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POSITIVE SOLUTIONS FOR A PERIODIC BOUNDARY VALUE

PROBLEM WITHOUT ASSUMPTIONS OF MONOTONICITY

AND CONVEXITY

(COMMUNICATED BY I.P. STAVROULAKIS)

FULI WANG, FANG ZHANG

Abstract. In the case of not requiring the nonlinear term to be monotone or

convex, we study the existence of positive solutions for second-order periodic

boundary value problem by using the first eigenvalue of the corresponding lin-
ear problem and fixed point index theory. The work significantly improves and

generalizes the main results of J. Graef et al. [A periodic boundary value prob-

lem with vanishing Green’s function, Appl. Math. Lett. 21(2008) 176−180].

1. Introduction

In the last two decades, there has been much attention focused on questions
of positive solutions for diverse nonlinear ordinary differential equation, difference
equation, and functional differential equation boundary value problems, see [1],
[2], and the references therein. Recently, periodic boundary value problems have
deserved the attention of many researchers (see [3]-[10]). Under the positivity of the
associated Green’s function, the existence and multiplicity of positive solutions for
the periodic boundary value problems were established by applying the nonlinear
alternative of Leray-Schauder type and Krasnosel’skii fixed point theorem in [3]-[9].
In [10], Graef et al. studied the following periodic boundary value problem(PBVP)

u′′(t) + a(t)u(t) = g(t)f(u), 0 ≤ t ≤ 2�,

u(0) = u(2�), u′(0) = u′(2�).
(1.1)

By Krasnosel’skii fixed point theorem, under the assumptions that f was either
superlinear or sublinear and the associated Green’s function is nonnegative, i.e., it
may have zeros, they obtained the nonnegative solutions of the above problem. To
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cope with the difficulty caused by the nonnegativity of Green’s function, a special
cone was constructed. For convenience, we introduce the notations

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→+∞

f(u)

u
.

Throughout this paper, we assume that the following standing hypothesis (H):
(H) The Green’s function G(t, s) for (1.1) is continuous and nonnegative for all

(t, s) ∈ [0, 2�]× [0, 2�], and

� = min
s∈[0,2�]

∫ 2�

0

G(t, s)dt > 0. (1.2)

Remark. From Remark 2.1 in [10], condition (H) is weaker than G(t, s) > 0 for
all (t, s) ∈ [0, 2�]× [0, 2�].

For comparison with our results below, we include a statement of the basic
theorem in [10].
Theorem A Suppose condition (H) is satisfied. In addition, assume that

(A1) f : ℝ+ → ℝ+ is continuous, convex and nondecreasing.
(A2) g : [0, 2�] → ℝ+ is continuous and � = min

t∈[0,2�]
g(t) > 0. Then in each of

the following cases:
(A3) f0 = +∞, f∞ = 0 (sublinear case),
(A4) f0 = 0, f∞ = +∞ (superlinear case),

the PBVP (1.1) has at least one positive solution.
In this paper, we establish the existence of positive solutions PBVP (1.1), where

g(t) may be singular at t = 0 and t = 1, by using the first eigenvalue of the relevant
linear problem and fixed point index theory which come from Zhang−Sun [11]-[14]
and Cui−Zou [15]-[16]. Here we do not impose any monotonicity and convexity
conditions on f , which are essential for the technique used in [10]. Moreover, g(t)
is allowed to be singular at t = 0 and t = 1.

We assume the following conditions throughout:
(H1) f : ℝ+ → ℝ+ is continuous.

(H2) g : (0, 2�)→ ℝ+ is continuous, 0 < � = min
t∈(0,2�)

g(t) < +∞, and

∫ 2�

0

g(t)dt <

+∞.
The main results of this paper are as follows.

Theorem 1.1. Assume that conditions (H), (H1), and (H2) hold. Then in each
of the following cases:

(H3) f0 > �1, f∞ < �1,
(H4) f0 < �1, f∞ > �1,

where �1 is a positive constant that will be specified later, the PBVP (1.1) has at
least one positive solution.

From Theorem 1.1 we immediately obtain the following.

Corollary 1.2. Assume that conditions (H), (H1), and (H2) hold. Then in each
of the following cases:

(i) f0 = +∞, f∞ = 0,
(ii) f0 = 0, f∞ = +∞,

the PBVP (1.1) has at least one positive solution.
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Remark. Obviously, Theorem 1.1 and Corollary 1.2 extend the Theorem A.

