BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 3 (2012), Pages 99-114.

INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS ADMITTING QUARTER SYMMETRIC METRIC CONNECTION

(COMMUNICATED BY KRISHAN L. DUGGAL)

B.S.ANITHA AND C.S.BAGEWADI

ABSTRACT. The object of this paper is to study invariant submanifolds M of Kenmotsu manifolds \widetilde{M} admitting a quarter symmetric metric connection and to show that M admits quarter symmetric metric connection. Further it is proved that the second fundamental forms σ and $\overline{\sigma}$ with respect to Levi-Civita connection and quarter symmetric metric connection coincide. Also it is shown that if the second fundamental form σ is recurrent, 2-recurrent, generalized 2-recurrent, semiparallel, pseudoparallel, Ricci-generalized pseudoparallel and M has parallel third fundamental form with respect to quarter symmetric metric connection, then M is totally geodesic with respect to Levi-Civita connection.

1. QUARTER SYMMETRIC METRIC CONNECTION

The study of the geometry of invariant submanifolds of Kenmotsu manifolds is carried out by C.S. Bagewadi and V.S. Prasad [4], S. Sular and C. Ozgur [13] and M. Kobayashi [10]. The author [10] has shown that the submanifold M of a Kenmotsu manifold \widetilde{M} has parallel second fundamental form if and only if M is totally geodesic. The authors [4, 11, 13] have shown the equivalence of totally geodesicity of M with parallelism and semiparallelism of σ . Also they have shown that invariant submanifold of Kenmotsu manifold carries Kenmotsu structure and if $K \leq \widetilde{K}$, then M is totally geodesic. Further the author [13] have shown the equivalence of totally geodesicity of M, if σ is recurrent, M has parallel third fundamental form and σ is generalized 2-recurrent. Further the study has been carried out by B.S. Anitha and C.S. Bagewadi [2]. In this paper we extend the results to invariant submanifolds M of Kenmotsu manifolds admitting quarter symmetric metric connection.

We know that a connection ∇ on a manifold M is called a metric connection if there is a Riemannian metric g on M if $\nabla g = 0$ otherwise it is non-metric. In 1924, Friedman and J.A. Schouten [7] introduced the notion of a semi-symmetric linear

 $^{2000\} Mathematics\ Subject\ Classification.\ 53D15,\ 53C21,\ 53C25,\ 53C40.$

 $Key\ words\ and\ phrases.$ Invariant submanifolds; Sasakian manifold; Quarter symmetric metric connection.

^{©2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted July 23, 2012. Published date September 10, 2012.

connection on a differentiable manifold. In 1932, H.A. Hayden [9] introduced the idea of metric connection with torsion on a Riemannian manifold. In 1970, K. Yano [14] studied some curvature tensors and conditions for semi-symmetric connections in Riemannian manifolds. In 1975's S. Golab [8] defined and studied quarter symmetric linear connection on a differentiable manifold. A linear connection $\widetilde{\nabla}$ in an n-dimensional Riemannian manifold is said to be a quarter symmetric connection [8] if its torsion tensor T is of the form

$$T(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y] = A(Y)KX - A(X)KY,$$
(1.1)

where A is a 1-form and K is a tensor field of type (1,1). If a quarter symmetric linear connection $\overline{\nabla}$ satisfies the condition

$$(\overline{\nabla}_X g)(Y, Z) = 0,$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields on the manifold M, then $\overline{\nabla}$ is said to be a quarter symmetric metric connection. For a contact metric manifold admitting quarter symmetric connection, we can take $A = \eta$ and $K = \phi$ to write (1.1) in the form:

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y.$$
(1.2)

Now we obtain the relation between Levi-civita connection ∇ and quarter symmetric metric connection $\overline{\nabla}$ of a contact metric manifold as follows:

The relation between linear connection $\overline{\nabla}$ and a Riemannian connection ∇ of an almost contact metric manifold symmetric [8] is given as follows.

Let $\overline{\nabla}$ be a linear connection and ∇ be a Riemannian connection of an almost contact metric manifold as given below

$$\overline{\nabla}_X Y = \nabla_X Y + H(X, Y), \tag{1.3}$$

where H is a tensor of type (1, 1). For $\overline{\nabla}$ to be a quarter symmetric metric connection in M, we have

$$H(X,Y) = \frac{1}{2}[T(X,Y) + T'(X,Y) + T'(Y,X)] \text{ and } (1.4)$$

$$g(T'(X,Y),Z) = g(T(Z,X),Y).$$
 (1.5)

From (1.2) and (1.5), we get

$$T'(X,Y) = g(X,\phi Y)\xi - \eta(X)\phi Y.$$
(1.6)

Using (1.2) and (1.6) in (1.4), we get

$$H(X,Y) = -\eta(X)\phi Y. \tag{1.7}$$

Hence a quarter symmetric metric connection $\overline{\nabla}$ of an almost contact metric manifold is given by

$$\overline{\nabla}_X Y = \nabla_X Y - \eta(X)\phi Y. \tag{1.8}$$

The covariant differential of the p^{th} order, $p \ge 1$, of a (0, k)-tensor field $T, k \ge 1$, defined on a Riemannian manifold (M, g) with the Levi-Civita connection ∇ , is denoted by $\nabla^p T$. The tensor T is said to be *recurrent* and 2-recurrent [12], if the following conditions hold on M, respectively,

$$\begin{aligned} (\nabla T)(X_1,...,X_k;X)T(Y_1,...,Y_k) &= (\nabla T)(Y_1,...,Y_k;X)T(X_1,...,X_k), \\ (\nabla^2 T)(X_1,...,X_k;X,Y)T(Y_1,...,Y_k) &= (\nabla^2 T)(Y_1,...,Y_k;X,Y)T(X_1,...,X_k), \end{aligned}$$

where $X, Y, X_1, Y_1, ..., X_k, Y_k \in TM$. From (1.9) it follows that at a point $x \in M$, if the tensor T is non-zero, then there exists a unique 1-form ϕ and a (0, 2)-tensor ψ , defined on a neighborhood U of x such that

