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RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC

NON-METRIC CONNECTION SATISFYING SOME

SEMISYMMETRY CONDITIONS

(COMMUNICATED BY UDAY CHAND DE)

YUSUF DOĞRU, CIHAN ÖZGÜR AND CENGIZHAN MURATHAN

Abstract. We study on a Riemannian manifold (M, g) with a semi-symmetric
non-metric connection. We obtain some characterizations for (M, g) satisfying

some semisymmety conditions.

1. Introduction

Let ∇̃ be a linear connection in an n-dimensional differentiable manifold M . The
torsion tensor T and the curvature tensor R̃ of ∇̃ are given respectively by

T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.

The connection ∇̃ is symmetric if its torsion tensor T vanishes, otherwise it is
not symmetric. The connection ∇̃ is a metric connection if there is a Riemannian
metric g in M such that ∇̃g = 0, otherwise it is non-metric [15]. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.

In 1932, H. A. Hayden [8] introduced a metric connection ∇̃ with a non-zero
torsion on a Riemannian manifold. Such a connection is called Hayden connection.
In [7, 11], Friedmann and Schouten introduced the idea of a semi-symmetric linear

connection in a differentiable manifold. A linear connection ∇̃ is said to be a
semi-symmetric connection if its torsion tensor T is of the form

T (X,Y ) = ω(Y )X − ω(X)Y, (1.1)

where the 1-form ω is defined by

ω(X) = g(X,U),
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and U is a vector field. Hayden connection with the torsion tensor of the form (1.1)
is a semi-symmetric metric connection [10].

In [1], Agashe and Chafle introduced the idea of a semi-symmetric non-metric
connection on a Riemannian manifold. This was further developed by Agashe and
Chafle [2], De and Kamilya [5], De, Sengupta and Binh [12].

In [13, 14], Szabó studied semisymmetric Riemannian manifolds, that is Rie-
mannian manifolds satisfying the condition R ·R = 0. It is well known that locally
symmetric manifolds (i. e. Riemannian manifolds satisfying the condition ∇R = 0)
are trivially semisymmetric. But the converse statement is not true. If R · S = 0
then the manifold is called Ricci-semisymmetric. It is trivial that every semisym-
metric manifold is Ricci-semisymmetric but the converse statement is not true.

In this paper, we consider Riemannian manifolds admitting a semi-symmetric
non-metric connection such that U is a unit parallel vector field with respect to the
Levi-Civita connection ∇. We investigate the conditions R · R̃ = 0, R̃ · R = 0,
R · R̃− R̃ ·R = 0, R · S̃ = 0, R̃ ·S = 0, R · S̃− R̃ ·S = 0 and R̃ · S̃ = 0 on M, where
R and R̃ (resp. S and S̃) denote the curvature tensors (resp. Ricci tensors) of ∇
and ∇̃.

The paper is organized as follows. In Section 2 and Section 3, we give the
necessary notions and results which will be used in the next sections. In Section 4,
we prove that R·R̃ = 0 holds onM if and only ifM is semisymmetric. Furthermore,
we show that M is a quasi-Einstein manifold under certain conditions.

2. Preliminaries

An n-dimensional Riemannian manifold (M, g), (n ≥ 3), is said to be an Einstein
manifold if its Ricci tensor S satisfies the condition S = r

ng, where r denotes the
scalar curvature of M . If the Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bD(X)D(Y ), (2.1)

where a, b are scalars of which b ̸= 0 and D is a non zero 1-form, then M is called
a quasi-Einstein manifold [4].

For a (0, k)-tensor field T , k ≥ 1, on (M, g) we define the tensor R · T (see [6])
by

(R(X,Y ) · T )(X1, ..., Xk) = −T (R(X,Y )X1, X2,...,Xk)

−...− T (X1, ..., Xk−1, R(X,Y )Xk). (2.2)

If R ·R = 0 then M is called semisymmetric [13]. In addition, if E is a symmetric
(0, 2)-tensor field then we define the (0, k + 2)-tensor Q(E, T ) (see [6]) by

Q(E, T )(X1, ..., Xk;X,Y ) = −T ((X ∧E Y )X1, X2, ..., Xk)

−...− T (X1, ..., Xk−1, (X ∧E Y )Xk), (2.3)

where X ∧E Y is defined by

(X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y.

