
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 3 Issue 2(2011), Pages 269-277.

STRASSEN’S MATRIX MULTIPLICATION ALGORITHM FOR

MATRICES OF ARBITRARY ORDER

(COMMUNICATED BY MARTIN HERMANN)

IVO HEDTKE

Abstract. The well known algorithm of Volker Strassen for matrix mul-
tiplication can only be used for (m2k ×m2k) matrices. For arbitrary (n× n)

matrices one has to add zero rows and columns to the given matrices to use

Strassen’s algorithm. Strassen gave a strategy of how to set m and k for
arbitrary n to ensure n ≤ m2k. In this paper we study the number d of ad-

ditional zero rows and columns and the influence on the number of flops used

by the algorithm in the worst case (d = n/16), best case (d = 1) and in the
average case (d ≈ n/48). The aim of this work is to give a detailed analysis

of the number of additional zero rows and columns and the additional work

caused by Strassen’s bad parameters. Strassen used the parameters m and
k to show that his matrix multiplication algorithm needs less than 4.7nlog2 7

flops. We can show in this paper, that these parameters cause an additional

work of approximately 20 % in the worst case in comparison to the optimal
strategy for the worst case. This is the main reason for the search for better

parameters.

1. Introduction

In his paper “Gaussian Elimination is not Optimal” ([14]) Volker Strassen
developed a recursive algorithm (we will call it S) for multiplication of square
matrices of order m2k. The algorithm itself is described below. Further details can
be found in [8, p. 31].

Before we start with our analysis of the parameters of Strassen’s algorithm
we will have a short look on the history of fast matrix multiplication. The naive
algorithm for matrix multiplication is an O(n3) algorithm. In 1969 Strassen
showed that there is an O(n2.81) algorithm for this problem. Shmuel Winograd
optimized Strassen’s algorithm. While the Strassen-Winograd algorithm is a
variant that is always implemented (for example in the famous GEMMW package),
there are faster ones (in theory) that are impractical to implement. The fastest
known algorithm, devised in 1987 by Don Coppersmith and Winograd, runs in

1991 Mathematics Subject Classification. Primary 65F30; Secondary 68Q17.

Key words and phrases. Fast Matrix Multiplication, Strassen Algorithm.
c⃝2011 Universiteti i Prishtinës, Prishtinë, Kosovë.

The author was supported by the Studienstiftung des Deutschen Volkes.
Submitted February 2, 2011. Published March 2, 2011.

269

270 I. HEDTKE

O(n2.38) time. There is also an interesting group-theoretic approach to fast matrix
multiplication from Henry Cohn and Christopher Umans, see [4], [5] and [13].
Most researchers believe that an optimal algorithm with O(n2) runtime exists, since
then no further progress was made in finding one.

Because modern architectures have complex memory hierarchies and increasing
parallelism, performance has become a complex tradeoff, not just a simple matter
of counting flops (in this article one flop means one floating-point operation, that
means one addition is a flop and one multiplication is one flop, too). Algorithms
which make use of this technology were described by Paolo D’Alberto and
Alexandru Nicolau in [1]. An also well known method is Tiling : The normal
algorithm can be speeded up by a factor of two by using a six loop implementation
that blocks submatrices so that the data passes through the L1 Cache only once.

1.1. The algorithm. Let A and B be (m2k×m2k) matrices. To compute C := AB
let

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
,

where Aij and Bij are matrices of order m2k−1. With the following auxiliary
matrices

H1 := (A11 +A22)(B11 +B22) H2 := (A21 +A22)B11

H3 := A11(B12 −B22) H4 := A22(B21 −B11)

H5 := (A11 +A12)B22 H6 := (A21 −A11)(B11 +B12)

H7 := (A12 −A22)(B21 +B22)

we get

C =

[
H1 +H4 −H5 +H7 H3 +H5

H2 +H4 H1 +H3 −H2 +H6

]
.

This leads to recursive computation. In the last step of the recursion the products
of the (m×m) matrices are computed with the naive algorithm (straight forward
implementation with three for-loops, we will call it N).

1.2. Properties of the algorithm. The algorithm S needs (see [14])

FS(m, k) := 7km2(2m+ 5)− 4k6m2

flops to compute the product of two square matrices of order m2k. The naive
algorithm N needs n3 multiplications and n3−n2 additions to compute the product
of two (n × n) matrices. Therefore FN (n) = 2n3 − n2. In the case n = 2p the
algorithm S is better than N if FS(1, p) < FN (2p), which is the case iff p ⩾ 10.
But if we use algorithm S only for matrices of order at least 210 = 1024, we get a
new problem:

Lemma 1.1. The algorithm S needs 17
3 (7p−4p) units of memory (we write “uom”

in short) (number of floats or doubles) to compute the product of two (2p × 2p)
matrices.