$$\nabla T = T \otimes \phi, \quad \phi = d(\log \|T\|) \tag{1.10}$$

and

$$\nabla^2 T = T \otimes \psi, \tag{1.11}$$

hold on U, where ||T|| denotes the norm of T and $||T||^2 = g(T,T)$. The tensor T is said to be generalized 2-recurrent if

$$((\nabla^2 T)(X_1, ..., X_k; X, Y) - (\nabla T \otimes \phi)(X_1, ..., X_k; X, Y))T(Y_1, ..., Y_k) = ((\nabla^2 T)(Y_1, ..., Y_k; X, Y) - (\nabla T \otimes \phi)(Y_1, ..., Y_k; X, Y))T(X_1, ..., X_k),$$

holds on M, where ϕ is a 1-form on M. From this it follows that at a point $x \in M$ if the tensor T is non-zero, then there exists a unique (0, 2)-tensor ψ , defined on a neighborhood U of x, such that

$$\nabla^2 T = \nabla T \otimes \phi + T \otimes \psi, \tag{1.12}$$

holds on U.

2. ISOMETRIC IMMERSION

Let $f: (M,g) \to (\widetilde{M},\widetilde{g})$ be an isometric immersion from an n-dimensional Riemannian manifold (M,g) into (n+d)-dimensional Riemannian manifold $(\widetilde{M},\widetilde{g})$, $n \geq 2, d \geq 1$. We denote by ∇ and $\widetilde{\nabla}$ as Levi-Civita connection of M^n and \widetilde{M}^{n+d} respectively. Then the formulas of Gauss and Weingarten are given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \qquad (2.1)$$

$$\nabla_X N = -A_N X + \nabla_X^{\perp} N, \qquad (2.2)$$

for any tangent vector fields X, Y and the normal vector field N on M, where σ , A and ∇^{\perp} are the second fundamental form, the shape operator and the normal connection respectively. If the second fundamental form σ is identically zero, then the manifold is said to be *totally geodesic*. The second fundamental form σ and A_N are related by

$$\widetilde{g}(\sigma(X,Y),N) = g(A_N X,Y),$$

for tangent vector fields X, Y. The first and second covariant derivatives of the second fundamental form σ are given by

$$\begin{aligned} (\widetilde{\nabla}_X \sigma)(Y, Z) &= \nabla_X^{\perp}(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), \quad (2.3) \\ (\widetilde{\nabla}^2 \sigma)(Z, W, X, Y) &= (\widetilde{\nabla}_X \widetilde{\nabla}_Y \sigma)(Z, W), \quad (2.4) \\ &= \nabla_X^{\perp}((\widetilde{\nabla}_Y \sigma)(Z, W)) - (\widetilde{\nabla}_Y \sigma)(\nabla_X Z, W) \\ &- (\widetilde{\nabla}_X \sigma)(Z, \nabla_Y W) - (\widetilde{\nabla}_{\nabla_X Y} \sigma)(Z, W) \end{aligned}$$

respectively, where $\widetilde{\nabla}$ is called the vander Waerden-Bortolotti connection of M [6]. If $\widetilde{\nabla}\sigma = 0$, then M is said to have parallel second fundamental form [6]. We next define endomorphisms R(X, Y) and $X \wedge_B Y$ of $\chi(M)$ by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

$$(X \wedge_B Y)Z = B(Y,Z)X - B(X,Z)Y$$
(2.5)

respectively, where $X, Y, Z \in \chi(M)$ and B is a symmetric (0, 2)-tensor.

Now, for a (0, k)-tensor field $T, k \ge 1$ and a (0, 2)-tensor field B on (M, g), we define the tensor Q(B, T) by

$$Q(B,T)(X_1,...,X_k;X,Y) = -(T(X \wedge_B Y)X_1,...,X_k)$$
(2.6)
$$-\cdots -T(X_1,...,X_{k-1}(X \wedge_B Y)X_k).$$

Putting into the above formula $T = \sigma$ and B = g, B = S, we obtain the tensors $Q(g, \sigma)$ and $Q(S, \sigma)$.

3. Kenmotsu Manifolds

Let \widetilde{M} be a *n*-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g is the Riemannian metric satisfying

$$\phi^2 = -I + \eta \otimes \xi, \ \eta(\xi) = 1, \ \eta \circ \phi = 0, \ \phi\xi = 0,$$
 (3.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$
 (3.2)

for all vector fields X, Y on M. If

$$(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X, \qquad (3.3)$$

$$\nabla_X \xi = X - \eta(X)\xi, \tag{3.4}$$

where ∇ denotes the Riemannian connection of g, then (M, ϕ, ξ, η, g) is called an almost Kenmotsu manifold [3].

Example of Kenmotsu manifold: Consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Let $\{E_1, E_2, E_3\}$ be linearly independent global frame field on M given by

$$E_1 = z \frac{\partial}{\partial x}, \quad E_2 = \frac{z}{y} \frac{\partial}{\partial y}, \quad E_3 = -z \frac{\partial}{\partial z}.$$

Let g be the Riemannian metric defined by

$$g(E_1, E_2) = g(E_2, E_3) = g(E_1, E_3) = 0,$$

$$g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1.$$

The (ϕ, ξ, η) is given by

$$\eta = -\frac{1}{z}dz, \quad \xi = E_3 = \frac{\partial}{\partial z},$$

$$\phi E_1 = E_2, \quad \phi E_2 = -E_1, \quad \phi E_3 = 0.$$

The linearity property of ϕ and g yields that

$$\eta(E_3) = 1, \qquad \phi^2 U = -U + \eta(U)E_3, g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W),$$

for any vector fields U, W on M. By definition of Lie bracket, we have

$$[E_1, E_3] = E_1, \quad [E_2, E_3] = E_2.$$

The Levi-Civita connection with respect to above metric g be given by Koszula formula

$$\begin{array}{lll} 2g(\nabla_X Y,Z) &=& X(g(Y,Z)) + Y(g(Z,X)) - Z(g(X,Y)) \\ && -g(X,[Y,Z]) - g(Y,[X,Z]) + g(Z,[X,Y]). \end{array}$$

Then we have,

$$\begin{aligned} \nabla_{E_1} E_1 &= -E_3, & \nabla_{E_1} E_2 = 0, & \nabla_{E_1} E_3 = E_1, \\ \nabla_{E_2} E_1 &= 0, & \nabla_{E_2} E_2 = -E_3, & \nabla_{E_2} E_3 = E_2, \\ \nabla_{E_3} E_1 &= 0, & \nabla_{E_3} E_2 = 0, & \nabla_{E_3} E_3 = 0. \end{aligned}$$

The tangent vectors X and Y to M are expressed as linear combination of E_1, E_2, E_3 , i.e., $X = a_1E_1 + a_2E_2 + a_3E_3$ and $Y = b_1E_1 + b_2E_2 + b_3E_3$, where a_i and b_j are scalars. Clearly (ϕ, ξ, η, g) and X, Y satisfy equations (3.1), (3.2), (3.3) and (3.4). Thus M is a Kenmotsu manifold.