Corollary 1.3. Suppose conditions (H), (H1) and (H2) are satisfied. In addition,
assume that 0 ≤ f∞ < f0 ≤ +∞,

� ∈
(�1
f0
,
�1
f∞

)
, (1.3)

where �1 is a positive constant will be specified later. Then the singular eigenvalue
periodic boundary value problem (EPBVP)

u′′(t) + a(t)u(t) = �g(t)f(u), 0 ≤ t ≤ 2�,

u(0) = u(2�), u′(0) = u′(2�),
(1.4)

has at least one positive solution.

Corollary 1.4. Suppose conditions (H), (H1) and (H2) are satisfied. In addition,
assume that 0 ≤ f0 < f∞ ≤ +∞,

� ∈
( �1
f∞

,
�1
f0

)
, (1.5)

where �1 is a positive constant that will be specified later. Then the singular EPBVP
(1.4) has at least one positive solution.

2. Preliminaries and lemmas

In the Banach space C[0, 2�] let the norm be defined by ∥u∥ = max
0≤t≤2�

∣u(t)∣ for

any u ∈ C[0, 2�]. We set P = {u ∈ C[0, 2�] ∣ u(t) ≥ 0, t ∈ [0, 2�]} be a cone
in C[0, 2�]. We denote by Br = {u ∈ C[0, 2�]∣∥u∥ < r} (r > 0) the open ball of
radius r.

The function u is said to be a positive solution of PBVP (1.1) if u ∈ C[0, 2�] ∩
C2(0, 2�) satisfies (1.1), and u(t) > 0 for t ∈ (0, 2�).

Define

(Au)(t) =

∫ 2�

0

G(t, s)g(s)f(u(s))ds, t ∈ [0, 2�], (2.1)

(Tu)(t) =

∫ 2�

0

G(t, s)g(s)u(s)ds, t ∈ [0, 2�]. (2.2)

We can verify that the nonzero fixed points of the operator A are positive solu-
tions of the PBVP (1.1). Define the cone K in C[0, 2�] by

K = {u ∈ P ∣
∫ 2�

0

u(t)dt ≥ �

M
∥u∥},

where � is defined by (1.2) and M = max
t,s∈[0,2�]

G(t, s). Then K is subcone of P .

From [10] and the Arzera-Ascoli theorem, A, T : K → K defined by (2.1) and
(2.2) respectively, are completely continuous operators.

By virtue of Krein−Rutmann theorems, we have (see [11]-[16]) the following
lemma.
Lemma 2.1. Suppose that T : C[0, 2�] → C[0, 2�] is a completely continuous
linear operator and T (P ) ⊂ P . If there exists  ∈ C[0, 2�]∖{−P} and a constant
c > 0 such that cT ≥  , then the spectral radius r(T ) ∕= 0 and T has a positive
eigenfunction '1 corresponding to its first eigenvalue �1 = (r(T ))−1, that is, '1 =
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�1T'1.
Lemma 2.2. Suppose that the condition (H2) is satisfied; then for the operator T
defined by (2.2), the spectral radius r(T ) ∕= 0 and T has a positive eigenfunction
corresponding to its first eigenvalue �1 = (r(T ))−1.
Proof. It is obvious that there is t1 ∈ (0, 2�) such that G(t1, t1)g(t1) > 0. Thus
there exists [a1, b1] ⊂ (0, 2�) such that t1 ∈ (a1, b1) and G(t, s)g(s) > 0,∀ t, s ∈
[a1, b1]. Take  ∈ C[0, 2�] such that  (t) ≥ 0, ∀ t ∈ [0, 2�],  (t1) > 0 and
 (t) = 0, ∀ t ∕∈ [a1, b1]. Then for t ∈ [a1, b1]

(T )(t) =

∫ 2�

0

G(t, s)g(s) (s)ds ≥
∫ b1

a1

G(t, s)g(s) (s)ds > 0.

So there exists a constant c > 0 such that c(T )(t) ≥  (t),∀ t ∈ [0, 2�]. From
Lemma 2.1, we know that the spectral radius r(T ) ∕= 0 and T has a positive
eigenfunction corresponding to its first eigenvalue �1 = (r(T ))−1.

The following lemmas are needed in our argument.
Lemma 2.3. ([17]) Let E be Banach space, P be a cone in E, and Ω(P ) be a

bounded open set in P . Suppose that A : Ω(P ) → P is a completely continuous
operator. If there exists u0 ∈ P∖{�} such that

u−Au ∕= �u0, ∀ u ∈ ∂Ω(P ), � ≥ 0,

then the fixed point index i(A,Ω(P ), P ) = 0.
Lemma 2.4. ([17]) Let E be Banach space, P be a cone in E, and Ω(P ) be a

bounded open set in P with � ∈ Ω(P ). Suppose that A : Ω(P )→ P is a completely
continuous operator. If

Au ∕= �u, ∀ u ∈ ∂Ω(P ), � ≥ 1,

then the fixed point index i(A,Ω(P ), P ) = 1.

