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STRONG CONVERGENCE OF NOOR ITERATION FOR A

GENERAL CLASS OF FUNCTIONS

(COMMUNICATED BY MARTIN HERMANN)

ALFRED OLUFEMI BOSEDE

Abstract. In this paper, we employ the notion of a general class of functions
introduced by Bosede and Rhoades [6] to prove the strong convergence of
Noor iteration considered in Banach spaces. We also establish the strong
convergence of Ishikawa and Mann iterations as special cases. Our results

generalize, improve and unify some of the known results in literature.

1. Introduction

Let (E, d) be a complete metric space, T : E −→ E a selfmap of E and FT =
{p ∈ E : Tp = p} the set of fixed points of T in E.
Let {xn}∞n=0 ⊂ E be a sequence generated by an iteration procedure involving the
operator T , that is,

xn+1 = f(T, xn), n = 0, 1, 2, ... (1.1)

where x0 ∈ E is the initial approximation and f is some function.
Setting

f(T, xn) = Txn, n = 0, 1, 2, ..., (1.2)

in (1.1), we have the Picard iteration process.
Putting

f(T, xn) = (1− αn)xn + αnTxn, n = 0, 1, 2, ..., (1.3)

in (1.1), where {αn}∞n=0 is a sequence of real numbers in [0, 1], we have the Mann
iteration process.
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTxn
(1.4)

where {αn}∞n=o and {βn}∞n=o are sequences of real numbers in [0,1], is called the
Ishikawa iteration process. [For Example, see Ishikawa [11]].

2000 Mathematics Subject Classification. 47H06, 47H09.
Key words and phrases. Strong convergence, Noor, Ishikawa and Mann iterations.
c⃝2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
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For arbitrary x0 ∈ E, let {xn}∞n=0 be the Noor iteration defined by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTzn

zn = (1− γn)xn + γnTxn,

(1.5)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences of real numbers in [0,1].
The following result was due to Zamfirescu [27]:
Theorem 1.1. Let (E, d) be a complete metric space and T : E −→ E be a mapping
for which there exist real numbers α, β and γ satisfying 0 ≤ α < 1, 0 ≤ β < 0.5 and
0 ≤ γ < 0.5 such that, for each x, y ∈ E, at least one of the following is true:
(Z1) d(Tx, Ty) ≤ αd(x, y);
(Z2) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)];
(Z3) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].
An operator T satisfying the contractive conditions (Z1), (Z2) and (Z3) in Theorem
1.1 above is called a Zamfirescu operator.

2. Preliminaries

Several authors including Rhoades [23, 24] employed the Zamfirescu condition
to establish several interesting convergence results for Mann and Ishikawa iteration
processes in a uniformly convex Banach space.
The results of Rhoades [23, 24] were also extended by Berinde [2] to an arbitrary
Banach space for the same fixed point iteration processes. Several other researchers
such as Bosede [3, 4] and Rafiq [21, 22] obtained some interesting convergence results
for some iteration procedures using various contractive definitions.
Employing a new idea, Osilike [20] considered the following contractive definition:
there exist L ≥ 0, a ∈ [0, 1) such that for each x, y ∈ E,

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y). (2.1)

and established T -stability for such maps with respect to Picard, Kirk, Mann and
Ishikawa iterations.
Imoru and Olatinwo [11] later extended the results of Osilike [20] and proved
some stability results for Picard and Mann iteration processes using the follow-
ing contractive condition: there exist b ∈ [0, 1) and a monotone increasing function
φ : ℜ+ −→ ℜ+ with φ(0) = 0 such that for each x, y ∈ E,

d(Tx, Ty) ≤ φ(d(x, Tx)) + bd(x, y). (2.2)

A lot of ”generalizations” and contraction conditions similar to (2.2) were also
employed by several authors especially Olatinwo [19] to establish strong convergence
results for some iteration processes. [For Example, see Imoru and Olatinwo [11] and
Olatinwo [19]].
In 2010, Bosede and Rhoades [6] observed that the process of ”generalizing” (2.1)
could continue ad infinitum. As a result of this observation, Bosede and Rhoades
[6] introduced the notion of a general class of functions to prove the stability of
Picard and Mann iterations. [For Example, See Bosede and Rhoades [6]].
Our aim in this paper is to prove the strong convergence of Noor iteration using
the notion of a general class of functions considered in Banach spaces. We also
establish the strong convergence of Ishikawa and Mann iterations as corollaries.
In the sequel, we shall employ the following contractive definition: Let (E, ∥.∥) be
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a Banach space, T : E −→ E a selfmap of E, with a fixed point p such that for
each y ∈ E and 0 ≤ a < 1, we have

∥p− Ty∥ ≤ a ∥p− y∥ . (2.3)

Remark 2.1. The contractive condition (2.3) is more general than those consid-
ered by Imoru and Olatinwo [11], Osilike [20] and several others in the following
sense:
By replacing L in (2.1) with more complicated expressions, the process of ”gener-
alizing” (2.1) could continue ad infinitum.
In this paper, we make an obvious assumption implied by (2.1), and one which
renders all ”generalizations” of the form (2.2) unnecessary.
Furthermore, the condition ”φ(0) = 0” usually imposed by Imoru and Olatinwo
[11] in the contractive definition (2.2) is no longer necessary in our contrac-
tion condition (2.3) and this is a further improvement to several known results in
literature.