3. Semi-symmetric non-metric connection

Let ∇ be the Levi-Civita connection of a Riemannian manifold M . The semi-
symmetric non-metric connection ∇̃ is defined by

∇̃XY = ∇XY + ω(Y )X, (3.1)
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where
ω(X) = g(X,U),

and X,Y, U are vector fields on M [1]. Let R and R̃ denote the Riemannian

curvature tensors of ∇ and ∇̃, respectively. Then we know that [1]

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− θ(Y, Z)g(X,W ) (3.2)

+θ(X,Z)g(Y,W ),

where
θ(X,Y ) = g(AX,Y ) = (∇Xω)Y − ω(X)ω(Y ). (3.3)

Here A is a (1,1)-tensor field which is metrically equivalent to θ. Now assume that
U is a parallel unit vector field with respect to the Levi-Civita connection, i.e.,
∇U = 0 and ∥U∥ = 1. Then

(∇Xω)Y = ∇Xω(Y )− ω(∇XY ) = 0. (3.4)

So θ is a symmetric (0, 2)-tensor field. Since U is a parallel unit vector field, it is easy

to see that R̃ is a generalized curvature tensor and it is trivial that R(X,Y )U = 0.
Hence by a contraction, we find S(Y, U) = ω(QY ) = 0, where S denotes the Ricci
tensor of ∇ and Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ). It is easy
to see that we have also the following relations:

∇̃XU = X, (3.5)

R̃(X,Y )U = ω(Y )X − ω(X)Y, R̃ · θ = 0, (3.6)

S̃ = S + (n− 1)(ω ⊗ ω), (3.7)

and
r̃ = r + (n− 1), (3.8)

where S̃ and r̃ denote the Ricci tensor and the scalar curvature of M with respect
to semi-symmetric non-metric connection ∇̃.

4. Main Results

The tensors R̃ ·R and Q(θ, T ) are defined in the same way as in (2.2) and (2.3).

Let (R · R̃)hijklm and (R̃ ·R)hijklm denote the local components of the tensors R · R̃
and R̃ ·R, respectively. Hence, we have the following Proposition:

Proposition 4.1. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold
admitting a semi-symmetric non-metric connection. If U is a parallel unit vector
field with respect to the Levi-Civita connection ∇ then

(R · R̃)hijklm = (R ·R)hijklm (4.1)

and
(R̃ ·R)hijklm = (R ·R)hijklm −Q(−ω ⊗ ω,R)hijklm. (4.2)

Proof. Applying (3.2) in (2.2) and using (2.3), we obtain

R · R̃ = R ·R (4.3)

and

(R̃ ·R)hijklm = (R ·R)hijklm −Q(θ,R)hijklm

= (R ·R)hijklm −Q(−ω ⊗ ω,R)hijklm.

This completes the proof of the proposition. �
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As an immediate consequence of Proposition 4.1, we have the following theorem:

Theorem 4.2. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold ad-
mitting a semi-symmetric non-metric connection and U a parallel unit vector field
with respect to the Levi-Civita connection ∇. Then R · R̃ = 0 if and only if M is
semisymmetric.

Theorem 4.3. Let (M, g) be an (n ≥ 3)-dimensional semisymmetric Riemannian
manifold admitting a semi-symmetric non-metric connection. If U is a parallel unit
vector field with respect to the Levi-Civita connection ∇ and R̃ ·R = 0 then M is a
quasi-Einstein manifold.

Proof. Since M is semisymmetric and the condition R̃ · R = 0 holds on M , from
Proposition 4.1, we have

Q(ω ⊗ ω,R)hijklm = 0. (4.4)

Contracting (4.4) with gij we get

Q(ω ⊗ ω, S)hklm = 0,

which gives us

S = r(ω ⊗ ω),

where r : M → R is a function. So by virtue of (2.1), M is a quasi-Einstein
manifold. Thus the proof of the theorem is completed. �

Theorem 4.4. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold admit-
ting a semi-symmetric non-metric connection. If U is a parallel unit vector field
with respect to the Levi-Civita connection ∇ and R · R̃ − R̃ · R = 0, then M is a
quasi-Einstein manifold.

Proof. Using (4.1) and(4.2) we get

Q(ω ⊗ ω,R)hijklm = 0.