3. Proof of the main results

Proof of Theorem 1.1. We show respectively that the operator A defined
by (2.1) has a nonzero fixed point in two cases that (H3) is satisfied and (H4) is
satisfied.
Case (i). It follows from (H3) that there exists r1 > 0 such that

f(u) ≥ �1u, ∀ 0 ≤ u ≤ r1. (3.1)

Let u∗ be the positive eigenfunction of T corresponding to �1, thus u∗ = �1Tu
∗.

For every u ∈ ∂Br1 ∩K, it follows from (3.1) that

(Au)(t) ≥ �1
∫ 2�

0

G(t, s)g(s)u(s)ds = �1(Tu)(t), t ∈ [0, 2�]. (3.2)

We may suppose that A has no fixed point on ∂Br1 ∩K (otherwise, the proof is
finished). Now we show that

u−Au ∕= �u∗, ∀ u ∈ ∂Br1 ∩K, � ≥ 0. (3.3)

Suppose to the contrary that there exist u1 ∈ ∂Br1 ∩ K and �1 ≥ 0 such that
u1 −Au1 = �1u

∗. Hence �1 > 0 and

u1 = Au1 + �1u
∗ ≥ �1u∗.
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Put

�∗ = sup{� ∣ u1 ≥ �u∗}. (3.4)

It is easy to see that �∗ ≥ �1 > 0 and u1 ≥ �∗u∗. We find from T (K) ⊂ K that

�1Tu1 ≥ �∗�1Tu∗ = �∗u∗.

Therefore by (3.2), we have

u1 = Au1 + �1u
∗ ≥ �1Tu1 + �1u

∗ ≥ �∗u∗ + �1u
∗ = (�∗ + �1)u∗,

which contradicts the definition of �∗. Hence (3.3) is true and we have from Lemma
2.3 that

i(A,Br1 ∩K,K) = 0. (3.5)

It follows from (H3) that there exist 0 < � < 1 and r2 > r1 such that

f(u) ≤ ��1u, ∀ u ≥ r2. (3.6)

Let T1u = ��1Tu, u ∈ C[0, 2�]; then T1 : C[0, 2�] → C[0, 2�] is a bounded
linear operator and T1(K) ⊂ K. Denote

M∗ = M sup
u∈Br2∩K

∫ 2�

0

g(s)f(u(s))ds. (3.7)

It is clear that M∗ < +∞. Let

W = {u ∈ K ∣ u = �Au, 0 ≤ � ≤ 1}. (3.8)

In the following, we prove that W is bounded.
For any u ∈ W , set ũ(t) = min{u(t), r2} and denote E(t) = {t ∈ [0, 2�] ∣ u(t) >

r2}. Then

u(t) = �(Au)(t) ≤
∫ 2�

0

G(t, s)g(s)f(u(s))ds

=

∫
E(t)

G(t, s)g(s)f(u(s))ds+

∫
[0,2�]∖E(t)

G(t, s)g(s)f(u(s))ds

≤ ��1

∫ 2�

0

G(t, s)g(s)u(s)ds+M

∫ 2�

0

g(s)f(ũ(s))ds

≤ (T1u)(t) +M∗, t ∈ [0, 2�].

Thus ((I − T1)u)(t) ≤ M∗, t ∈ [0, 2�]. Since �1 is the first eigenvalue of T and
0 < � < 1, the first eigenvalue of T1, (r(T1))−1 > 1. Therefore, the inverse operator
(I − T1)−1 exists and

(I − T1)−1 = I + T1 + T 2
1 + ⋅ ⋅ ⋅+ Tn1 + ⋅ ⋅ ⋅ .

It follows from T1(K) ⊂ K that (I − T1)−1(K) ⊂ K. So we know that u(t) ≤
(I − T1)−1M∗, t ∈ [0, 2�] and W is bounded.

Select r3 > max{r2, supW}. Then from the homotopy invariance property of
fixed point index we have

i(A, Br3 ∩K, K) = i(�, Br3 ∩K, K) = 1. (3.9)

By (3.5) and (3.9), we have that

i(A, (Br3 ∩K)∖(Br1 ∩K), K) = i(A, Br3 ∩K, K)− i(A, Br1 ∩K, K) = 1.
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Then A has at least one fixed point on (Br3 ∩ K)∖(Br1 ∩ K). This means that
singular PBVP (1.1) has at least one positive solution.
Case (ii). It follows from (H4) that there exists " > 0 such that f(u) ≥ �1(" +

1
�1��

)u when u is sufficiently large. We know from (H1) that there exists b1 ≥ 0

such that

f(u) ≥ �1("+
1

�1��
)u− b1, ∀ 0 ≤ u < +∞. (3.10)

Take

R > max
{

1,

2�b1M
2

∫ 2�

0

g(s)ds

�1"�2�

}
.