In Kenmotsu manifolds the following relations hold [3]:

$$R(X,Y)Z = \{g(X,Z)Y - g(Y,Z)X\}, \qquad (3.5)$$

$$R(X,Y)\xi = \{\eta(X)Y - \eta(Y)X\}, \qquad (3.6)$$

$$R(\xi, X)Y = \{\eta(Y)X - g(X, Y)\xi\}, \qquad (3.7)$$

$$R(\xi, X)\xi = \{X - \eta(X)\xi\}, \qquad (3.8)$$

$$S(X,\xi) = -(n-1)\eta(X),$$
 (3.9)

$$Q\xi = -(n-1)\xi. (3.10)$$

4. Invariant submanifolds of Kenmotsu manifolds admitting Quarter symmetric metric connection

A submanifold M of a Kenmotsu manifold \widetilde{M} with a quarter symmetric metric connection is called an invariant submanifold of \widetilde{M} with a quarter symmetric metric connection, if for each $x \in M$, $\phi(T_xM) \subset T_xM$. As a consequence, ξ becomes tangent to M. For an invariant submanifold of a Kenmotsu manifold with a quarter symmetric metric connection, we have

$$\sigma(X,\xi) = 0,\tag{4.1}$$

for any vector X tangent to M.

Let \widetilde{M} be a Kenmotsu manifold admitting a quarter symmetric metric connection $\widetilde{\nabla}$.

Lemma 4.1. Let M be an invariant submanifold of contact metric manifold \overline{M} which admits quarter symmetric metric connection $\overline{\widetilde{\nabla}}$ and let σ and $\overline{\sigma}$ be the second fundamental forms with respect to Levi-Civita connection and quarter symmetric metric connection, then (1) M admits quarter symmetric metric connection, (2) the second fundamental forms with respect to $\widetilde{\nabla}$ and $\overline{\widetilde{\nabla}}$ are equal.

Proof. We know that the contact metric structure $(\phi, \xi, \eta, \tilde{g})$ on \widetilde{M} induces (ϕ, ξ, η, g) on invariant submanifold. By virtue of (1.8), we get

$$\overline{\widetilde{\nabla}}_X Y = \widetilde{\nabla}_X Y - \eta(X)\phi Y.$$
(4.2)

By using (2.1) in (4.2), we get

$$\overline{\widetilde{\nabla}}_X Y = \nabla_X Y + \sigma(X, Y) - \eta(X)\phi Y.$$
(4.3)

Now Gauss formula (2.1) with respect to quarter symmetric metric connection is given by

$$\overline{\widetilde{\nabla}}_X Y = \overline{\nabla}_X Y + \overline{\sigma}(X, Y). \tag{4.4}$$

Equating (4.3) and (4.4), we get (1.8) and

$$\overline{\sigma}(X,Y) = \sigma(X,Y). \tag{4.5}$$

Now we introduce the definitions of semiparallel, pseudoparallel and Ricci-generalized pseudoparallel with respect to quarter symmetric metric connection.

definition 4.2. An immersion is said to be semiparallel, pseudoparallel and Riccigeneralized pseudoparallel with respect to quarter symmetric metric connection, respectively, if the following conditions hold for all vector fields X, Y tangent to M

$$\overline{\widetilde{R}} \cdot \sigma = 0, \tag{4.6}$$

$$\widetilde{R} \cdot \sigma = L_1 Q(g, \sigma)$$
 and (4.7)

$$\widetilde{R} \cdot \sigma = L_2 Q(S, \sigma), \tag{4.8}$$

where $\overline{\tilde{R}}$ denotes the curvature tensor with respect to connection $\overline{\tilde{\nabla}}$. Here L_1 and L_2 are functions depending on σ .

Lemma 4.3. Let M be an invariant submanifold of Contact manifold \widetilde{M} which admits quarter symmetric metric connection. Then Gauss and Weingarten formulae with respect to quarter symmetric metric connection are given by

$$\begin{aligned} \tan(\overline{\widetilde{R}}(X,Y)Z) &= R(X,Y)Z - \eta(X)\phi\nabla_Y Z - \eta(Y)\nabla_X\phi Z \qquad (4.9) \\ &+ \eta(Y)\phi\nabla_X Z + \eta(X)\nabla_Y\phi Z + \eta([X,Y])\phi Z + \tan\left\{\overline{\widetilde{\nabla}}_X\left\{\sigma(Y,Z)\right\}\right. \\ &- \overline{\widetilde{\nabla}}_Y\left\{\sigma(X,Z)\right\} + \overline{\widetilde{\nabla}}_Y\eta(X)\phi Z - \overline{\widetilde{\nabla}}_X\eta(Y)\phi Z\right\}, \end{aligned}$$
$$\begin{aligned} &\operatorname{nor}(\overline{\widetilde{R}}(X,Y)Z) &= \sigma(X,\nabla_Y Z) - \eta(Y)\sigma(X,\phi Z) - \sigma(Y,\nabla_X Z) \qquad (4.10) \\ &+ \eta(X)\sigma(Y,\phi Z) - \sigma([X,Y],Z) + \operatorname{nor}\left\{\overline{\widetilde{\nabla}}_X\left\{\sigma(Y,Z)\right\} - \overline{\widetilde{\nabla}}_Y\left\{\sigma(X,Z)\right\}\right. \\ &+ \overline{\widetilde{\nabla}}_Y\eta(X)\phi Z - \overline{\widetilde{\nabla}}_X\eta(Y)\phi Z\right\}. \end{aligned}$$

