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INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS

ADMITTING QUARTER SYMMETRIC METRIC CONNECTION

(COMMUNICATED BY KRISHAN L. DUGGAL)

B.S.ANITHA AND C.S.BAGEWADI

Abstract. The object of this paper is to study invariant submanifolds M

of Kenmotsu manifolds M̃ admitting a quarter symmetric metric connection
and to show that M admits quarter symmetric metric connection. Further it
is proved that the second fundamental forms σ and σ with respect to Levi-
Civita connection and quarter symmetric metric connection coincide. Also it is
shown that if the second fundamental form σ is recurrent, 2-recurrent, general-
ized 2-recurrent, semiparallel, pseudoparallel, Ricci-generalized pseudoparallel

and M has parallel third fundamental form with respect to quarter symmet-
ric metric connection, then M is totally geodesic with respect to Levi-Civita
connection.

1. Quarter symmetric metric connection

The study of the geometry of invariant submanifolds of Kenmotsu manifolds is
carried out by C.S. Bagewadi and V.S. Prasad [4], S. Sular and C. Ozgur [13] and M.
Kobayashi [10]. The author [10] has shown that the submanifold M of a Kenmotsu

manifold M̃ has parallel second fundamental form if and only if M is totally geo-
desic. The authors [4, 11, 13] have shown the equivalence of totally geodesicity of
M with parallelism and semiparallelism of σ. Also they have shown that invariant

submanifold of Kenmotsu manifold carries Kenmotsu structure and if K ≤ K̃, then
M is totally geodesic. Further the author [13] have shown the equivalence of totally
geodesicity of M , if σ is recurrent, M has parallel third fundamental form and σ is
generalized 2-recurrent. Further the study has been carried out by B.S. Anitha and
C.S. Bagewadi [2]. In this paper we extend the results to invariant submanifolds
M of Kenmotsu manifolds admitting quarter symmetric metric connection.

We know that a connection ∇ on a manifold M is called a metric connection if
there is a Riemannian metric g on M if ∇g = 0 otherwise it is non-metric. In 1924,
Friedman and J.A. Schouten [7] introduced the notion of a semi-symmetric linear
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connection on a differentiable manifold. In 1932, H.A. Hayden [9] introduced the
idea of metric connection with torsion on a Riemannian manifold. In 1970, K. Yano
[14] studied some curvature tensors and conditions for semi-symmetric connections
in Riemannian manifolds. In 1975’s S. Golab [8] defined and studied quarter sym-

metric linear connection on a differentiable manifold. A linear connection ∇̃ in an
n-dimensional Riemannian manifold is said to be a quarter symmetric connection
[8] if its torsion tensor T is of the form

T (X,Y ) = ∇XY −∇YX − [X,Y ] = A(Y )KX −A(X)KY, (1.1)

where A is a 1-form and K is a tensor field of type (1, 1). If a quarter symmetric
linear connection ∇ satisfies the condition

(∇Xg)(Y, Z) = 0,

for all X,Y, Z ∈ χ(M), where χ(M) is the Lie algebra of vector fields on the mani-
fold M , then ∇ is said to be a quarter symmetric metric connection. For a contact
metric manifold admitting quarter symmetric connection, we can take A = η and
K = φ to write (1.1) in the form:

T (X,Y ) = η(Y )φX − η(X)φY. (1.2)

Now we obtain the relation between Levi-civita connection ∇ and quarter symmet-
ric metric connection ∇ of a contact metric manifold as follows:

The relation between linear connection ∇ and a Riemannian connection ∇ of an
almost contact metric manifold symmetric [8] is given as follows.

Let ∇ be a linear connection and ∇ be a Riemannian connection of an almost
contact metric manifold as given below

∇XY = ∇XY +H(X,Y ), (1.3)

where H is a tensor of type (1, 1). For ∇ to be a quarter symmetric metric connec-
tion in M , we have

H(X,Y ) =
1

2
[T (X,Y ) + T ′(X,Y ) + T ′(Y,X)] and (1.4)

g(T ′(X,Y ), Z) = g(T (Z,X), Y ). (1.5)

From (1.2) and (1.5), we get

T ′(X,Y ) = g(X,φY )ξ − η(X)φY. (1.6)

Using (1.2) and (1.6) in (1.4), we get

H(X,Y ) = −η(X)φY. (1.7)
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Hence a quarter symmetric metric connection ∇ of an almost contact metric man-
ifold is given by

∇XY = ∇XY − η(X)φY. (1.8)