Proof. Let M(n) be the number of uom used by S to compute the product of
matrices of order n. The matrices Aij , Bij and Hℓ need 15(n/2)2 uom. During the
computation of the auxiliary matrices Hℓ we need 7M(n/2) uom and 2(n/2)2 uom

STRASSEN’S ALGORITHM FOR MATRICES OF ARBITRARY SIZE 271

as input arguments for the recursive calls of S. Therefore we getM(n) = 7M(n/2)+
(17/4)n2. Together with M(1) = 0 this yields to M(2p) = 17

3 (7p − 4p). □

As an example, if we compute the product of two (210×210) matrices (represented
as double arrays) with S we need 8 ⋅ 173 (710 − 410) bytes, i.e. 12.76 gigabytes of
memory. That is an enormous amount of RAM for such a problem instance. Brice
Boyer et al. ([3]) solved this problem with fully in-place schedules of Strassen-
Winograd’s algorithm (see the following paragraph), if the input matrices can be
overwritten.

Shmuel Winograd optimized Strassen’s algorithm. The Strassen-Wino-
grad algorithm (described in [11]) needs only 15 additions and subtractions, whereas
S needs 18. Winograd had also shown (see [15]), that the minimum number of
multiplications required to multiply 2 × 2 matrices is 7. Furthermore, Robert
Probert ([12]) showed that 15 additive operations are necessary and sufficient to
multiply two 2× 2 matrices with 7 multiplications.

Because of the bad properties of S with full recursion and large matrices, one
can study the idea to use only one step of recursion. If n is even and we use one step
of recursion of S (for the remaining products we use N) the ratio of this operation
count to that required by N is (see [9])

7n3 + 11n2

8n3 − 4n2
n→∞−−−−→ 7

8
.

Therefore the multiplication of two sufficiently large matrices using S costs approx-
imately 12.5 % less than using N .

Using the technique of stopping the recursion in the Strassen-Winograd al-
gorithm early, there are well known implementations, as for example

∙ on the Cray-2 from David Bailey ([2]),
∙ GEMMW from Douglas et al. ([7]) and
∙ a routine in the IBM ESSL library routine ([10]).

1.3. The aim of this work. Strassen’s algorithm can only be used for (m2k ×
m2k) matrices. For arbitrary (n×n) matrices one has to add zero rows and columns
to the given matrices (see the next section) to use Strassen’s algorithm. Strassen
gave a strategy of how to set m and k for arbitrary n to ensure n ≤ m2k. In this
paper we study the number d of additional zero rows and columns and the influence
on the number of flops used by the algorithm in the worst case, best case and in
the average case.

It is known ([11]), that these parameters are not optimal. We only study the
number d and the additional work caused by the bad parameters of Strassen.
We give no better strategy of how to set m and k, and we do not analyze other
strategies than the one from Strassen.

2. Strassen’s parameter for matrices of arbitrary order

Algorithm S uses recursions to multiply matrices of order m2k. If k = 0 then S
coincides with the naive algorithm N . So we will only consider the case where
k > 0. To use S for arbitrary (n× n) matrices A and B (that means for arbitrary

n) we have to embed them into matrices Ã and B̃ which are both (ñ× ñ) matrices
with ñ := m2k ⩾ n. We do this by adding ℓ := ñ − n zero rows and colums to A

272 I. HEDTKE

and B. This results in

ÃB̃ =

[
A 0n×ℓ

0ℓ×n 0ℓ×ℓ

] [
B 0n×ℓ

0ℓ×n 0ℓ×ℓ

]
=: C̃,

where 0k×j denotes the (k × j) zero matrix. If we delete the last ℓ columns and

rows of C̃ we get the result C = AB.
We now focus on how to find m and k for arbitrary n with n ⩽ m2k. An optimal

but purely theoretical choice is

(m∗, k∗) = arg min{FS(m, k) : (m, k) ∈ ℕ× ℕ0, n ⩽ m2k}.

Further methods of finding m and k can be found in [11]. We choose another way.
According to Strassen’s proof of the main result of [14], we define

k := ⌊log2 n⌋ − 4 and m := ⌊n2−k⌋+ 1, (2.1)

where ⌊x⌋ denotes the largest integer not greater than x. We define ñ := m2k and
study the relationship between n and ñ. The results are:

∙ worst case: ñ ⩽ (17/16)n,
∙ best case: ñ ⩾ n+ 1 and
∙ average case: ñ ≈ (49/48)n.