If there exist u2 ∈ ∂BR ∩ K, �2 ≥ 0, such that u2 − Au2 = �2 
∗, then u2 =

Au2 +�2 
∗ ≥ Au2. Integrating this inequality from 0 to 2� and using (1.2), (3.10),

(H2), we have∫ 2�

0

u2(t)dt ≥
∫ 2�

0

Au2(t)dt =

∫ 2�

0

∫ 2�

0

G(t, s)g(s)f(u2(s))dsdt

≥ �1("+
1

�1��
)

∫ 2�

0

∫ 2�

0

G(t, s)g(s)u2(s)dsdt− b1
∫ 2�

0

g(s)

∫ 2�

0

G(t, s)dtds

= �1("+
1

�1��
)

∫ 2�

0

g(s)u2(s)

∫ 2�

0

G(t, s)dtds− b1
∫ 2�

0

g(s)

∫ 2�

0

G(t, s)dtds

≥ �1("+
1

�1��
)��

∫ 2�

0

u2(s)ds− 2�b1M

∫ 2�

0

g(s)ds

≥ (�1"�� + 1)

∫ 2�

0

u2(s)ds− 2�b1M

∫ 2�

0

g(s)ds.

By the definition of K, we get

∫ 2�

0

u2(t)dt ≥ �

M
∥u2∥ =

�

M
R. Therefore it follows

that

R ≤
2�b1M

2

∫ 2�

0

g(s)ds

�1"�2�
,

which is a contradiction with the choice of R. Hence hypotheses of Lemma 2.3
hold. Therefore we have

i(A, BR ∩K, K) = 0. (3.11)

It follows from (H4) that there exists 0 < r < 1 such that

f(u) ≤ �1u, ∀ 0 ≤ u ≤ r. (3.12)

Define T2u = �1Tu, u ∈ C[0, 2�]. Hence T2 : C[0, 2�] → C[0, 2�] is a bounded
linear completely continuous operator and

T2(K) ⊂ K, r(T2) = 1.
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For every u ∈ ∂Br ∩K, it follows from (3.12) that

(Au)(t) =

∫ 2�

0

G(t, s)g(s)f(u(s))ds

≤ �1

∫ 2�

0

G(t, s)g(s)u(s)ds

= (T2u)(t), t ∈ [0, 2�],

hence Au ≤ T2u, ∀ u ∈ ∂Br ∩K. We may also assume that A has no fixed point
on ∂Br ∩K (otherwise, the proof is finished).

Now we show that

Au ∕= �u, ∀ u ∈ ∂Br ∩K, � ≥ 1. (3.13)

If otherwise, there exist u3 ∈ ∂Br ∩ K and �3 ≥ 1 such that Au3 = �3u3. Thus
�3 > 1 and �3u3 = Au3 ≤ T2u3. By induction, we have �n3u3 ≤ Tn2 u3(n = 1, 2, . . .).
Then

�n3u3 ≤ Tn2 u3 ≤ ∥Tn2 ∥∥u3∥,
and taking the maximum over [0, 2�] gives �n3 ≤ ∥Tn2 ∥. In view of Gelfand’s formula,
we have

r(T2) = lim
n→∞

n

√
∥Tn2 ∥ ≥ lim

n→∞
n
√
�n3 = �3 > 1,

which is a contradiction. Hence (3.13) is true and by Lemma 2.4, we have

i(A,Br ∩K,K) = 1. (3.14)

By (3.11) and (3.14) we have

i(A, (BR ∩K)∖(Br ∩K),K) = i(A, (BR ∩K,K)− i(A,Br ∩K,K) = −1.

Thus A has at least one fixed point on (BR ∩K)∖(Br ∩K). This means that the
singular PBVP (1.1) has at least one positive solution.
Proof of Corollary 1.3 By (1.3), we know that

lim
u→0+

�f(u)

u
> �1, lim

u→+∞

�f(u)

u
< �1.

So Corollary 1.3 holds from Theorem 1.1.
Proof of Corollary 1.4 By (1.5), we know that

lim
u→+∞

�f(u)

u
> �1, lim

u→0+

�f(u)

u
< �1.

So Corollary 1.4 holds from Theorem 1.1.
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