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ABSTRACT. In this paper, some properties of m—projective curvature tensor
in Kenmotsu manifolds are studied.

1. INTRODUCTION

The study of odd dimensional manifolds with contact and almost contact struc-
tures was initiated by Boothby and Wong [I] in 1958 rather from topological point
of view. Sasaki and Hatakeyama [2] re-investigated them using tensor calculus in
1961. In 1972, K. Kenmotsu studied a class of almost contact metric manifolds and
call them Kenmotsu manifold [3]. He proved that if a Kenmotsu manifold satisfies
the condition R(X,Y).R = 0, then the manifold is of negative curvature -1, where
R is the Riemannian curvature tensor of type (1,3) and R(X,Y") denotes the deriva-
tion of the tensor algebra at each point of the tangent space. Recently first author
with Ojha [4] studied the properties of the m—projective curvature tensor in Rie-
mannian and Kenmotsu manifolds. They proved that an n—dimensional Kenmotsu
manifold M, is m—projectively flat if and only if it is either locally isometric to the
hyperbolic space H™(—1) or M,, has constant scalar curvature —n(n—1). They also
shown that the m—projective curvature tensor in an 7-Einstein Kenmotsu mani-
fold M, is irrotational if and only if it is locally isometric to the hyperbolic space
H™(—1). The properties of Kenmotsu manifolds have been studied by several au-
thors such as De, Yildiz and Yaliniz [5], De and Pathak [6], Jun, De and Pathak [7],
Sinha and Srivastava [§], De [9], Bhattacharya [16], Yildiz and De [I7] and many
others.

In 1971, Pokhariyal and Mishra [10] defined a tensor field W* on a Riemannian
manifold as

WX, Y)Z = R(X,Y)Z-— ﬁ[S(Y, )X - 8(X,2)Y
+ 9(Y,2)QX —¢(X, 2)QY] (1)
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so that

WH(X,Y, Z, U)W (X,Y)Z,U) = W*(Z,U,X,Y) (2)
and ’Wi’;klwijwkl =' Wijmw 9wk where ’W;;.kl and "W are components of 'W*
and ‘W, w* is a skew-symmetric tensor [11], [19], [21], Q is the Ricci operator,

defined by

S(X,Y)Eg(QX,Y) (3)

and S is the Ricci tensor for arbitrary vector fields X, Y, Z. Such a tensor field
W* is known as m—projective curvature tensor. Ojha [12], [I3] defined and studied
an m—projective curvature tensor in a Kdahler as well as in Sasakian manifolds.

The purpose of this paper is to study the properties of m—projective curvature
tensor in Kenmotsu manifolds. Section 2 contains some preliminaries. Section 3
is the study of m—projectively flat (that is W* = 0) Kenmotsu manifolds sat-
isfying R(X,Y).S = 0 and it has shown that the symmetric endomorphism
of the tangent space corresponding to S has three different non-zero eigen values
and the corresponding manifolds have no flat points. It has also shown that if
m—projectively flat Kenmotsu manifolds satisfy R(X,Y).S = 0, then 6.0 = 0,
where 6 denotes the Kulkarni-Nomizu product of ¢ and S. In section 4, we
proved that an m—projectively semi-symmetric Kenmotsu manifold is an Einstein
manifold. Also an n—dimensional Kenmotsu manifold is m—projectively semi-
symmetric if and only if it is locally isometric to the hyperbolic space H™(—1) or
it is m—projectively flat. Section 5 deals with Kenmotsu manifolds satisfying the
condition W(X,Y).W* = 0. In the last section, we find certain geometrical results
if the Kenmotsu manifolds satisfying the condition C(X,Y).W* = 0.

2. PRELIMINARIES

Let on an odd dimensional differentiable manifold M,,, n = 2m + 1, of differen-
tiability class C™ 1!, there exist a vector valued linear function ¢, a 1—form 7, the
associated vector field £ and the Riemannian metric g satisfying

P*X = —X +n(X)E, (4)
n(¢X) =0, (5)
9(¢X,9Y) = g(X,Y) = n(X)n(Y) (6)

for arbitrary vector fields X and Y, then (M, g) is said to be an almost contact
metric manifold and the structure {¢,n,&, g} is called an almost contact metric
structure to M,, [14].

In view of @), (&) and (@), we find

77(5) =1, g(Xv 5) = U(X)v ¢(§) =0. (7)
If moreover,
(Dxo)(Y) = —g(X, Y )§ —n(Y)oX, (8)
and
DX§:X_77(X)§7 (9)

where D denotes the operator of covariant differentiation with respect to the Rie-
mannian metric g, then (M, ¢,&, 7, g) is called a Kenmotsu manifold [3]. Also, the
following relations hold in a Kenmotsu manifold [5], [6], [7]

R(X,Y)E = n(X)Y —n(Y)X, (10)
R(&X)Y =n(Y)X —g(X,Y)E, (11)
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S(X,8) = —(n—1)n(X), (12)
n(R(Xv Y)Z) :n(y)g(Xv Z) —ﬁ(X)Q(Ya Z), (13)
for arbitrary vector fields X, Y, Z.