The covariant differential of the pth order, p ≥ 1, of a (0, k)-tensor field T , k ≥ 1,
defined on a Riemannian manifold (M, g) with the Levi-Civita connection ∇, is
denoted by ∇pT . The tensor T is said to be recurrent and 2-recurrent [12], if the
following conditions hold on M , respectively,

(∇T )(X1, ..., Xk;X)T (Y1, ..., Yk) = (∇T )(Y1, ..., Yk;X)T (X1, ..., Xk), (1.9)

(∇2T )(X1, ..., Xk;X,Y )T (Y1, ..., Yk) = (∇2T )(Y1, ..., Yk;X,Y )T (X1, ..., Xk),

where X,Y,X1, Y1, ..., Xk, Yk ∈ TM . From (1.9) it follows that at a point x ∈ M ,
if the tensor T is non-zero, then there exists a unique 1-form φ and a (0, 2)-tensor
ψ, defined on a neighborhood U of x such that

∇T = T ⊗ φ, φ = d(log ‖T ‖) (1.10)

and

∇2T = T ⊗ ψ, (1.11)

hold on U , where ‖T ‖ denotes the norm of T and ‖T ‖2 = g(T, T ). The tensor T is
said to be generalized 2-recurrent if

((∇2T )(X1, ..., Xk;X,Y )− (∇T ⊗ φ)(X1, ..., Xk;X,Y ))T (Y1, ..., Yk)

= ((∇2T )(Y1, ..., Yk;X,Y )− (∇T ⊗ φ)(Y1, ..., Yk;X,Y ))T (X1, ..., Xk),

holds on M , where φ is a 1-form on M . From this it follows that at a point x ∈M

if the tensor T is non-zero, then there exists a unique (0, 2)-tensor ψ, defined on a
neighborhood U of x, such that

∇2T = ∇T ⊗ φ+ T ⊗ ψ, (1.12)

holds on U .

2. Isometric Immersion

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an n-dimensional Rie-

mannian manifold (M, g) into (n + d)-dimensional Riemannian manifold (M̃, g̃),

n ≥ 2, d ≥ 1. We denote by ∇ and ∇̃ as Levi-Civita connection of Mn and M̃n+d
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respectively. Then the formulas of Gauss and Weingarten are given by

∇̃XY = ∇XY + σ(X,Y ), (2.1)

∇̃XN = −ANX +∇⊥

XN, (2.2)

for any tangent vector fields X,Y and the normal vector field N on M , where σ,
A and ∇⊥ are the second fundamental form, the shape operator and the normal
connection respectively. If the second fundamental form σ is identically zero, then
the manifold is said to be totally geodesic. The second fundamental form σ and
AN are related by

g̃(σ(X,Y ), N) = g(ANX,Y ),

for tangent vector fields X,Y . The first and second covariant derivatives of the
second fundamental form σ are given by

(∇̃Xσ)(Y, Z) = ∇⊥

X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ), (2.3)

(∇̃2σ)(Z,W,X, Y ) = (∇̃X∇̃Y σ)(Z,W ), (2.4)

= ∇⊥

X((∇̃Y σ)(Z,W )) − (∇̃Y σ)(∇XZ,W )

−(∇̃Xσ)(Z,∇YW )− (∇̃∇XY σ)(Z,W )

respectively, where ∇̃ is called the vander Waerden-Bortolotti connection of M [6].

If ∇̃σ = 0, then M is said to have parallel second fundamental form [6]. We next
define endomorphisms R(X,Y ) and X ∧B Y of χ(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

(X ∧B Y )Z = B(Y, Z)X −B(X,Z)Y (2.5)

respectively, where X,Y, Z ∈ χ(M) and B is a symmetric (0, 2)-tensor.
Now, for a (0, k)-tensor field T , k ≥ 1 and a (0, 2)-tensor field B on (M, g), we

define the tensor Q(B, T ) by

Q(B, T )(X1, ..., Xk;X,Y ) = −(T (X ∧B Y )X1, ..., Xk) (2.6)

− · · · −T (X1, ..., Xk−1(X ∧B Y )Xk).

Putting into the above formula T = σ and B = g, B = S, we obtain the tensors
Q(g, σ) and Q(S, σ).