Using the same method as in the proof of Theorem 4.3, we obtain that M is a
quasi-Einstein manifold. So we get the result as required. �

Proposition 4.5. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold
admitting a semi-symmetric non-metric connection. If U is a parallel unit vector
field with respect to the Levi-Civita connection ∇ then

(R · S̃)hklm = (R · S)hklm, (4.5)

(R̃ · S)hklm = (R · S)hklm −Q(−ω ⊗ ω, S)hklm. (4.6)

Proof. Applying (3.7) and (3.2) in (2.2) and using (2.3), we obtain

R · S̃ = R · S

and

(R̃ · S)hklm = (R · S)hklm −Q(θ, S)hklm

= (R · S)hklm −Q(−ω ⊗ ω, S)hklm.

This completes the proof of the proposition. �

As an immediate consequence of Proposition 4.5, we have the following theorem:
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Theorem 4.6. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold ad-
mitting a semi-symmetric non-metric connection and U a parallel unit vector field
with respect to the Levi-Civita connection ∇. Then R · S̃ = 0 if and only if M is
Ricci-semisymmetric.

Theorem 4.7. Let (M, g) be an (n ≥ 3)-dimensional Ricci-semisymmetric Rie-
mannian manifold admitting a semi-symmetric non-metric connection. If U is a
parallel unit vector field with respect to the Levi-Civita connection ∇ and R̃ · S = 0
then M is a quasi-Einstein manifold.

Proof. Since the condition R̃ · S = 0 holds on M , from Proposition 4.5, we have

Q(ω ⊗ ω, S)hklm = 0.

So by the same reason as in the proof of Theorem 4.3, M is a quasi-Einstein
manifold. Thus the proof of the theorem is completed. �

Theorem 4.8. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold ad-
mitting a semi-symmetric non-metric connection. If U is a parallel unit vector
field with respect to Levi-Civita connection ∇ and R · S̃ − R̃ · S = 0, then M is a
quasi-Einstein manifold.

Proof. Using (4.5) and(4.6) we get

Q(ω ⊗ ω, S)hklm = 0.

Using the same method as in the proof of Theorem 4.3, we obtain that M is a
quasi-Einstein manifold. This proves the theorem. �

Theorem 4.9. Let (M, g) be an (n ≥ 3)-dimensional Ricci-semisymmetric Rie-
mannian manifold admitting a semi-symmetric non-metric connection. If U is a
parallel unit vector field with respect to the Levi-Civita connection ∇ and R̃ · S̃ = 0,
then M is a quasi-Einstein manifold.

Proof. Applying (3.7) and (3.2) in (2.2) and using (2.3) we obtain,

(R̃ · S̃)hklm = (R · S)hklm −Q(−ω ⊗ ω, S)hklm.

We suppose that R̃ · S̃ = 0 and R ·S = 0. So using the same method as in the proof
of Theorem 4.3, we obtain that M is a quasi Einstein manifold. Thus the proof of
the theorem is completed.

The following example shows that there is a Riemannian manifold with a semi-
symmetric non-metric connection having a parallel vector field associated to the
1-form satisfying R · R̃ = R ·R. �

Example. Let M2m+1 be a (2m + 1)-dimensional almost contact manifold
endowed with an almost contact structure (φ, ξ, η), that is, φ is a (1, 1)-tensor field,
ξ is a vector field and η is a 1-form such that

φ2 = −I + η ⊗ ξ and η(ξ) = 1.

Then

φ(ξ) = 0 and η ◦ φ = 0.

Let g be a compatible Riemannian metric with (φ, ξ, η), that is,

g(φX,φY ) = g(X,Y )− η(X)η(Y )
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or equivalently,

g(X,φY ) = −g(φX;Y ) and g(X, ξ) = η(X)

for all X,Y ∈ χ(M). Then, M2m+1 becomes an almost contact metric manifold
equipped with an almost contact metric structure (φ, ξ, η, g). An almost contact
metric manifold is cosymplectic [3] if ∇Xφ = 0. From the formula ∇Xφ = 0, it
follows that

∇Xξ = 0, ∇Xη = 0, and R(X,Y )ξ = 0.

If we define a connection

∇̃XY = ∇XY + η(Y )X

on the above manifold, then we obtain

T (X,Y ) = η(Y )X − η(X)Y

and

θ = −η ⊗ η,

which shows that ∇̃ is a semi-symmetric non-metric connection and by virtue of
Proposition 4.1, we have R · R̃ = R ·R.
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