Proof. The Riemannian curvature tensor \widetilde{R} on \widetilde{M} with respect to quarter symmetric metric connection is given by

$$\overline{\widetilde{R}}(X,Y)Z = \overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y Z - \overline{\widetilde{\nabla}}_Y \overline{\widetilde{\nabla}}_X Z - \overline{\widetilde{\nabla}}_{[X,Y]} Z.$$
(4.11)

Using (1.8) and (2.1) in (4.11), we get

$$\begin{split} \widetilde{R}(X,Y)Z &= R(X,Y)Z + \sigma(X,\nabla_Y Z) - \eta(X)\phi\nabla_Y Z + \widetilde{\nabla}_X \left\{\sigma(Y,Z)\right\} (4.12) \\ &- \overline{\widetilde{\nabla}}_X \eta(Y)\phi Z - \eta(Y)\nabla_X \phi Z - \eta(Y)\sigma(X,\phi Z) - \sigma(Y,\nabla_X Z) + \eta(Y)\phi\nabla_X Z \\ &- \overline{\widetilde{\nabla}}_Y \left\{\sigma(X,Z)\right\} + \overline{\widetilde{\nabla}}_Y \eta(X)\phi Z + \eta(X)\nabla_Y \phi Z + \eta(X)\sigma(Y,\phi Z) \\ &- \sigma([X,Y],Z) + \eta([X,Y])\phi Z. \end{split}$$

Comparing tangential and normal part of (4.12), we obtain Gauss and Weingarten formulae (4.9) and (4.10). $\hfill \Box$

We obtain the condition in the following lemma for semi, pseudo and Riccigeneralized pseudoparallelism for invariant submanifold M of Sasakian manifold \widetilde{M} .

Lemma 4.4. Let M be an invariant submanifold of Contact manifold \widetilde{M} which admits quarter symmetric metric connection. Then

$$\begin{split} & (\widetilde{R}(X,Y)\cdot\sigma)(U,V) = R^{\perp}(X,Y)\sigma(U,V) - \sigma(R(X,Y)U,V) \quad (4.13) \\ & -\sigma(R(X,Y)U,V) - \nabla_X A_{\sigma(U,V)}Y - \sigma(X,A_{\sigma(U,V)}Y) \\ & +\eta(X)\phi A_{\sigma(U,V)}Y - A_{\nabla_Y^{\perp}\sigma(U,V)}X - \eta(X)\phi \nabla_Y^{\perp}\sigma(U,V) \\ & -\overline{\nabla}_X \eta(Y)\phi\sigma(U,V) + \nabla_Y A_{\sigma(U,V)}X + \sigma(Y,A_{\sigma(U,V)}X) \\ & -\eta(Y)\phi A_{\sigma(U,V)}X + A_{\nabla_X^{\perp}\sigma(U,V)}Y + \eta(Y)\phi \nabla_X^{\perp}\sigma(U,V) \\ & +\overline{\nabla}_Y \eta(X)\phi\sigma(U,V) + A_{\sigma(U,V)}[X,Y] + \eta([X,Y])\phi\sigma(U,V) \\ & -\sigma(\sigma(X,\nabla_Y U),V) + \eta(X)\sigma(\phi \nabla_Y U,V) - \sigma(\overline{\nabla}_X \{\sigma(Y,U)\},V) \\ & +\sigma(\overline{\nabla}_X \eta(Y)\phi U,V) + \eta(Y)\sigma(\nabla_X \phi U,V) + \eta(Y)\sigma(\sigma(X,\phi U),V) \\ & +\sigma(\sigma(Y,\nabla_X U),V) - \eta(Y)\sigma(\phi \nabla_X U,V) + \sigma(\overline{\nabla}_Y \{\sigma(X,U)\},V) \\ & -\sigma(\overline{\nabla}_Y \eta(X)\phi U,V) - \eta(X)\sigma(\nabla_Y \phi U,V) - \eta(X)\sigma(\sigma(Y,\phi U),V) \\ & +\eta(X)\sigma(U,\phi \nabla_Y V) - \sigma(U,\overline{\nabla}_X \{\sigma(Y,V)\}) + \sigma(U,\overline{\nabla}_X \eta(Y)\phi V) \\ & +\eta(Y)\sigma(U,\nabla_X \phi V) + \sigma(U,\overline{\nabla}_Y \{\sigma(X,V)\}) - \sigma(U,\overline{\nabla}_Y \eta(X)\phi V) \\ & -\eta(X)\sigma(U,\nabla_Y \phi V) - \eta(X)\sigma(U,\sigma(Y,\phi V)) + \sigma(U,\sigma([X,Y],V)) \\ & -\eta(X)\sigma(U,\nabla_Y \phi V) - \eta(X)\sigma(U,\sigma(Y,\phi V)) + \sigma(U,\sigma([X,Y],V)) \\ & -\eta([X,Y])\sigma(U,\phi V), \end{split}$$

for all vector fields X, Y, U and V tangent to M, where

$$R^{\perp}(X,Y) = [\nabla_X^{\perp}, \nabla_Y^{\perp}] - \nabla_{[X,Y]}^{\perp}.$$

Proof. We know, from tensor algebra, that

$$(\overline{\widetilde{R}}(X,Y)\sigma)(U,V) = \overline{\widetilde{R}}(X,Y)\sigma(U,V) - \sigma(\overline{\widetilde{R}}(X,Y)U,V) - \sigma(U,\overline{\widetilde{R}}(X,Y)V).$$
(4.14)

Replace Z by $\sigma(U, V)$ in (4.11) to get

$$\overline{\widetilde{R}}(X,Y)\sigma(U,V) = \overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y \sigma(U,V) - \overline{\widetilde{\nabla}}_Y \overline{\widetilde{\nabla}}_X \sigma(U,V) - \overline{\widetilde{\nabla}}_{[X,Y]} \sigma(U,V).$$
(4.15)