2.1. Worst case analysis.

Theorem 2.1. Let n ∈ ℕ with n ⩾ 16. For the parameters (2.1) and m2k = ñ we
have

ñ ≤ 17

16
n.

If n is a power of two, we have ñ = 17
16n.

Proof. For fixed n there is exactly one � ∈ ℕ with 2� ≤ n < 2�+1. We define
I� := {2�, . . . , 2�+1 − 1}. Because of (2.1) for each n ∈ I� the value of k is

k = ⌊log2 n⌋ − 4 = log2 2� − 4 = �− 4.

Possible values for m are

m =

⌊
n

1

2�−4

⌋
+ 1 =

⌊
n

16

2�

⌋
+ 1 =: m(n).

m(n) is increasing in n and m(2�) = 17 and m(2�+1) = 33. Therefore we have
m ∈ {17, . . . , 32}. For each n ∈ I� one of the following inequalities holds:

(I�1) 2� = 16 ⋅ 2�−4 ≤ n < 17 ⋅ 2�−4
(I�2) 17 ⋅ 2�−4 ≤ n < 18 ⋅ 2�−4

...
(I�16) 31 ⋅ 2�−4 ≤ n < 32 ⋅ 2�−4 = 2�+1.

Note that I� =
⊎16
j=1 I

�
j . It follows, that for all n ∈ ℕ there exists exactly one �

with n ∈ I� and for all n ∈ I� there is exactly one j with n ∈ I�j .
Note that for all n ∈ I�j we have k = �− 4 and m(n) = j + 16. If we only focus

on I�j the difference ñ − n has its maximum at the lower end of I�j (ñ is constant

STRASSEN’S ALGORITHM FOR MATRICES OF ARBITRARY SIZE 273

FS(2j , 10− j)

j

0 1 2 3 4 5 6 7 8 9 10

1× 109

2× 109

Figure 1. Different parameters (m = 2j , k = 10 − j, n = m2k)
to apply in the Strassen algorithm for matrices of order 210.

and n has its minimum at the lower end of I�j). On I�j the value of ñ and the
minimum of n are

ñ�j := (16 + j) ⋅ 2�−4 and n�j := (15 + j) ⋅ 2�−4.

Therefore the difference d�j := ñ�j − n�j is constant:

d�j = (16 + j) ⋅ 2�−4 − (15 + j) ⋅ 2�−4 = 2�−4 for all j.

To set this in relation with n we study

r�j :=
ñ�j
n�j

=
n�j + d�j
n�j

= 1 +
d�j
n�j

= 1 +
2�−4

n�j
.

Finally r�j is maximal, iff n�j is minimal, which is the case for n�1 = 16 ⋅ 2�−4 = 2�.

With r�1 = 17/16 we get ñ ≤ 17
16n, which completes the proof. □

Now we want to use the result above to take a look at the number of flops we
need for S in the worst case. The worst case is n = 2p for any 4 ≤ p ∈ ℕ. An
optimal decomposition (in the sense of minimizing the number (ñ−n) of zero rows
and columns we add to the given matrices) is m = 2j and k = p − j, because
m2k = 2j2p−j = 2p = n. Note that these parameters m and k have nothing to do
with equation (2.1). Lets have a look on the influence of j:

Lemma 2.2. Let n = 2p. In the decomposition n = m2k we use m = 2j and
k = p− j. Then f(j) := FS(2j , p− j) has its minimum at j = 3.

Proof. We have f(j) = 2 ⋅ 7p(8/7)j + 5 ⋅ 7p(4/7)j − 4p6. Thus

f(j + 1)− f(j)

= [2 ⋅ 7p(8/7)j+1 + 5 ⋅ 7p(4/7)j+1 − 4p6]− [2 ⋅ 7p(8/7)j + 5 ⋅ 7p(4/7)j − 4p6]

= 2 ⋅ 7p(8/7)j(8/7− 1) + 5 ⋅ 7p(4/7)j(4/7− 1)

= 2 ⋅ 7p(8/7)j ⋅ 1/7− 15 ⋅ 7p(4/7)j ⋅ 1/7 = 2(4/7)j7p−1(2j − 7.5).

Therefore, f(j) is a minimum if j = min{i : 2i − 7.5 > 0} = 3. □

274 I. HEDTKE

f1(p)

p

4 6 8 10 12 14 16 18 20

1.19

1.20

1.21

f2(p)

p

4 6 8 10 12 14 16 18 20

1.006

1.007

1.008

Figure 2. Comparison of Strassen’s parameters (f1, m = 17,
k = p − 4), obviously better parameters (f2, m = 16, k = p − 4)
and the optimal parameters (lemma, m = 8, k = p − 3) for the
worst case n = 2p. Limits of fj are dashed.