3. Kenmotsu Manifolds

Let M̃ be a n-dimensional almost contact metric manifold with structure (φ, ξ, η, g),
where φ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g is the
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Riemannian metric satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (3.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (3.2)

for all vector fields X,Y on M . If

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (3.3)

∇Xξ = X − η(X)ξ, (3.4)

where ∇ denotes the Riemannian connection of g, then (M,φ, ξ, η, g) is called an
almost Kenmotsu manifold [3].
Example of Kenmotsu manifold: Consider the 3-dimensional manifold M =
{(x, y, z) ∈ R3 : z 6= 0}, where (x, y, z) are the standard coordinates in R3. Let
{E1, E2, E3} be linearly independent global frame field on M given by

E1 = z
∂

∂x
, E2 =

z

y

∂

∂y
, E3 = −z

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0,

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1.

The (φ, ξ, η) is given by

η = −
1

z
dz, ξ = E3 =

∂

∂z
,

φE1 = E2, φE2 = −E1, φE3 = 0.

The linearity property of φ and g yields that

η(E3) = 1, φ2U = −U + η(U)E3,

g(φU, φW ) = g(U,W )− η(U)η(W ),

for any vector fields U,W on M . By definition of Lie bracket, we have

[E1, E3] = E1, [E2, E3] = E2.

The Levi-Civita connection with respect to above metric g be given by Koszula
formula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).
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Then we have,

∇E1
E1 = −E3, ∇E1

E2 = 0, ∇E1
E3 = E1,

∇E2
E1 = 0, ∇E2

E2 = −E3, ∇E2
E3 = E2,

∇E3
E1 = 0, ∇E3

E2 = 0, ∇E3
E3 = 0.

The tangent vectorsX and Y toM are expressed as linear combination ofE1, E2, E3,
i.e., X = a1E1 + a2E2 + a3E3 and Y = b1E1 + b2E2 + b3E3, where ai and bj are
scalars. Clearly (φ, ξ, η, g) and X,Y satisfy equations (3.1), (3.2), (3.3) and (3.4).
Thus M is a Kenmotsu manifold.

In Kenmotsu manifolds the following relations hold [3]:

R(X,Y )Z = {g(X,Z)Y − g(Y, Z)X} , (3.5)

R(X,Y )ξ = {η(X)Y − η(Y )X} , (3.6)

R(ξ,X)Y = {η(Y )X − g(X,Y )ξ} , (3.7)

R(ξ,X)ξ = {X − η(X)ξ} , (3.8)

S(X, ξ) = −(n− 1)η(X), (3.9)

Qξ = −(n− 1)ξ. (3.10)

4. Invariant submanifolds of Kenmotsu manifolds admitting Quarter
symmetric metric connection

A submanifold M of a Kenmotsu manifold M̃ with a quarter symmetric metric

connection is called an invariant submanifold of M̃ with a quarter symmetric met-
ric connection, if for each x ∈ M , φ(TxM) ⊂ TxM . As a consequence, ξ becomes
tangent toM . For an invariant submanifold of a Kenmotsu manifold with a quarter
symmetric metric connection, we have

σ(X, ξ) = 0, (4.1)

for any vector X tangent to M .

Let M̃ be a Kenmotsu manifold admitting a quarter symmetric metric connection

∇̃.

Lemma 4.1. Let M be an invariant submanifold of contact metric manifold M̃

which admits quarter symmetric metric connection ∇̃ and let σ and σ be the second
fundamental forms with respect to Levi-Civita connection and quarter symmetric
metric connection, then (1) M admits quarter symmetric metric connection, (2)

the second fundamental forms with respect to ∇̃ and ∇̃ are equal.

Proof. We know that the contact metric structure (φ̃, ξ̃, η̃, g̃) on M̃ induces (φ, ξ, η, g)
on invariant submanifold. By virtue of (1.8), we get

∇̃XY = ∇̃XY − η(X)φY. (4.2)
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By using (2.1) in (4.2), we get

∇̃XY = ∇XY + σ(X,Y )− η(X)φY. (4.3)

Now Gauss formula (2.1) with respect to quarter symmetric metric connection is
given by

∇̃XY = ∇XY + σ(X,Y ). (4.4)

Equating (4.3) and (4.4), we get (1.8) and

σ(X,Y ) = σ(X,Y ). (4.5)

�

Now we introduce the definitions of semiparallel, pseudoparallel and Ricci-generalized
pseudoparallel with respect to quarter symmetric metric connection.

definition 4.2. An immersion is said to be semiparallel, pseudoparallel and Ricci-
generalized pseudoparallel with respect to quarter symmetric metric connection, re-
spectively, if the following conditions hold for all vector fields X,Y tangent to M

R̃ · σ = 0, (4.6)

R̃ · σ = L1Q(g, σ) and (4.7)

R̃ · σ = L2Q(S, σ), (4.8)

where R̃ denotes the curvature tensor with respect to connection ∇̃. Here L1

and L2 are functions depending on σ.

