BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 3 Issue 3(2011), Pages 9-12.

A PATHOLOGICAL EXAMPLE OF A DOMINANT TERRACED MATRIX

(COMMUNICATED BY ADAM KILICMAN)

H. CRAWFORD RHALY, JR.

Dedicated to Nancy Lee Shell

ABSTRACT. A hyponormal terraced matrix is modified to produce an example of a non-hyponormal dominant terraced matrix.

1. INTRODUCTION

This brief paper addresses a question left open at the end of [5] – Does there exist a terraced matrix, acting as a bounded linear operator on ℓ^2 , that is dominant but not hyponormal? The answer will be provided by modifying one particular entry of a known hyponormal terraced matrix.

A terraced matrix M is a lower triangular infinite matrix with constant row segments. The matrix M is dominant [6] if $Ran(M - \lambda) \subset Ran(M - \lambda)^*$ for all λ in the spectrum of M, and M is hyponormal if it satisfies $\langle (M^*M - MM^*)f, f \rangle \geq 0$ for all f in ℓ^2 . Hyponormal operators are necessarily dominant. From [3] we know that M is dominant if and only if for each complex number λ there exists an operator $T = T(\lambda)$ on ℓ^2 such that $(M - \lambda) = (M - \lambda)^*T$.

2. Main Results

Our first theorem involves the terraced matrix $M :\equiv M(a)$ associated with a sequence $a = \{a_n : n = 0, 1, 2, 3, ...\}$ of real numbers. Throughout this section we assume that M acts through matrix multiplication to give a bounded linear operator on ℓ^2 .

Theorem 2.1. Suppose that M(a) is the terraced matrix associated with a sequence $a = \{a_n\}$ satisfying the following conditions:

(1) $\{a_n\}$ is a strictly decreasing sequence that converges to 0;

(2) $\{(n+1)a_n\}$ is a strictly increasing sequence that converges to $L < +\infty$; and (3) $\frac{1}{a_{n+1}} \ge \frac{1}{2}(\frac{1}{a_n} + \frac{1}{a_{n+2}})$ for all n.

²⁰⁰⁰ Mathematics Subject Classification. 47B99.

 $Key\ words\ and\ phrases.$ terraced matrix, dominant operator, hyponormal operator, Cesàro operator.

^{©2011} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 27, 2010. Accepted May 11, 2011.

If the sequence $b = \{b_n\}$ satisfies $0 < b_0 < 2L$ and $b_n = a_n$ for all $n \ge 1$, then M(b) is dominant.

Proof. First we show that

$$Ran(M(b) - \lambda) \subset Ran(M(b) - \lambda)^{*}$$

for all $\lambda \neq b_0$. Since our hypothesis guarantees that $M :\equiv M(a)$ is hyponormal (see [4, Theorem 2.2]) and therefore also dominant, for each complex number λ there must exist an operator $T = [t_{ij}]$ on ℓ^2 such that $(M - \lambda) = (M - \lambda)^* T$. For $\lambda \neq b_0$, replace the first row of T by

$$<\frac{a_0-\overline{\lambda}}{b_0-\overline{\lambda}}t_{00}-\frac{a_0-b_0}{b_0-\overline{\lambda}},\frac{a_0-\overline{\lambda}}{b_0-\overline{\lambda}}t_{01},\frac{a_0-\overline{\lambda}}{b_0-\overline{\lambda}}t_{02},\frac{a_0-\overline{\lambda}}{b_0-\overline{\lambda}}t_{03},\frac{a_0-\overline{\lambda}}{b_0-\overline{\lambda}}t_{04},\ldots>$$

and call the new matrix T'. Clearly T' is bounded on ℓ^2 since T is, and it is routine to verify that $(M(b) - \lambda) = (M(b) - \lambda)^* T'$ for $\lambda \neq b_0$.