Figure 1 shows that it is not optimal to use S with full recursion in the example
p = 10. Now we study the worst case n = 2p and different sets of parameters m
and k for FS(m, k):

(1) If we use equation (2.1), we get the original parameters of Strassen: k =
p− 4 and m = 17. Therefore we define

F1(p) := FS(17, p− 4) = 7p
39 ⋅ 172

74
− 4p

6 ⋅ 172

44
.

(2) Obviously m = 16 would be a better choice, because with this we get
m2k = n (we avoid the additional zero rows and columns). Now we define

F2(p) := FS(16, p− 4) = 7p
37 ⋅ 162

74
− 4p6.

(3) Finally we use the lemma above. With m = 8 = 23 and k = p− 3 we get

F3(p) := FS(8, p− 3) = 7p
3 ⋅ 64

49
− 4p6.

Now we analyze Fi relative to each other. Therefore we define fj := Fj/F3

(j = 1, 2). So we have fj : {4, 5, . . .} → ℝ, which is monotonously decreasing in p.
With

f1(p) =
289(4p ⋅ 2401− 7p ⋅ 1664)

12544(4p ⋅ 49− 7p ⋅ 32)
and f2(p) =

4p ⋅ 7203− 7p ⋅ 4736

147(4p ⋅ 49− 7p ⋅ 32)

we get

f1(4) = 3179/2624 ≈ 1.2115 lim
p→∞

f1(p) = 3757/3136 ≈ 1.1980

f2(4) = 124/123 ≈ 1.00813 lim
p→∞

f2(p) = 148/147 ≈ 1.00680.

Figure 2 shows the graphs of the functions fj . In conclusion, in the worst case the
parameters of Strassen need approx. 20 % more flops than the optimal parameters
of the lemma.

STRASSEN’S ALGORITHM FOR MATRICES OF ARBITRARY SIZE 275

2.2. Best case analysis.

Theorem 2.3. Let n ∈ ℕ with n ⩾ 16. For the parameters (2.1) and m2k = ñ we
have

n+ 1 ≤ ñ.
If n = 2pℓ− 1, ℓ ∈ {16, . . . , 31}, we have ñ = n+ 1.

Proof. Like in Theorem 2.1 we have for each I�j a constant value for ñ�j namely

2�−4(16 + j). Therefore n < ñ holds. The difference ñ− n has its minimum at the
upper end of I�j . There we have ñ − n = 2�−4(16 + j) − (2�−4(16 + j) − 1) = 1.
This shows n+ 1 ≤ ñ. □

Let us focus on the flops we need for S, again. Lets have a look at the example
n = 2p − 1. The original parameters (see equation (2.1)) for S are k = p − 5 and
m = 32. Accordingly we define F (p) := FS(32, p− 5). Because 2p − 1 ≤ 2p we can
add 1 zero row and column and use the lemma from the worst case. Now we get
the parameters m = 8 and k = p − 3 and define F̃ (p) := FS(8, p − 3). To analyze

F and F̃ relative to each other we have

r(p) :=
F (p)

F̃ (p)
=

4p ⋅ 16807− 7p ⋅ 11776

4p ⋅ 16807− 7p ⋅ 10976
.

Note that r : {5, 6, . . .} → ℝ is monotonously decreasing in p and has its maximum
at p = 5. We get

r(5) = 336/311 ≈ 1.08039 lim
p→∞

r(p) = 11776/10976 ≈ 1.07289.

Therefore we can say: In the best case the parameters of Strassen are approx.
8 % worse than the optimal parameters from the lemma in the worst case.

2.3. Average case analysis. With Eñ we denote the expected value of ñ. We
search for a relationship like ñ ≈ n for ∈ ℝ. That means E[ñ/n] = .

Theorem 2.4. For the parameters (2.1) of Strassen m2k = ñ we have

Eñ =
49

48
n.

Proof. First we focus only on I�. We write E� := E∣I� and E�j := E∣I�j for the

expected value on I� and I�j , resp. We have

E�ñ =
1

16

16∑
j=1

E�j ñ =
1

16

16∑
j=1

ñ�j =
1

16

16∑
j=1

(j + 16)2�−4 = 2�−5 ⋅ 49.

Together with E�n = 1
2 [(2�+1 − 1) + 2�] = 2� + 2�−1 − 1/2, we get

�(�) := E�
[
ñ

n

]
=

E�ñ
E�n

=
2�−5 ⋅ 49

2� + 2�−1 − 1/2
.