In view of (1.8), (2.1) and (2.2) we have the following equalities:

$$\overline{\widetilde{\nabla}}_{X}\overline{\widetilde{\nabla}}_{Y}\sigma(U,V) = \overline{\widetilde{\nabla}}_{X}(-A_{\sigma(U,V)}Y + \nabla^{\perp}_{Y}\sigma(U,V) - \eta(Y)\phi\sigma(U,V)), \quad (4.16)$$

$$= -\nabla_{X}A_{\sigma(U,V)}Y - \sigma(X,A_{\sigma(U,V)}Y) + \eta(X)\phi A_{\sigma(U,V)}Y$$

$$-A_{\nabla^{\perp}_{Y}\sigma(U,V)}X + \nabla^{\perp}_{X}\nabla^{\perp}_{Y}\sigma(U,V) - \eta(X)\phi \nabla^{\perp}_{Y}\sigma(U,V)$$

$$-\overline{\widetilde{\nabla}}_{X}\eta(Y)\phi\sigma(U,V), \quad (4.17)$$

$$+\eta(Y)\phi A_{\sigma(U,V)}X - A_{\nabla_X^{\perp}\sigma(U,V)}Y + \nabla_Y^{\perp}\nabla_X^{\perp}\sigma(U,V) -\eta(Y)\phi\nabla_X^{\perp}\sigma(U,V) - \overline{\widetilde{\nabla}}_Y\eta(X)\phi\sigma(U,V)$$

 $\quad \text{and} \quad$

$$\widetilde{\nabla}_{[X,Y]}\sigma(U,V) = -A_{\sigma(U,V)}[X,Y] + \nabla^{\perp}_{[X,Y]}\sigma(U,V) - \eta([X,Y])\phi\sigma(U,V).$$
(4.18)

Substituting (4.16) - (4.18) into (4.15), we get

$$\begin{split} \overline{\widetilde{R}}(X,Y)\sigma(U,V) &= R^{\perp}(X,Y)\sigma(U,V) - \nabla_X A_{\sigma(U,V)}Y - \sigma(X,A_{\sigma(U,V)}Y) \quad (4.19) \\ &+ \eta(X)\phi A_{\sigma(U,V)}Y - A_{\nabla_Y^{\perp}\sigma(U,V)}X - \eta(X)\phi \nabla_Y^{\perp}\sigma(U,V) - \overline{\widetilde{\nabla}}_X\eta(Y)\phi\sigma(U,V) \\ &+ \nabla_Y A_{\sigma(U,V)}X + \sigma(Y,A_{\sigma(U,V)}X) - \eta(Y)\phi A_{\sigma(U,V)}X + A_{\nabla_X^{\perp}\sigma(U,V)}Y \\ &+ \eta(Y)\phi \nabla_X^{\perp}\sigma(U,V) + \overline{\widetilde{\nabla}}_Y\eta(X)\phi\sigma(U,V) + A_{\sigma(U,V)}[X,Y] + \eta([X,Y])\phi\sigma(U,V). \end{split}$$

By using (4.12) in $\sigma(\overline{\widetilde{R}}(X,Y)U,V)$ and $\sigma(U,\overline{\widetilde{R}}(X,Y)V)$, we get

$$\begin{aligned} \sigma(\widetilde{R}(X,Y)U,V) &= \sigma(R(X,Y)U,V) + \sigma(\sigma(X,\nabla_YU),V) \quad (4.20) \\ -\eta(X)\sigma(\phi\nabla_YU,V) + \sigma(\overline{\widetilde{\nabla}}_X \{\sigma(Y,U)\},V) - \sigma(\overline{\widetilde{\nabla}}_X \eta(Y)\phi U,V) \\ -\eta(Y)\sigma(\nabla_X\phi U,V) - \eta(Y)\sigma(\sigma(X,\phi U),V) - \sigma(\sigma(Y,\nabla_XU),V) \\ +\eta(Y)\sigma(\phi\nabla_XU,V) - \sigma(\overline{\widetilde{\nabla}}_Y \{\sigma(X,U)\},V) + \sigma(\overline{\widetilde{\nabla}}_Y \eta(X)\phi U,V) \\ +\eta(X)\sigma(\nabla_Y\phi U,V) + \eta(X)\sigma(\sigma(Y,\phi U),V) - \sigma(\sigma([X,Y],U),V) \\ +\eta([X,Y])\sigma(\phi U,V) \end{aligned}$$

and

$$\begin{aligned} \sigma(U, \widetilde{R}(X, Y)V) &= \sigma(U, R(X, Y)V) + \sigma(U, \sigma(X, \nabla_Y V)) \end{aligned} (4.22) \\ -\eta(X)\sigma(U, \phi\nabla_Y V) + \sigma(U, \overline{\nabla}_X \{\sigma(Y, V)\}) - \sigma(U, \overline{\nabla}_X \eta(Y)\phi V) \\ -\eta(Y)\sigma(U, \nabla_X \phi V) - \eta(Y)\sigma(U, \sigma(X, \phi V)) - \sigma(U, \sigma(Y, \nabla_X V)) \\ +\eta(Y)\sigma(U, \phi\nabla_X V) - \sigma(U, \overline{\nabla}_Y \{\sigma(X, V)\}) + \sigma(U, \overline{\nabla}_Y \eta(X)\phi V) \\ +\eta(X)\sigma(U, \nabla_Y \phi V) + \eta(X)\sigma(U, \sigma(Y, \phi V)) - \sigma(U, \sigma([X, Y], V)) \\ +\eta([X, Y])\sigma(U, \phi V). \end{aligned}$$

Substituting (4.19) - (4.22) into (4.14), we get (4.13).