A Kenmotsu manifold (M,, g) is said to be n—Einstein if its Ricci-tensor S takes
the form

S(X,Y) = ag(X,Y) + bn(X)n(Y) (14)
for arbitrary vector fields X, Y; where a and b are smooth functions on (M, g)

[3, 14]. If b = 0, then n—Einstein manifold becomes Einstein manifold. Kenmotsu
[3] proved that if (M,, g) is an n—Einstein manifold, then a + b= —(n — 1).

In consequence of (), @), @), (IO, (@2) and [@3]), we find

Lemma 1. In an n—dimensional Kenmotsu manifold, the following relation holds

WV (X,¥)2) = 3 (0(V)g(X, 2) ~ n(X)g(¥ 7))
~ g (S(2) = n(V)S(X. 2)).

The Weyl projective curvature tensor W and concircular curvature tensor C of
the Riemannian connection D are given by

1
(n—1)
r
n(n—1)
where R and r are respectively the curvature tensor and scalar curvature of the

Riemannian connection D [14].

W(X,Y,Z)=R(X,Y,Z) — {S(Y,2)X —S(X,2)Y}, (15)

C(X,Y,Z)=R(X,Y,Z) — {9V, 2)X —g(X,2)Y}, (16)

3. m—PROJECTIVELY FLAT KENMOTSU MANIFOLDS SATISFYING R(X,Y).S =0

In view of W* = 0, (Il) becomes

R(X,Y)Z = ﬁ[S(Y, 2)X — S(X,2)Y

+ g(Y,2)QX — ¢(X, 2)QY]. (17)
Contracting (['f)) with respect to X and using (B]), we obtain
S(Y,2) = g(Y, 2).
Thus, an m—projectively flat Riemannian manifold is an Einstein manifold.
Now, R(X,Y).S =0 gives
S(R(X,Y)Z,U) + 5(2Z, R(X,Y)U) = 0.
In consequence of (I), above relation becomes

Lis@x.0)g(v.2) — S@QV.0)y(X.2)

4m
+ 9V U)S(QX, Z) — g(X,U)S(QY, Z)] = 0.
Putting Y = Z = £ in the last relation and then using (), we obtain

SQX,U) — n(X)S(QS,U)
+ nU)S(QX,§) —g(X,U)S(Q¢,€) = 0. (18)
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With the help of (@) and (I2), [I8) gives
S(QX,U) = —(n—1)*g(X,0), (19)
def

where S?(X,U) = S(QX,U).
It is well known that
Lemma 2. [18] If 8 = gAA be the Kulkarni-Nomizu product of g and A, where g

being Riemannian metric and A be a symmetric tensor of type (0,2) at point x of
a semi-Riemannian manifold (M, g). Then the relation

0.0 = aQ(g,0), a€R
is satisfied at x if and only if the condition
A% = A+ \g, AER

holds at x.
In consequence of ([[9) and lemma (2]), we state

Theorem 1. If an m—projectively flat Kenmotsu manifold satisfies the condition
R(X,Y).S =0, then 6.6 =0, where 6 = gAS and a = 0.

Let X be the eigen value of the endomorphism @) corresponding to an eigen vector
X, then putting QX = AX in ([IX) and using (B]), we find
Ng(X,U) — 4m*n(X)n(U)
— 2m\(X)n(U) — 4m?g(X,U) = 0. (20)
Again, putting U = £ in the equation (20) and then using (@), we have
A —2mA\ — 8m?|n(X) = 0.
If X is perpendicular to £, then ([20) gives
N =d4m? = \=+2m (21)
and hence the corresponding eigen values of Q would be +2m. Since 1(X) is not
equal to zero, in general, therefore
A —2m\ — 8m? =0, (22)

which follows that the symmetric endomorphism @ of the tangent space correspond-
ing to S has three different non-zero eigen values namely 4m and +2m.
Thus, we can state

Theorem 2. If an m—projectively flat Kenmotsu manifold satisfies R(X,Y).S =0,
then the symmetric endomorphism Q of the tangent space corresponding to S has
three different non-zero eigen values.