We now consider the case $\lambda = b_0$. If $x :\equiv \langle x_0, x_1, x_2, \dots, \rangle^T \in \ell^2$, it must be shown that $(M(b) - b_0)x \in Ran(M(b) - b_0)^*$. Since M(a) is dominant, we know that

$$(M(a) - b_0)x = (M(a) - b_0)^*y$$

for some $y :\equiv \langle y_0, y_1, y_2, \dots \rangle^T \in \ell^2$. It can be verified that

$$(M(b) - b_0)^* y = (a_0 - b_0)(x_0 - y_0)e_0 + (M(b) - b_0)x,$$

where $\{e_n : n \ge 0\}$ is the standard orthonormal basis for ℓ^2 . We want to find $z = \langle z_0, z_1, z_2, z_3, \dots \rangle^T \in \ell^2$ satisfying

$$(M(b) - b_0)^* z = (b_0 - a_0)(x_0 - y_0)e_0.$$

Computations reveal that z_0 can be chosen arbitrarily, but we must have

$$z_n = \frac{\prod_{j=0}^{n-1} (b_0 - a_j)}{b_0^n} (x_0 - y_0)$$

for $n \ge 1$. Raabe's Test [2, p. 396] can then be used to verify that $z \in \ell^2$ when $2L > b_0$. This means we have $(M(b)-b_0)^*(y+z) = (M(b)-b_0)x$, and this completes our proof that M(b) is dominant for $0 < b_0 < 2L$.

We note the following corollary to the proof of the theorem.

Corollary 2.2. Suppose that M(a) is the terraced matrix associated with a decreasing sequence $a = \{a_n\}$ of positive numbers converging to 0 and that $\{(n + 1)a_n\}$ converges to a finite number L > 0. If M(a) is a hyponormal operator on ℓ^2 and the sequence $b = \{b_n\}$ satisfies $0 < b_0 < 2L$ and $b_n = a_n$ for all $n \ge 1$, then M(b) is dominant.

We observe that the preceding theorem and corollary have made no assertion regarding hyponormality for M(b). In the following, we let S_n denote the *n*-by-*n* section in the northwest corner of the matrix of the self-commutator $M(b)^*M(b) - M(b)M(b)^*$.

Example 2.1. (Modified Cesàro Matrix). Start with M(a) given by $a_n = \frac{1}{n+1}$ for all n. Take $b_0 \in (0,2)$ and $b_n = \frac{1}{n+1}$ for all $n \ge 1$. We observe that this example satisfies the hypothesis of Corollary 2.2 with L = 1 since the Cesàro operator M(a)

on ℓ^2 is known to be hyponormal (see [1]), so M(b) is dominant when $0 < b_0 < 2$. If z_1, z_2 denote the zeroes of

$$y = -\left[\frac{1}{36}\left(\frac{\pi^2}{6} - \frac{19}{12}\right) + \frac{1}{108}\right]x^2 + \left[\frac{5}{36}\left(\frac{\pi^2}{6} - \frac{19}{12}\right) + \frac{1}{54}\right]x - \left[\frac{5}{72}\left(\frac{\pi^2}{6} - \frac{19}{12}\right) + \frac{1}{108}\right],$$

then $det(S_3) < 0$ when

$$b_0 \in (0, z_1 \approx 0.69665) \cup (z_2 \approx 1.77128, 2).$$

so M(b) will not be hyponormal for those values of b_0 .

We note that with a little more effort it can be demonstrated that M(b) is not hyponormal for any $b_0 \in (0,2) \setminus \{1\}$. This can be accomplished by applying an obvious sequence of elementary row and column operations to reduce S_n to arrowhead form and then to upper triangular form, in which the first diagonal element is negative for $n = n(b_0)$ sufficiently large and all of the rest of the diagonal elements are positive, so det $(S_n) < 0$ when n is sufficiently large.

We will now present a result that applies to terraced matrices associated with sequences of complex numbers.

Theorem 2.3. Assume that $M :\equiv M(\alpha)$ is a terraced matrix associated with an injective sequence $\alpha = \{\alpha_n : n = 0, 1, 2, 3, ...\}$ of nonzero complex numbers, and let $M(\beta)$ denote the terraced matrix associated with the sequence $\beta = \{\beta_n\}$ given by $\beta_0 = \alpha_1$ and $\beta_n = \alpha_n$ for all $n \ge 1$. If $M(\alpha)$ is hyponormal, then $M(\beta)$ is dominant but not hyponormal.