Lemma 4.3. Let M be an invariant submanifold of Contact manifold M̃ which
admits quarter symmetric metric connection. Then Gauss and Weingarten formu-
lae with respect to quarter symmetric metric connection are given by

tan(R̃(X,Y )Z) = R(X,Y )Z − η(X)φ∇Y Z − η(Y )∇XφZ (4.9)

+η(Y )φ∇XZ + η(X)∇Y φZ + η([X,Y ])φZ + tan
{
∇̃X {σ(Y, Z)}

−∇̃Y {σ(X,Z)}+ ∇̃Y η(X)φZ − ∇̃Xη(Y )φZ
}
,

nor(R̃(X,Y )Z) = σ(X,∇Y Z)− η(Y )σ(X,φZ) − σ(Y,∇XZ) (4.10)

+η(X)σ(Y, φZ)− σ([X,Y ], Z) + nor
{
∇̃X {σ(Y, Z)} − ∇̃Y {σ(X,Z)}

+∇̃Y η(X)φZ − ∇̃Xη(Y )φZ
}
.
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Proof. The Riemannian curvature tensor R̃ on M̃ with respect to quarter symmet-
ric metric connection is given by

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z. (4.11)

Using (1.8) and (2.1) in (4.11), we get

R̃(X,Y )Z = R(X,Y )Z + σ(X,∇Y Z)− η(X)φ∇Y Z + ∇̃X {σ(Y, Z)} (4.12)

−∇̃Xη(Y )φZ − η(Y )∇XφZ − η(Y )σ(X,φZ)− σ(Y,∇XZ) + η(Y )φ∇XZ

−∇̃Y {σ(X,Z)}+ ∇̃Y η(X)φZ + η(X)∇Y φZ + η(X)σ(Y, φZ)

−σ([X,Y ], Z) + η([X,Y ])φZ.

Comparing tangential and normal part of (4.12), we obtain Gauss and Weingarten
formulae (4.9) and (4.10). �

We obtain the condition in the following lemma for semi, pseudo and Ricci-
generalized pseudoparallelism for invariant submanifold M of Sasakian manifold

M̃ .

Lemma 4.4. Let M be an invariant submanifold of Contact manifold M̃ which
admits quarter symmetric metric connection. Then

(R̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(R(X,Y )U, V ) (4.13)

−σ(R(X,Y )U, V )−∇XAσ(U,V )Y − σ(X,Aσ(U,V )Y )

+η(X)φAσ(U,V )Y −A∇⊥

Y
σ(U,V )X − η(X)φ∇⊥

Y σ(U, V )

−∇̃Xη(Y )φσ(U, V ) +∇Y Aσ(U,V )X + σ(Y,Aσ(U,V )X)

−η(Y )φAσ(U,V )X +A∇⊥

X
σ(U,V )Y + η(Y )φ∇⊥

Xσ(U, V )

+∇̃Y η(X)φσ(U, V ) +Aσ(U,V )[X,Y ] + η([X,Y ])φσ(U, V )

−σ(σ(X,∇Y U), V ) + η(X)σ(φ∇Y U, V )− σ(∇̃X {σ(Y, U)} , V )

+σ(∇̃Xη(Y )φU, V ) + η(Y )σ(∇XφU, V ) + η(Y )σ(σ(X,φU), V )

+σ(σ(Y,∇XU), V )− η(Y )σ(φ∇XU, V ) + σ(∇̃Y {σ(X,U)} , V )

−σ(∇̃Y η(X)φU, V )− η(X)σ(∇Y φU, V )− η(X)σ(σ(Y, φU), V )

+σ(σ([X,Y ], U), V )− η([X,Y ])σ(φU, V )− σ(U, σ(X,∇Y V ))

+η(X)σ(U, φ∇Y V )− σ(U, ∇̃X {σ(Y, V )}) + σ(U, ∇̃Xη(Y )φV )

+η(Y )σ(U,∇XφV ) + η(Y )σ(U, σ(X,φV )) + σ(U, σ(Y,∇XV ))

−η(Y )σ(U, φ∇XV ) + σ(U, ∇̃Y {σ(X,V )})− σ(U, ∇̃Y η(X)φV )

−η(X)σ(U,∇Y φV )− η(X)σ(U, σ(Y, φV )) + σ(U, σ([X,Y ], V ))

−η([X,Y ])σ(U, φV ),

for all vector fields X,Y, U and V tangent to M , where
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R⊥(X,Y ) = [∇⊥

X ,∇
⊥

Y ]−∇⊥

[X,Y ].

