εα, (0 < α < 1) is
quickly than logarithmic terms. We note again such order is not considered in [16].
Comparing (2.15) and (2.16) with (2.17) and the results obtained in [16, 18, 19],
we realize (2.15) is sharp and the best known estimate. The convergence to zero of
εα, (0 < α < 1) is quickly than logarithmic terms. This is generalization of many
discussed results.

3. Proof of the main results.

Proof of Lemma 2.1.
If the problem (1.1) has a unique solution u then

u(t) = e−tAu(0). (3.1)

Then u(T ) = f = e−tAu(0). It follows that

‖u(., 0)‖2 =
∫ ∞

0

e2Tλd‖Eλf‖2 < ∞.

If we get (7), then define v be as the function

v =
∫ ∞

0

eTλdEλf.
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Consider the problem {
ut + Au = 0,

u(0) = v,
(3.2)

It is clear to see that (3.2) is the direct problem so it has a unique solution u. We
have

u(t) =
∫ ∞

0

e−tλeTλdEλf. (3.3)

Let t = T in (3.3), we have

u(T ) =
∫ ∞

0

e−TλeTλdEλf = f.

Hence, u is the unique solution of (1.1).

Proof of Theorem 2.2.
It is well known that for all t ∈ [0, T ],

vε(t)− wε(t) =
∫ β

0

eλ(T−t)dEλ(fε − gε). (3.4)

Using (3.4), we obtain

‖vε(t)− wε(t)‖2 ≤ e2(T−t)β

∫ ∞

0

d‖Eλ(fε − gε)‖2

≤ e2(T−t)β‖fε − gε‖2.

This inequality follows the solution of the problem (2.4) depend continuously on ϕ
and Theorem 2.2 is proved.

Proof of Theorem 2.3.
The functions u(t), uε(t) have the expansion

u(t) =
∫ ∞

0

eλ(T−t)dEλf. (3.5)

uε(t) =
∫ ∞

0

eλ(T−t)χ[0,β]dEλf. (3.6)

Hence, we get

u(t)− uε(t) =
∫ ∞

β

eλ(T−t)dEλf =
∫ ∞

0

e−λtχ[β,∞]e
λT dEλf.

Then

‖u(t)− uε(t)‖2 ≤
∫ ∞

0

(
e−λtχ[Aε,∞]

)2 (
eλT dEλf

)2
.

Using (
e−λtχ[β,∞]

)2 ≤ e−2tβ

and

‖u(0)‖2 =
∫ ∞

0

(
eλT dEλf

)2
.
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we obtain

‖u(t)− uε(t)‖2 ≤ e−2tβ‖u(0)‖2.

Using (2.5) and the triangle inequality, we get

‖u(t)− vε(t)‖ ≤ ‖u(t)− uε(t)‖+ ‖uε(t)− vε(t)‖
≤ e−tβ‖u(0)‖+ e(T−t)βε.

This completes the proof of Theorem 2.3.

Proof of Theorem 2.4

Proof a. Since (3.5) and (3.6), we have

u(t)− uε(t) =
∫ ∞

0

eλ(T−t)χ[β,∞]dEλf

=
∫ ∞

0

λ−βeλ(T−t)λβχ[β,∞]dEλf.

Then

‖u(t)− uε(t)‖2 =
∫ ∞

0

(
λ−βχ[β,∞]

)2
(
eλ(T−t)λβdEλf

)2

≤ β−2p

∫ ∞

0

λ2pd‖Eλu(t)‖2.

Using (2.5) and the triangle inequality, we get

‖u(t)− vε(t)‖ ≤ ‖u(t)− uε(t)‖+ ‖uε(t)− vε(t)‖ ≤ I1β
−p + e(T−t)βε

≤ ε
at
T +1−a + (

T

a
)pI1

(
ln(

1
ε
)
)−p

.

Proof b. Since (3.5) and (3.6), we also have

u(t)− uε(t) =
∫ ∞

0

eλ(T−t)χ[β,∞]dEλf

=
∫ ∞

0

e−qλeλ(T−t)eqλχ[β,∞]dEλf.

Then

‖u(t)− uε(t)‖2 =
∫ ∞

0

(
e−qλχ[β,∞]

)2
(
eλ(T−t)eqλdEλf

)2

≤ e−2qβ

∫ ∞

0

e2qλd‖Eλu(t)‖2.

Using (2.5) and the triangle inequality, we get

‖u(t)− vε(t)‖ ≤ ‖u(t)− uε(t)‖+ ‖uε(t)− vε(t)‖ ≤ I2e
−2qβ

∫ ∞

0

e2qλd‖Eλu(t)‖2 + e(T−t)βε

≤ ε
q

T+q

(
ε

t
T+q + I2

)
.
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