5. Recurrent Invariant submanifolds of Kenmotsu manifolds admitting Quarter symmetric metric connection

We consider invariant submanifold of a Kenmotsu manifold when σ is recurrent, 2-recurrent, generalized 2-recurrent and M has parallel third fundamental form with respect to quarter symmetric metric connection. We write the equations (2.3) and (2.4) with respect to quarter symmetric metric connection in the form

$$(\overline{\widetilde{\nabla}}_X \sigma)(Y, Z) = \overline{\nabla}_X^{\perp}(\sigma(Y, Z)) - \sigma(\overline{\nabla}_X Y, Z) - \sigma(Y, \overline{\nabla}_X Z), \quad (5.1)$$

$$(\widetilde{\nabla} \sigma)(Z, W, X, Y) = (\widetilde{\nabla}_X \widetilde{\nabla}_Y \sigma)(Z, W), \qquad (5.2)$$
$$= \overline{\nabla}_X^{\perp}((\overline{\widetilde{\nabla}}_Y \sigma)(Z, W)) - (\overline{\widetilde{\nabla}}_Y \sigma)(\overline{\nabla}_Y Z, W)$$

$$-(\overline{\widetilde{\nabla}}_X \sigma)(Z, \overline{\nabla}_Y W) - (\overline{\widetilde{\nabla}}_{\overline{\nabla}_X Y} \sigma)(Z, W).$$

and prove the following theorems

Theorem 5.1. Let M be an invariant submanifold of a Kenmotsu manifold \overline{M} admitting quarter symmetric metric connection. Then σ is recurrent with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let σ be recurrent with respect to quarter symmetric metric connection. Then from (1.10) we get

$$(\overline{\widetilde{\nabla}}_X \sigma)(Y, Z) = \phi(X)\sigma(Y, Z),$$

where ϕ is a 1-form on M. By using (5.1) and $Z = \xi$ in the above equation, we have

$$\overline{\nabla}_X^{\perp}\sigma(Y,\xi) - \sigma(\overline{\nabla}_X Y,\xi) - \sigma(Y,\overline{\nabla}_X \xi) = \phi(X)\sigma(Y,\xi), \tag{5.3}$$

which by virtue of (4.1) reduces to

$$-\sigma(\overline{\nabla}_X Y,\xi) - \sigma(Y,\overline{\nabla}_X \xi) = 0.$$
(5.4)

Using (1.8), (3.4) and (4.1) in (5.4), we obtain $\sigma(X, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial. This proves the theorem.

Theorem 5.2. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then M has parallel third fundamental form with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let M has parallel third fundamental form with respect to quarter symmetric metric connection. Then we have

$$(\overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y \sigma)(Z, W) = 0.$$

Taking $W = \xi$ and using (5.2) in the above equation, we have

$$\overline{\nabla}_{X}^{\perp}((\overline{\widetilde{\nabla}}_{Y}\sigma)(Z,\xi)) - (\overline{\widetilde{\nabla}}_{Y}\sigma)(\overline{\nabla}_{X}Z,\xi) - (\overline{\widetilde{\nabla}}_{X}\sigma)(Z,\overline{\nabla}_{Y}\xi) - (\overline{\widetilde{\nabla}}_{\overline{\nabla}_{X}Y}\sigma)(Z,\xi) = 0.$$
(5.5)

By using (4.1) and (5.1) in (5.5), we get

$$0 = -\overline{\nabla}_{X}^{\perp} \left\{ \sigma(\overline{\nabla}_{Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{Y}\xi) \right\} - \overline{\nabla}_{Y}^{\perp} \sigma(\overline{\nabla}_{X}Z,\xi) + \sigma(\overline{\nabla}_{Y}\overline{\nabla}_{X}Z,\xi)$$
(5.6)
+2 $\sigma(\overline{\nabla}_{X}Z,\overline{\nabla}_{Y}\xi) - \overline{\nabla}_{X}^{\perp} \sigma(Z,\overline{\nabla}_{Y}\xi) + \sigma(Z,\overline{\nabla}_{X}\overline{\nabla}_{Y}\xi) + \sigma(\overline{\nabla}_{\overline{\nabla}_{X}Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{\overline{\nabla}_{X}Y}\xi)$

In view of (1.8), (3.1), (3.4) and (4.1) the above result (5.6) gives

$$0 = -2\overline{\nabla}_X^{\perp}\sigma(Z,Y) + 2\sigma(\nabla_X Z,Y) - 2\eta(X)\sigma(\phi Z,Y) + 2\sigma(Z,\nabla_X Y) \quad (5.7)$$
$$-2\eta(X)\sigma(Z,\phi Y) - \sigma(Z,\nabla_X \eta(Y)\xi).$$

Put $Z = \xi$ and use (3.4), (4.1) in (5.7) to obtain $\sigma(X, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial. This proves the theorem. \Box

Corollary 5.3. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then σ is 2-recurrent with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let σ be 2-recurrent with respect to quarter symmetric metric connection. From (1.11), we have

$$(\overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y \sigma)(Z, W) = \sigma(Z, W) \phi(X, Y).$$

Taking $W = \xi$ and using (5.2) in the above equation, we have

$$\overline{\nabla}_{X}^{\perp}((\overline{\widetilde{\nabla}}_{Y}\sigma)(Z,\xi)) - (\overline{\widetilde{\nabla}}_{Y}\sigma)(\overline{\nabla}_{X}Z,\xi) - (\overline{\widetilde{\nabla}}_{X}\sigma)(Z,\overline{\nabla}_{Y}\xi)$$

$$-(\overline{\widetilde{\nabla}}_{\overline{\nabla}_{X}Y}\sigma)(Z,\xi) = \sigma(Z,\xi)\phi(X,Y).$$
(5.8)

In view of (4.1) and (5.1) we write (5.8) in the form

$$0 = -\overline{\nabla}_{X}^{\perp} \left\{ \sigma(\overline{\nabla}_{Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{Y}\xi) \right\} - \overline{\nabla}_{Y}^{\perp}\sigma(\overline{\nabla}_{X}Z,\xi) + \sigma(\overline{\nabla}_{Y}\overline{\nabla}_{X}Z,\xi)$$
(5.9)
+2 $\sigma(\overline{\nabla}_{X}Z,\overline{\nabla}_{Y}\xi) - \overline{\nabla}_{X}^{\perp}\sigma(Z,\overline{\nabla}_{Y}\xi) + \sigma(Z,\overline{\nabla}_{X}\overline{\nabla}_{Y}\xi) + \sigma(\overline{\nabla}_{\overline{\nabla}_{X}Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{\overline{\nabla}_{X}Y}\xi).$