Proof. We know, from tensor algebra, that

(R̃(X,Y )σ)(U, V ) = R̃(X,Y )σ(U, V )− σ(R̃(X,Y )U, V )− σ(U, R̃(X,Y )V ). (4.14)

Replace Z by σ(U, V ) in (4.11) to get

R̃(X,Y )σ(U, V ) = ∇̃X∇̃Y σ(U, V )− ∇̃Y ∇̃Xσ(U, V )− ∇̃[X,Y ]σ(U, V ). (4.15)

In view of (1.8), (2.1) and (2.2) we have the following equalities:

∇̃X∇̃Y σ(U, V ) = ∇̃X(−Aσ(U,V )Y +∇⊥

Y σ(U, V )− η(Y )φσ(U, V )), (4.16)

= −∇XAσ(U,V )Y − σ(X,Aσ(U,V )Y ) + η(X)φAσ(U,V )Y

−A∇⊥

Y
σ(U,V )X +∇⊥

X∇⊥

Y σ(U, V )− η(X)φ∇⊥

Y σ(U, V )

−∇̃Xη(Y )φσ(U, V ),

∇̃Y ∇̃Xσ(U, V ) = −∇Y Aσ(U,V )X − σ(Y,Aσ(U,V )X) (4.17)

+η(Y )φAσ(U,V )X −A∇⊥

X
σ(U,V )Y +∇⊥

Y ∇
⊥

Xσ(U, V )

−η(Y )φ∇⊥

Xσ(U, V )− ∇̃Y η(X)φσ(U, V )

and

∇̃[X,Y ]σ(U, V ) = −Aσ(U,V )[X,Y ] +∇⊥

[X,Y ]σ(U, V )− η([X,Y ])φσ(U, V ). (4.18)

Substituting (4.16)− (4.18) into (4.15), we get

R̃(X,Y )σ(U, V ) = R⊥(X,Y )σ(U, V )−∇XAσ(U,V )Y − σ(X,Aσ(U,V )Y ) (4.19)

+η(X)φAσ(U,V )Y −A∇⊥

Y
σ(U,V )X − η(X)φ∇⊥

Y σ(U, V )− ∇̃Xη(Y )φσ(U, V )

+∇YAσ(U,V )X + σ(Y,Aσ(U,V )X)− η(Y )φAσ(U,V )X +A∇⊥

X
σ(U,V )Y

+η(Y )φ∇⊥

Xσ(U, V ) + ∇̃Y η(X)φσ(U, V ) +Aσ(U,V )[X,Y ] + η([X,Y ])φσ(U, V ).

By using (4.12) in σ(R̃(X,Y )U, V ) and σ(U, R̃(X,Y )V ), we get
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σ(R̃(X,Y )U, V ) = σ(R(X,Y )U, V ) + σ(σ(X,∇Y U), V ) (4.20)

−η(X)σ(φ∇Y U, V ) + σ(∇̃X {σ(Y, U)} , V )− σ(∇̃Xη(Y )φU, V )

−η(Y )σ(∇XφU, V )− η(Y )σ(σ(X,φU), V )− σ(σ(Y,∇XU), V )

+η(Y )σ(φ∇XU, V )− σ(∇̃Y {σ(X,U)} , V ) + σ(∇̃Y η(X)φU, V )

+η(X)σ(∇Y φU, V ) + η(X)σ(σ(Y, φU), V )− σ(σ([X,Y ], U), V )

+η([X,Y ])σ(φU, V )

(4.21)

and

σ(U, R̃(X,Y )V ) = σ(U,R(X,Y )V ) + σ(U, σ(X,∇Y V )) (4.22)

−η(X)σ(U, φ∇Y V ) + σ(U, ∇̃X {σ(Y, V )})− σ(U, ∇̃Xη(Y )φV )

−η(Y )σ(U,∇XφV )− η(Y )σ(U, σ(X,φV ))− σ(U, σ(Y,∇XV ))

+η(Y )σ(U, φ∇XV )− σ(U, ∇̃Y {σ(X,V )}) + σ(U, ∇̃Y η(X)φV )

+η(X)σ(U,∇Y φV ) + η(X)σ(U, σ(Y, φV ))− σ(U, σ([X,Y ], V ))

+η([X,Y ])σ(U, φV ).