Now, putting Y = Z = ¢ in (IT) and using @), @), (I0) and ([I2), we obtain
QX =-(n-1)X
which gives
r=—n(n—1). (23)
If A1, A2 and A3 be the eigen values of the Ricci operator @@ and let multiplicity

of A1 and Ay be p and ¢ respectively, then multiplicity of Az is m — p — ¢. Since the
scalar curvature is the trace of the Ricci operator ), therefore

T =pA1+ gl + (n—p—q)As. (24)
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In consequence of (1)), 22), 23]), 24)) and theorem (@), we obtain
Pt gre+ (n—p—q)As =—n(n—1)
and
AL+ A2+ A3 =2(n—1),
which gives
3p+2q¢=0.

Next, if V4, V5 and Vs denote the eigen subspaces corresponding to the eigen
values A1, A2 and A3 respectively of the manifold, then the sectional curvature on

V1 for orthonormal eigen vectors X, Y is n’\jl.
Similarly on V5 and V3, the sectional curvature for orthonormal eigen vectors X
and Y is Afl and A_31 respectively. Since A\; = 2(n — 1), which is not equal to zero,
n n
therefore we have

Theorem 3. If an m—projectively flat Kenmotsu manifold M,,, (n>2), satisfies
R(X,Y).S =0, then the manifold has no flat points.

4. m—PROJECTIVELY SEMI-SYMMETRIC KENMOTSU MANIFOLDS

We suppose that W* is semi-symmetric, i.e.,
RX,)Y)W*=0 = R(Y)W" =0
which is equivalent to
REY YW (Z,U)V-W*(R(&,Y)Z,U)V-W*(Z, R, Y)U)V-W*(Z,U)R(,Y)V =0.
In view of () and (IJ), above equation becomes

R(EY)R(Z,U)V —q(Z)R(Y,U)V +g(Y, Z)R(&,U)V —n(U)R(Z,Y)V
+9(Y,U)R(Z, &)V —n(V)R(Z,U)Y +g(Y,V)R(Z,U)¢

—ﬁ[S(U, VIR(E,Y)Z — S(Z,V)R(E,Y)U + g(U,V)R(E,Y)QZ
ZV)R(EY)QU —n(Z)S(U, V)Y +n(Z)S(Y,V)U —n(Z)g(U,V)QY
Z)g(Y,V)QU + g(Y, Z)S(U,V)§ — g(Y, Z2)S(&, VU + g(Y, Z)g(U, V)QE

—9(
+1(
—n(V)g(Y, Z2)QU —n(U)S(Y,V)Z +n(U)S(Z, V)Y —n(U)g(Y,V)QZ
+n(U)g(Z,V)QY + g(Y,U)S(,V)Z — g(Y,U)S(Z,V)§ +n(V)g(Y,U)QZ
—9(Y,U)g(Z,V)Q§ —n(V)S(U.Y)Z +n(V)S(Z,Y)U —n(V)g(U,Y)QZ
+n(V)g

(

(Y, 2)QU + g(Y,V)S(U,§)Z — g(Y,V)S(Z,§)U
+n(U)g(Y,

V)QZ —n(Z)g(Y,V)QU] = 0.
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Using (@), (I0), (II), (I2) and ([@I3) in the above expression, we obtain
)92, V)Y = n(Z)g(U, V)Y = R(Z,UV,Y) - n(Z)R(Y, U)V
+n(V)g(Y, Z)U — g(Y, Z)g(U,V)§ = n(U)R(Z,Y)V + g(Y,U)R(Z,&)V
—n(V)R(Z,U)Y +n(Z)g(Y,V)U —nU)g(Y,V)Z
_im[g(Ua V)S(Zv f)Y - S(Ya Z)g(Ua V)§ - g(Zv V)S(Ua g)Y
+9(Z2,V)S(Y,U)§ +n(Z2)S(Y,V)U —n(Z)g(U,V)QY —2mn(V)g(Y,U)Z
+9(Y, 2)g(U,V)QE = n(U)S(Y, V) Z + n(U)g(Z,V)QY + 2mn(V)g(Y, Z)U
—9(Y,U)g(Z,V)QE —n(V)S(U,Y)Z +n(V)S(Z,Y)U
—2mn(U)g(Y, V)Z + 2mi(Z)g(Y, VU] = 0.
Putting Z = ¢ in the above relation and then using n(R(V,Y)U) = —'R(V,Y,&,U),
@), @2) and ([@3), we find
RGOV — g(U,VIY + g(¥, VIU — 7-[~2mg(U, V)Y
+2mn(Y)g(U,V)E + 2mn(U)n(V)Y +n(V)S(Y,U)§ + S(Y, V)U
—g(U,V)QY +n(Y)g(U, V)QE — n(U)S(Y,V)§ +n(U)n(V)QY
—2mn(V)g(Y,U)§ —n(V)g(Y,U)Q¢ —n(V)S(U,Y)§
—2mn(U)g(Y, V)€ 4 2mg (Y, V)U] = 0. (25)
Contracting above with respect to Y, we get
sw.) = (= g - (S o). o)

Hence, the manifold is an n—Einstein manifold.
Again, from @), (0) and (26]), we obtain

r—(n—1)>2 r+n(n—
e L e L (27)
and
r=—-n(n—1). (28)
In consequence of (28), (26) becomes
S(U,V)=—(n—-1)g(U,V). (29)

Thus, we can state

Theorem 4. An m—projectively semi-symmetric Kenmotsu manifold is an FEin-
stein manifold.