Using (1.8), (3.1), (3.4) and (4.1) in (5.9), we get

$$0 = -2\overline{\nabla}_X^{\perp}\sigma(Z,Y) + 2\sigma(\nabla_X Z,Y) - 2\eta(X)\sigma(\phi Z,Y) + 2\sigma(Z,\nabla_X Y) (5.10) -2\eta(X)\sigma(Z,\phi Y) - \sigma(Z,\nabla_X \eta(Y)\xi).$$

Taking $Z = \xi$ and using (3.4), (4.1) in (5.10), we obtain $\sigma(X, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial. This proves the theorem. \Box

Theorem 5.4. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then σ is generalized 2-recurrent with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let σ be generalized 2-recurrent with respect to quarter symmetric metric connection. From (1.12), we have

$$(\overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y \sigma)(Z, W) = \psi(X, Y)\sigma(Z, W) + \phi(X)(\overline{\widetilde{\nabla}}_Y \sigma)(Z, W),$$
(5.11)

where ψ and ϕ are 2-recurrent and 1-form respectively. Taking $W = \xi$ in (5.11) and using (4.1), we get

$$(\overline{\widetilde{\nabla}}_X \overline{\widetilde{\nabla}}_Y \sigma)(Z,\xi) = \phi(X)(\overline{\widetilde{\nabla}}_Y \sigma)(Z,\xi).$$

Using (4.1) and (5.2) in above equation, we get

$$\overline{\nabla}_{X}^{\perp}((\overline{\widetilde{\nabla}}_{Y}\sigma)(Z,\xi)) - (\overline{\widetilde{\nabla}}_{Y}\sigma)(\overline{\nabla}_{X}Z,\xi) - (\overline{\widetilde{\nabla}}_{X}\sigma)(Z,\overline{\nabla}_{Y}\xi)$$

$$-(\overline{\widetilde{\nabla}}_{\overline{\nabla}_{X}Y}\sigma)(Z,\xi) = -\phi(X)\left\{\sigma(\overline{\nabla}_{Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{Y}\xi)\right\}.$$
(5.12)

In view of (4.1) and (5.1) the above result (5.12) gives

$$-\overline{\nabla}_{X}^{\perp} \left\{ \sigma(\overline{\nabla}_{Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{Y}\xi) \right\} - \overline{\nabla}_{Y}^{\perp}\sigma(\overline{\nabla}_{X}Z,\xi) + \sigma(\overline{\nabla}_{Y}\overline{\nabla}_{X}Z,\xi)$$
(5.13)
+2 $\sigma(\overline{\nabla}_{X}Z,\overline{\nabla}_{Y}\xi) - \overline{\nabla}_{X}^{\perp}\sigma(Z,\overline{\nabla}_{Y}\xi) + \sigma(Z,\overline{\nabla}_{X}\overline{\nabla}_{Y}\xi) + \sigma(\overline{\nabla}_{\overline{\nabla}_{X}Y}Z,\xi)$
+ $\sigma(Z,\overline{\nabla}_{\overline{\nabla}_{X}Y}\xi) = -\phi(X) \left\{ \sigma(\overline{\nabla}_{Y}Z,\xi) + \sigma(Z,\overline{\nabla}_{Y}\xi) \right\}.$

Using (1.8), (3.1), (3.4) and (4.1) in (5.13), we get

$$-2\overline{\nabla}_{X}^{\perp}\sigma(Z,Y) + 2\sigma(\nabla_{X}Z,Y) - 2\eta(X)\sigma(\phi Z,Y) + 2\sigma(Z,\nabla_{X}Y) \quad (5.14)$$

$$-2\eta(X)\sigma(Z,\phi Y) - \sigma(Z,\nabla_{X}\eta(Y)\xi) = -\phi(X)\sigma(Z,Y).$$

Choosing $Z = \xi$ and using (3.4), (4.1) in (5.14), we obtain $\sigma(X, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial. This proves the theorem. \Box

6. Semiparallel, pseudoparallel and Ricci-generalized pseudoparallel Invariant submanifolds of Kenmotsu manifolds admitting Quarter symmetric metric connection

We consider invariant submanifolds of Kenmotsu manifolds admitting quarter symmetric metric connection satisfying the conditions $\overline{\tilde{R}} \cdot \sigma = 0$, $\overline{\tilde{R}} \cdot \sigma = L_1 Q(g, \sigma)$, $\overline{\tilde{R}} \cdot \sigma = L_2 Q(S, \sigma)$.

Theorem 6.1. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then M is semiparallel with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let M be semiparallel satisfying $\overline{\widetilde{R}} \cdot \sigma = 0$. Put $X = V = \xi$ and use (3.1), (3.4) and (4.1) in (4.13) to get

$$0 = -\sigma(U, R(\xi, Y)\xi) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y, U), \xi) + \sigma(\overline{\widetilde{\nabla}}_{\xi}\eta(Y)\phi U, \xi)$$

$$-\sigma(\overline{\widetilde{\nabla}}_{Y}\phi U, \xi) + \sigma(U, \phi \nabla_{Y}\xi).$$
(6.1)

Using (1.8), (2.1), (3.1), (3.4), (3.8) and (4.1) in (6.1), we get

$$-\sigma(U,Y) + \sigma(U,\phi Y) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y,U),\xi) = 0.$$
(6.2)

By definition σ is a vector valued covariant tensor and so $\sigma(U, Y)$ is a vector. Therefore $\overline{\widetilde{\nabla}}_{\varepsilon} \sigma(Y, U)$ is a vector and hence by (4.1), we have

$$\sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y,U),\xi) = 0.$$
(6.3)

Then from (6.2), we get

$$-\sigma(U,Y) + \sigma(U,\phi Y) = 0. \tag{6.4}$$

Replacing Y by ϕY and using (3.1) and (4.1) in (6.4), we get

$$-\sigma(U,\phi Y) - \sigma(U,Y) = 0. \tag{6.5}$$

Adding (6.4) and (6.5), we obtain $\sigma(U, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial.