Substituting (4.19)− (4.22) into (4.14), we get (4.13). �

5. Recurrent Invariant submanifolds of Kenmotsu manifolds
admitting Quarter symmetric metric connection

We consider invariant submanifold of a Kenmotsu manifold when σ is recurrent,
2-recurrent, generalized 2-recurrent and M has parallel third fundamental form
with respect to quarter symmetric metric connection. We write the equations (2.3)
and (2.4) with respect to quarter symmetric metric connection in the form

(∇̃Xσ)(Y, Z) = ∇
⊥

X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ), (5.1)

(∇̃
2

σ)(Z,W,X, Y ) = (∇̃X∇̃Y σ)(Z,W ), (5.2)

= ∇
⊥

X((∇̃Y σ)(Z,W )) − (∇̃Y σ)(∇XZ,W )

−(∇̃Xσ)(Z,∇YW )− (∇̃
∇XY σ)(Z,W ).

and prove the following theorems

Theorem 5.1. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then σ is recurrent with respect
to quarter symmetric metric connection if and only if it is totally geodesic with
respect to Levi-Civita connection.

Proof. Let σ be recurrent with respect to quarter symmetric metric connection.
Then from (1.10) we get

(∇̃Xσ)(Y, Z) = φ(X)σ(Y, Z),
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where φ is a 1-form onM . By using (5.1) and Z = ξ in the above equation, we have

∇
⊥

Xσ(Y, ξ)− σ(∇XY, ξ)− σ(Y,∇Xξ) = φ(X)σ(Y, ξ), (5.3)

which by virtue of (4.1) reduces to

− σ(∇XY, ξ)− σ(Y,∇Xξ) = 0. (5.4)

Using (1.8), (3.4) and (4.1) in (5.4), we obtain σ(X,Y ) = 0, i.e., M is totally
geodesic. The converse statement is trivial. This proves the theorem. �

Theorem 5.2. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then M has parallel third funda-
mental form with respect to quarter symmetric metric connection if and only if it
is totally geodesic with respect to Levi-Civita connection.

Proof. LetM has parallel third fundamental form with respect to quarter symmet-
ric metric connection. Then we have

(∇̃X∇̃Y σ)(Z,W ) = 0.

Taking W = ξ and using (5.2) in the above equation, we have

∇
⊥

X((∇̃Y σ)(Z, ξ))−(∇̃Y σ)(∇XZ, ξ)−(∇̃Xσ)(Z,∇Y ξ)−(∇̃
∇XY σ)(Z, ξ) = 0. (5.5)

By using (4.1) and (5.1) in (5.5), we get

0 = −∇
⊥

X

{
σ(∇Y Z, ξ) + σ(Z,∇Y ξ)

}
−∇

⊥

Y σ(∇XZ, ξ) + σ(∇Y ∇XZ, ξ) (5.6)

+2σ(∇XZ,∇Y ξ)−∇
⊥

Xσ(Z,∇Y ξ) + σ(Z,∇X∇Y ξ) + σ(∇
∇XY Z, ξ) + σ(Z,∇

∇XY ξ).

In view of (1.8), (3.1), (3.4) and (4.1) the above result (5.6) gives

0 = −2∇
⊥

Xσ(Z, Y ) + 2σ(∇XZ, Y )− 2η(X)σ(φZ, Y ) + 2σ(Z,∇XY ) (5.7)

−2η(X)σ(Z, φY )− σ(Z,∇Xη(Y )ξ).

Put Z = ξ and use (3.4), (4.1) in (5.7) to obtain σ(X,Y ) = 0, i.e., M is totally
geodesic. The converse statement is trivial. This proves the theorem. �

Corollary 5.3. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then σ is 2-recurrent with respect
to quarter symmetric metric connection if and only if it is totally geodesic with
respect to Levi-Civita connection.
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Proof. Let σ be 2-recurrent with respect to quarter symmetric metric connection.
From (1.11), we have

(∇̃X∇̃Y σ)(Z,W ) = σ(Z,W )φ(X,Y ).

Taking W = ξ and using (5.2) in the above equation, we have

∇
⊥

X((∇̃Y σ)(Z, ξ)) − (∇̃Y σ)(∇XZ, ξ)− (∇̃Xσ)(Z,∇Y ξ) (5.8)

−(∇̃
∇XY σ)(Z, ξ) = σ(Z, ξ)φ(X,Y ).