Now we want to calculate Ek := E∣U(k)[ñ/n], where U(k) :=
⊎k
j=0 I

4+j by using the

values �(j). Because of ∣I5∣ = 2∣I4∣ and ∣I4∪I5∣ = 3∣I4∣ we have E1 = 1
3�(4)+ 2

3�(5).
With the same argument we get

Ek =

4+k∑
j=4

�j�(j) where �j =
2j−4

2k+1 − 1
.

276 I. HEDTKE

Finally we have

E
[
ñ

n

]
= lim
k→∞

Ek = lim
k→∞

(
4+k∑
j=4

�j�(j)

)

= lim
k→∞

(
49

2k+1 − 1

4+k∑
j=4

22j−9

2j + 2j−1 − 1/2

)
=

49

48
,

what we intended to show. □

Compared to the worst case (ñ ≤ 17
16n, 17/16 = 1 + 1/16), note that 49/48 =

1 + 1/48 = 1 + 1
3 ⋅

1
16 .

3. Conclusion

Strassen used the parameters m and k in the form (2.1) to show that his matrix
multiplication algorithm needs less than 4.7nlog2 7 flops. We could show in this
paper, that these parameters cause an additional work of approx. 20 % in the worst
case in comparison to the optimal strategy for the worst case. This is the main
reason for the search for better parameters, like in [11].

References

[1] P. D’Alberto and A. Nicolau, Adaptive Winograd’s Matrix Multiplications, ACM Trans.

Math. Softw. 36, 1, Article 3 (March 2009).
[2] D. H. Bailey, Extra High Speed Matrix Multiplication on the Cray-2, SIAM J. Sci. Stat.

Comput., Vol. 9, Co. 3, 603–607, 1988.
[3] B. Boyer, J.-G. Dumas, C. Pernet, and W. Zhou, Memory efficient scheduling of Strassen-

Winograd’s matrix multiplication algorithm, International Symposium on Symbolic and Al-

gebraic Computation 2009, Séoul.
[4] H. Cohn and C. Umans, A Group-theoretic Approach to Fast Matrix Multiplication, Pro-

ceedings of the 44th Annual Symposium on Foundations of Computer Science, 11-14 October

2003, Cambridge, MA, IEEE Computer Society, pp. 438-449.
[5] H. Cohn, R. Kleinberg, B. Szegedy and C. Umans, Group-theoretic Algorithms for Matrix

Multiplication, Proceedings of the 46th Annual Symposium on Foundations of Computer

Science, 23-25 October 2005, Pittsburgh, PA, IEEE Computer Society, pp. 379-388.
[6] D. Coppersmith and S. Winograd, Matrix Multiplication via Arithmetic Progressions, STOC

’87: Proceedings of the nineteenth annual ACM symposium on Theory of Computing, 1987.

[7] C. C. Douglas, M. Heroux, G. Slishman and R. M. Smith, GEMMW: A Portable Level
3 BLAS Winograd Variant of Strassen’s Matrix–Matrix Multiply Algorithm, J. of Comp.

Physics, 110:1–10, 1994.
[8] G. H. Golub and C. F. Van Loan, Matrix Computations, Third ed., The Johns Hopkins

University Press, Baltimore, MD, 1996.

[9] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turnbull, Implementation
of Strassen’s Algorithm for Matrix Multiplication, 0-89791-854-1, 1996 IEEE

[10] IBM Engineering and Scientific Subroutine Library Guide and Reference, 1992. Order No.

SC23-0526.
[11] P. C. Fischer and R. L. Probert, Efficient Procedures for using Matrix Algorithms, Automata,

Languages and Programming – 2nd Colloquium, University of Saarbrücken, Lecture Notes

in Computer Science, 1974.
[12] R. L. Probert, On the additive complexity of matrix multiplication, SIAM J. Compu, 5:187–

203, 1976.

[13] S. Robinson, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News, Volume
38, Number 9, November 2005.

[14] V. Strassen, Gaussian Elimination is not Optimal, Numer. Math., 13:354–356, 1969.
[15] S. Winograd, On Multiplication of 2 × 2 Matrices, Linear Algebra and its Applications,

4:381-388, 1971.

STRASSEN’S ALGORITHM FOR MATRICES OF ARBITRARY SIZE 277

Mathematical Institute, University of Jena, D-07737 Jena, Germany

E-mail address: Ivo.Hedtke@uni-jena.de

	1. Introduction
	1.1. The algorithm
	1.2. Properties of the algorithm
	1.3. The aim of this work

	2. Strassen's parameter for matrices of arbitrary order
	2.1. Worst case analysis
	2.2. Best case analysis
	2.3. Average case analysis

	3. Conclusion
	References