Theorem 6.2. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then M is pseudoparallel with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let M be pseudoparallel satisfying $\overline{\widetilde{R}} \cdot \sigma = L_1 Q(g, \sigma)$. Put $X = V = \xi$ and use (3.1), (3.4) and (4.1) in (2.6) and (4.13) to get

$$-\sigma(U, R(\xi, Y)\xi) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y, U), \xi) + \sigma(\overline{\widetilde{\nabla}}_{\xi}\eta(Y)\phi U, \xi) - \sigma(\overline{\widetilde{\nabla}}_{Y}\phi U, \xi) (6.6) + \sigma(U, \phi\nabla_{Y}\xi) = -L_{1}\sigma(U, Y).$$

Using (1.8), (2.1), (3.1), (3.4), (3.8) and (4.1) in (6.6), we get

$$-\sigma(U,Y) + \sigma(U,\phi Y) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y,U),\xi) = -L_1\sigma(U,Y).$$
(6.7)

Now by using (6.3) in (6.7), we get

$$(L_1 - 1)\sigma(U, Y) + \sigma(U, \phi Y) = 0.$$
(6.8)

Replacing Y by ϕY and using (3.1) and (4.1) in (6.8), we get

$$(L_1 - 1)\sigma(U, \phi Y) - \sigma(U, Y) = 0.$$
(6.9)

Multiplying (6.8) by $(L_1 - 1)$ and (6.9) by 1 and subtracting these two equations, we obtain $((L_1 - 1)^2 + 1)\sigma(U, Y) = 0$ and hence if $L_1 \neq (1 \pm i)$, we have $\sigma(U, Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial.

Theorem 6.3. Let M be an invariant submanifold of a Kenmotsu manifold M admitting quarter symmetric metric connection. Then M is Ricci-generalized pseudoparallel with respect to quarter symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let M be Ricci-generalized pseudoparallel satisfying $\overline{\widetilde{R}} \cdot \sigma = L_2 Q(S, \sigma)$. Put $X = V = \xi$ and use (3.1), (3.4), (3.9) and (4.1) in (2.6) and (4.13) to get

$$-\sigma(U, R(\xi, Y)\xi) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y, U), \xi) + \sigma(\overline{\widetilde{\nabla}}_{\xi}\eta(Y)\phi U, \xi)$$

$$-\sigma(\overline{\widetilde{\nabla}}_{Y}\phi U, \xi) + \sigma(U, \phi\nabla_{Y}\xi) = L_{2}(n-1)\sigma(U, Y).$$
(6.10)

Using (1.8), (2.1), (3.1), (3.4), (3.8) and (4.1) in (6.10), we get

$$-\sigma(U,Y) + \sigma(U,\phi Y) - \sigma(\overline{\widetilde{\nabla}}_{\xi}\sigma(Y,U),\xi) = L_2(n-1)\sigma(U,Y).$$
(6.11)

Now by using (6.3) in (6.11), we get

$$(-L_2(n-1)-1)\sigma(U,Y) + \sigma(U,\phi Y) = 0.$$
(6.12)

Replacing Y by ϕY and using (3.1) and (4.1) in (6.12), we get

$$(-L_2(n-1)-1)\sigma(U,\phi Y) - \sigma(U,Y) = 0.$$
(6.13)

Multiplying (6.12) by $(-L_2(n-1)-1)$ and (6.13) by 1 and subtracting these two equations, we obtain $((-L_2(n-1)-1)^2+1)\sigma(U,Y) = 0$ and hence if $L_2 \neq \frac{(-1\pm i)}{(n-1)}$, we have $\sigma(U,Y) = 0$, i.e., M is totally geodesic. The converse statement is trivial. \Box

Using Theorems and corollary 5.1 to 5.3, 6.4 to 6.6, we have the following result

Corollary 6.4. Let M be an invariant submanifold of a Kenmotsu manifold \widetilde{M} admitting quarter symmetric metric connection. Then the following statements are equivalent.

- (1) σ is recurrent.
- (2) σ is 2-recurrent.
- (3) σ is generalized 2-recurrent.
- (4) M has parallel third fundamental form.
- (5) M is semiparallel.
- (6) M is pseudoparallel, if $L_1 \neq (1 \pm i)$.
- (7) *M* is Ricci-generalized pseudoparallel, if $L_2 \neq \frac{(-1\pm i)}{(n-1)}$.
- (8) M is totally geodesic.

B.S.ANITHA AND C.S.BAGEWADI

References

- N.S. Agashe, M.R. Chafle, A semi-symmetric non-metric connection, Indian J. Pure Math. 23 (1992) 399–409.
- [2] B.S. Anitha, C.S. Bagewadi, *Invariant submanifolds of Kenmotsu manifolds*, (communicated).
- [3] Avik De, On Kenmotsu manifold, Bulletin of mathematical analysis and applications, 2 3 (2010) 1–6.
- [4] C.S. Bagewadi, V.S. Prasad, Invariant submanifolds of Kenmotsu manifolds, Kuvempu University Science Journal, 1 1 (2001) 92–97.
- [5] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509. Springer-Verlag. Berlin. (1976).
- [6] B.Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo. Tokyo. (1981).
- [7] A. Friedmann, J.A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr. 21 (1924) 211–223.
- [8] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S). 29 (1975) 249-254.
- [9] H.A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932) 27-50.
- [10] M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor (NS). 43 1 (1986) 28–36.
- [11] V.S. Prasad, C.S. Bagewadi, Note on Kenmotsu manifolds, Bulletian of calcutta math. Soc. 91 5(1999).
- [12] W. Roter, On conformally recurrent Ricci-recurrent manifolds, Colloq Math. 46 1(1982) 45–57.
- [13] S. Sular, C. Ozgur, On some submanifolds of Kenmotsu manifolds, Chaos. Solitons and Fractals. 42 (2009) 1990–1995.
- [14] K. Yano, On semi-symmetric metric connections, Resv. Roumaine Math. Press Apple. 15 (1970) 1579–1586.
- [15] K. Yano, M. Kon, Structures on manifolds, World Scientific Publishing. (1984).

B.S.ANITHA

DEPARTMENT OF MATHEMATICS, SHANKARAGHATTA - 577 451, SHIMOGA, KARNATAKA, INDIA. *E-mail address*: abanithabs@gmail.com

C.S.BAGEWADI

DEPARTMENT OF MATHEMATICS, SHANKARAGHATTA - 577 451, SHIMOGA, KARNATAKA, INDIA. *E-mail address*: prof_bagewadi@yahoo.co.in