In view of (4.1) and (5.1) we write (5.8) in the form

0 = −∇
⊥

X

{
σ(∇Y Z, ξ) + σ(Z,∇Y ξ)

}
−∇

⊥

Y σ(∇XZ, ξ) + σ(∇Y ∇XZ, ξ) (5.9)

+2σ(∇XZ,∇Y ξ)−∇
⊥

Xσ(Z,∇Y ξ) + σ(Z,∇X∇Y ξ) + σ(∇
∇XY Z, ξ) + σ(Z,∇

∇XY ξ).

Using (1.8), (3.1), (3.4) and (4.1) in (5.9), we get

0 = −2∇
⊥

Xσ(Z, Y ) + 2σ(∇XZ, Y )− 2η(X)σ(φZ, Y ) + 2σ(Z,∇XY ) (5.10)

−2η(X)σ(Z, φY )− σ(Z,∇Xη(Y )ξ).

Taking Z = ξ and using (3.4), (4.1) in (5.10), we obtain σ(X,Y ) = 0, i.e., M is
totally geodesic. The converse statement is trivial. This proves the theorem. �

Theorem 5.4. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then σ is generalized 2-recurrent
with respect to quarter symmetric metric connection if and only if it is totally
geodesic with respect to Levi-Civita connection.

Proof. Let σ be generalized 2-recurrent with respect to quarter symmetric metric
connection. From (1.12), we have

(∇̃X∇̃Y σ)(Z,W ) = ψ(X,Y )σ(Z,W ) + φ(X)(∇̃Y σ)(Z,W ), (5.11)

where ψ and φ are 2-recurrent and 1-form respectively. Taking W = ξ in (5.11)
and using (4.1), we get

(∇̃X∇̃Y σ)(Z, ξ) = φ(X)(∇̃Y σ)(Z, ξ).

Using (4.1) and (5.2) in above equation, we get

∇
⊥

X((∇̃Y σ)(Z, ξ)) − (∇̃Y σ)(∇XZ, ξ)− (∇̃Xσ)(Z,∇Y ξ) (5.12)

−(∇̃
∇XY σ)(Z, ξ) = −φ(X)

{
σ(∇Y Z, ξ) + σ(Z,∇Y ξ)

}
.
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In view of (4.1) and (5.1) the above result (5.12) gives

−∇
⊥

X

{
σ(∇Y Z, ξ) + σ(Z,∇Y ξ)

}
−∇

⊥

Y σ(∇XZ, ξ) + σ(∇Y ∇XZ, ξ) (5.13)

+2σ(∇XZ,∇Y ξ)−∇
⊥

Xσ(Z,∇Y ξ) + σ(Z,∇X∇Y ξ) + σ(∇
∇XY Z, ξ)

+σ(Z,∇
∇XY ξ) = −φ(X)

{
σ(∇Y Z, ξ) + σ(Z,∇Y ξ)

}
.

Using (1.8), (3.1), (3.4) and (4.1) in (5.13), we get

−2∇
⊥

Xσ(Z, Y ) + 2σ(∇XZ, Y )− 2η(X)σ(φZ, Y ) + 2σ(Z,∇XY ) (5.14)

−2η(X)σ(Z, φY )− σ(Z,∇Xη(Y )ξ) = −φ(X)σ(Z, Y ).

Choosing Z = ξ and using (3.4), (4.1) in (5.14), we obtain σ(X,Y ) = 0, i.e., M is
totally geodesic. The converse statement is trivial. This proves the theorem. �

6. Semiparallel, pseudoparallel and Ricci-generalized pseudoparallel

Invariant submanifolds of Kenmotsu manifolds admitting Quarter

symmetric metric connection

We consider invariant submanifolds of Kenmotsu manifolds admitting quarter

symmetric metric connection satisfying the conditions R̃ ·σ = 0, R̃ ·σ = L1Q(g, σ),

R̃ · σ = L2Q(S, σ).

Theorem 6.1. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then M is semiparallel with re-
spect to quarter symmetric metric connection if and only if it is totally geodesic
with respect to Levi-Civita connection.

Proof. Let M be semiparallel satisfying R̃ · σ = 0. Put X = V = ξ and use (3.1),
(3.4) and (4.1) in (4.13) to get

0 = −σ(U,R(ξ, Y )ξ)− σ(∇̃ξσ(Y, U), ξ) + σ(∇̃ξη(Y )φU, ξ) (6.1)

−σ(∇̃Y φU, ξ) + σ(U, φ∇Y ξ).