Proof. The proof that $Ran(M(\beta) - \lambda) \subset Ran(M(\beta) - \lambda)^*$ for all $\lambda \neq \beta_0$ requires only a minor adjustment of the argument used in the proof of Theorem 2.1, so we leave that to the reader. We now show that if $\lambda = \beta_0$, then

$$Ran(M(\beta) - \lambda) \subset Ran(M(\beta) - \lambda)^*.$$

Recall that $\beta_0 = \alpha_1$. If $x :\equiv \langle x_0, x_1, x_2, \dots \rangle^T \in \ell^2$, it must be shown that

$$(M(\beta) - \alpha_1)x \in Ran(M(\beta) - \alpha_1)^*$$

Since $M :\equiv M(\alpha)$ is hyponormal and therefore also dominant, we know that

$$(M - \alpha_1)x = (M - \alpha_1)^*y$$

for some $y :\equiv \langle y_0, y_1, y_2, \dots \rangle^T \in \ell^2$. It can be verified that

$$(M(\beta) - \alpha_1)^* y = [(\alpha_0 - \alpha_1)x_0 - (\overline{\alpha_0} - \overline{\alpha_1})y_0]e_0 + (M(\beta) - \alpha_1)x.$$

If

$$z :\equiv \frac{1}{\overline{\alpha_1}} [(\overline{\alpha_0} - \overline{\alpha_1})y_0 - (\alpha_0 - \alpha_1)x_0]e_1,$$

then $(M(\beta) - \alpha_1)^* z = [(\overline{\alpha_0} - \overline{\alpha_1})y_0 - (\alpha_0 - \alpha_1)x_0]e_0$. It follows that $(M(\beta) - \alpha_1)^*(y+z) = (M(\beta) - \alpha_1)x,$

and now the proof that $M(\beta)$ is dominant is complete. Finally, since $det(S_2) = -|\alpha_1|^4 < 0$, $M(\beta)$ cannot be hyponormal.

Example 2.2. Recall that for fixed k > 0, the generalized Cesàro matrices of order one are the terraced matrices $C_k :\equiv M(a)$ that occur when $a_n = \frac{1}{k+n}$ for all n. C_k is hyponormal for $k \ge 1$. If $M_k :\equiv M(b)$ is the terraced matrix associated with the sequence defined by $b_0 = \frac{1}{k+1}$ and $b_n = \frac{1}{k+n}$ for all $n \ge 1$, then we know from Theorem 2.3 that M_k is dominant but not hyponormal for $k \ge 1$. In closing, we are reminded of another question left open at the conclusion of [5] – Is C_k dominant for $\frac{1}{2} \leq k < 1$? The next result provides a partial answer to that question.

Proposition 2.4. C_k is not dominant when $k = \frac{1}{2}$.

Proof. It can easily be verified that

$$(C_k - \frac{1}{k})[k(e_0 - e_1)] = e_1,$$

so $e_1 \in Ran(C_k - \frac{1}{k})$ for all k > 0. For C_k to be dominant, then it must also be true that $e_1 \in Ran(C_k - \frac{1}{k})^*$. A straightforward calculation reveals that in order to have $e_1 = (C_k - \frac{1}{k})^* z$ for some $z = \langle z_0, z_1, z_2, z_3, \dots \rangle^T$, it is necessary that $z_1 = -k$ and $z_n = \frac{(n-1)!k^2}{\prod_{j=1}^{n-1}(k+j)}$ for all $n \ge 2$. However, it then follows from a refinement (see [2, Theorem III, p. 396]) of Raabe's test that $z \notin \ell^2$ for $k = \frac{1}{2}$ and hence $e_1 \notin Ran(C_k - \frac{1}{k})^*$ for that value of k.

References

- A. Brown, P. R. Halmos, and A. L. Shields, *Cesàro operators*, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
- [2] J. M. H. Olmsted, Advanced calculus, Appleton-Century-Crofts, New York, 1961.
- [3] H. C. Rhaly, Jr., Posinormal operators, J. Math. Soc. Japan 46 4 (1994), 587 605.
- [4] ——, Posinormal terraced matrices, Bull. Korean Math. Soc. 46 1 (2009), 117-123.
- [5] ——, Remarks concerning some generalized Cesàro operators on ℓ^2 , J. Chungcheong Math. Soc. **23** 3 (2010), 425-434.
- [6] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh. Math. 84 2 (1977), 143-153.

1081 Buckley Drive, Jackson, Mississippi 39206, U.S.A.

E-mail address: rhaly@alumni.virginia.edu, rhaly@member.ams.org

12