3. Main Results

Theorem 3.1. Let (E, ∥.∥) be a Banach space, T : E −→ E a selfmap of E with
a fixed point p, satisfying the contractive condition (2.3). For x0 ∈ E, let {xn}∞n=0

be the Noor iteration process defined by (1.5) converging to p, (that is, Tp = p),
where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences of real numbers in [0,1] such
that

∑∞
k=0 αk = ∞. Then, the Noor iteration process converges strongly p.

Proof. Using the Noor iteration (1.5), the contractive condition (2.3) and the
triangle inequality, we have

∥xn+1 − p∥ = ∥(1− αn)xn − αnTyn − p∥
= ∥(1− αn)xn + αnTyn − ((1− αn) + αn)p∥
= ∥(1− αn)(xn − p) + αn(Tyn − p)∥
≤ (1− αn) ∥xn − p∥+ αn ∥Tyn − p∥
= (1− αn) ∥xn − p∥+ αn ∥p− Tyn∥
≤ (1− αn) ∥xn − p∥+ αna ∥p− yn∥
= (1− αn) ∥xn − p∥+ αna ∥yn − p∥ .

(3.1)

For the estimate of ∥yn − p∥ in (3.1), we have

∥yn − p∥ = ∥(1− βn)xn + βnTzn − p∥
= ∥(1− βn)xn + βnTzn − ((1− βn) + βn)p∥
= ∥(1− βn)(xn − p) + βn(Tzn − p)∥
≤ (1− βn) ∥xn − p∥+ βn ∥Tzn − p∥
= (1− βn) ∥xn − p∥+ βn ∥p− Tzn∥
≤ (1− βn) ∥xn − p∥+ βna ∥p− zn∥
= (1− βn) ∥xn − p∥+ βna ∥zn − p∥ .

(3.2)

Substitute (3.2) into (3.1) gives

∥xn+1 − p∥ ≤
(
1− (1− a)αn − (1− a)aαnβn

)
∥zn − p∥ . (3.3)
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Similarly, ∥zn − p∥ in (3.3) is estimated as follows:

∥zn − p∥ = ∥(1− γn)xn + γnTxn − p∥
= ∥(1− γn)xn + γnTxn − ((1− γn) + γn)p∥
= ∥(1− γn)(xn − p) + γn(Txn − p)∥
≤ (1− γn) ∥xn − p∥+ γn ∥Txn − p∥
= (1− γn) ∥xn − p∥+ γn ∥p− Txn∥
≤ (1− γn) ∥xn − p∥+ γna ∥p− xn∥
= (1− γn + γna) ∥xn − p∥ .

(3.4)

Substitute (3.4) into (3.3) yields

∥xn+1 − p∥ ≤
(
1− (1− a)αn − (1− a)aαnβn

)
(1− γn + γna) ∥xn − p∥

≤ [1− (1− a)αn] ∥xn − p∥

≤
n∏

k=0

[1− (1− a)αk] ∥x0 − p∥

≤
n∏

k=0

e−(1−a)αk ∥x0 − p∥

= e−(1−a)
∑n

k=0 αk ∥x0 − p∥ −→ 0,

(3.5)

as n −→ ∞. Since
∑n

k=0 αk = ∞, a ∈ [0, 1) and from (3.5), we have ∥xn − p∥ −→ 0
as n −→ ∞, which implies that the Noor iteration process converges strongly to p.
To prove the uniqueness, we take p1, p2 ∈ FT , where FT is the set of fixed points
of T in E such that p1 = Tp1 and p2 = Tp2.
Suppose on the contrary that p1 ̸= p2. Then, using the contractive condition (2.3)
and since 0 ≤ a < 1, we have

∥p1 − p2∥ = ∥p1 − Tp2∥
≤ a ∥p1 − p2∥
< ∥p1 − p2∥ ,

(3.6)

which is a contradiction. Therefore, p1 = p2.

This completes the proof.

Consequently, we have the following corollaries:

Corollary 3.2. Let (E, ∥.∥) be a Banach space, T : E −→ E a selfmap of E
with a fixed point p, satisfying the contractive condition (2.3). For x0 ∈ E, let
{xn}∞n=0 be the Ishikawa iteration process defined by (1.4) converging to p, (that is,
Tp = p), where {αn}∞n=0 and {βn}∞n=0 are sequences of real numbers in [0,1] such
that

∑∞
k=0 αk = ∞. Then, Ishikawa iteration process converges strongly p.

Corollary 3.3. Let (E, ∥.∥) be a Banach space, T : E −→ E a selfmap of E with
a fixed point p, satisfying the contractive condition (2.3). For x0 ∈ E, let {xn}∞n=0

be the Mann iteration process defined by (1.3) converging to p, (that is, Tp = p),
where {αn}∞n=0 is a sequence of real numbers in [0,1] such that

∑∞
k=0 αk = ∞.



144 A. O. BOSEDE

Then, Mann iteration process converges strongly p.
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