Using (1.8), (2.1), (3.1) (3.4), (3.8) and (4.1) in (6.1), we get

− σ(U, Y ) + σ(U, φY )− σ(∇̃ξσ(Y, U), ξ) = 0. (6.2)

By definition σ is a vector valued covariant tensor and so σ(U, Y ) is a vector. There-

fore ∇̃ξσ(Y, U) is a vector and hence by (4.1), we have

σ(∇̃ξσ(Y, U), ξ) = 0. (6.3)
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Then from (6.2), we get

− σ(U, Y ) + σ(U, φY ) = 0. (6.4)

Replacing Y by φY and using (3.1) and (4.1) in (6.4), we get

− σ(U, φY )− σ(U, Y ) = 0. (6.5)

Adding (6.4) and (6.5), we obtain σ(U, Y ) = 0, i.e., M is totally geodesic. The
converse statement is trivial. �

Theorem 6.2. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then M is pseudoparallel with
respect to quarter symmetric metric connection if and only if it is totally geodesic
with respect to Levi-Civita connection.

Proof. Let M be pseudoparallel satisfying R̃ · σ = L1Q(g, σ). Put X = V = ξ and
use (3.1), (3.4) and (4.1) in (2.6) and (4.13) to get

−σ(U,R(ξ, Y )ξ)− σ(∇̃ξσ(Y, U), ξ) + σ(∇̃ξη(Y )φU, ξ)− σ(∇̃Y φU, ξ) (6.6)

+σ(U, φ∇Y ξ) = −L1σ(U, Y ).

Using (1.8), (2.1), (3.1) (3.4), (3.8) and (4.1) in (6.6), we get

− σ(U, Y ) + σ(U, φY )− σ(∇̃ξσ(Y, U), ξ) = −L1σ(U, Y ). (6.7)

Now by using (6.3) in (6.7), we get

(L1 − 1)σ(U, Y ) + σ(U, φY ) = 0. (6.8)

Replacing Y by φY and using (3.1) and (4.1) in (6.8), we get

(L1 − 1)σ(U, φY )− σ(U, Y ) = 0. (6.9)

Multiplying (6.8) by (L1 − 1) and (6.9) by 1 and subtracting these two equations,
we obtain ((L1−1)2+1)σ(U, Y ) = 0 and hence if L1 6= (1±i), we have σ(U, Y ) = 0,
i.e., M is totally geodesic. The converse statement is trivial. �

Theorem 6.3. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then M is Ricci-generalized pseu-
doparallel with respect to quarter symmetric metric connection if and only if it is
totally geodesic with respect to Levi-Civita connection.
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Proof. LetM be Ricci-generalized pseudoparallel satisfying R̃ ·σ = L2Q(S, σ). Put
X = V = ξ and use (3.1), (3.4), (3.9) and (4.1) in (2.6) and (4.13) to get

−σ(U,R(ξ, Y )ξ)− σ(∇̃ξσ(Y, U), ξ) + σ(∇̃ξη(Y )φU, ξ) (6.10)

−σ(∇̃Y φU, ξ) + σ(U, φ∇Y ξ) = L2(n− 1)σ(U, Y ).

Using (1.8), (2.1), (3.1), (3.4), (3.8) and (4.1) in (6.10), we get

− σ(U, Y ) + σ(U, φY )− σ(∇̃ξσ(Y, U), ξ) = L2(n− 1)σ(U, Y ). (6.11)

Now by using (6.3) in (6.11), we get

(−L2(n− 1)− 1)σ(U, Y ) + σ(U, φY ) = 0. (6.12)

Replacing Y by φY and using (3.1) and (4.1) in (6.12), we get

(−L2(n− 1)− 1)σ(U, φY )− σ(U, Y ) = 0. (6.13)

Multiplying (6.12) by (−L2(n− 1)− 1) and (6.13) by 1 and subtracting these two

equations, we obtain ((−L2(n−1)−1)2+1)σ(U, Y ) = 0 and hence if L2 6= (−1±i)
(n−1) , we

have σ(U, Y ) = 0, i.e., M is totally geodesic. The converse statement is trivial. �

Using Theorems and corollary 5.1 to 5.3, 6.4 to 6.6, we have the following result

Corollary 6.4. Let M be an invariant submanifold of a Kenmotsu manifold M̃

admitting quarter symmetric metric connection. Then the following statements are
equivalent.

(1) σ is recurrent.
(2) σ is 2-recurrent.
(3) σ is generalized 2-recurrent.
(4) M has parallel third fundamental form.
(5) M is semiparallel.
(6) M is pseudoparallel, if L1 6= (1± i).

(7) M is Ricci-generalized pseudoparallel, if L2 6= (−1±i)
(n−1) .

(8) M is totally geodesic.
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