In view of ([27)), (28)) and (29), (28] becomes
R(Y,U)V = —g(U, V)Y + g(Y, V)U. (30)

A space form (i.e., a complete simply connected Riemannian manifold of constant
curvature) is said to be elliptic, hyperbolic or Euclidean according as the sectional
curvature is positive, negative or zero [15]. Thus we have

Theorem 5. An n—dimensional Kenmotsu manifold M, is m—projectively semi-
symmetric if and only if it is locally isometric to the hyperbolic space H™(—1).
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In view of (29) and (30), (1) becomes
W*(X,Y)Z = 0.
Thus we state

Theorem 6. An n—dimensional Kenmotsu manifold M, is m—projectively semi-
symmetric if and only if it is m—projectively flat.

It is well known that

Lemma 3. [4] In an n—dimensional Riemannian manifold M, the following are
equivalent
(i) My, is an Einstein manifold,
(ii) m—projective and Weyl projective curvature tensors are linearly dependent.
(i1i) m—projective and concircular curvature tensors are linearly dependent.
(iv) m—projective and conformal curvature tensors are linearly dependent.

In consequence of above equivalent relations and theorems ), (@) and (@), we
state

Corollary 1. In an n—dimensional Kenmotsu manifold M,, the following are
equivalent

(i) M, is an m—projectively semi-symmetric manifold,

(i1) M,, is m—projectively flat,

(111) M, is Weyl projectively flat,

(iv) M, is concircularly flat,

(v) My, is conformally flat,

(vi) M, is locally isometric to the hyperbolic space H™(—1).

5. KENMOTSU MANIFOLDS SATISFYING W(X,Y).W* =0
In consequence of W (X,Y).W* = 0, we have
WX, Y)YW*(Z,U)V -W*(W(X,Y)Z,U)V
-W*(Z,W(X,Y)U)V -W*(Z,U)W(X,Y)V =0. (31)
Replacing X by ¢ in @), we find
W(EYYWH(Z,U)V -W*(W(EY)Z,U)V
-W*(Z,W(EYU)V - W*(Z,U)W(E,Y)V =0. (32)
Using (), (I2) and [IT) in B2)), we obtain
gY,WHZ,U)V)E = g(Y, Z)WH(EU)V = g(Y, U)W (Z,§)V — g(Y,V)W*(Z,U)§

+ (S, W(Z,U)V)§ = S(Y, Z)W*(&U)V = S(YV,U)W*(Z,§)V — S(Y, V)W*(Z,U)¢] = 0.

n—1
Taking inner product of above equation with § and then using (@), @), (@), ([I2)
and (I3), we obtain

1

/W*(Zv U,V,Y) + m[S(U, V)g(Y, Z) - S(Zv V)g(y, U) + (n - 1)(9(U7 V)g(Y, Z)
1

m(S(Y, Z2)S(U,V)

— GBI+ SV (Z,U)V) +

- S\U)S(Z, V) + %(S(Y, 2)9(U, V) =5, U)g(Z,V))] =0.  (33)
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Again replacing Z and V by ¢ in (B3] and using (), (), (I2) and [I3), we find
S(QU,Y) = =2(n = 1)S(U,Y) = (n = 1)*(U,Y), (34)
where S(QU,Y) = S2(U,Y). Thus we state

Theorem 7. If an n—dimensional (n > 2) Kenmotsu manifold M, satisfies the
condition W(X,Y).W* = 0, then the relation ([37]) holds on M,.

In consequence of lemma (2) and theorem (), we state

Theorem 8. If an n—dimensional Kenmotsu manifold (M, g) (n > 2) satisfying
the condition W (X, Y).W* = 0, then 0.0 = aQ(g,0), where 8 = gAS and a =
—2(n—1).

6. KENMOTSU MANIFOLDS SATISFYING C(X,Y).W* =0
We suppose C(X,Y).W* =0, then
C(X,Y)W*(Z,U)V — W*(C(X,Y)Z,U)V
—WH(Z,C0(X,Y)U)V — W*(Z,U)C(X,Y)V = 0. (35)
Replacing X by £ in ([B5), we find
C(EY)WH(Z, U)WV — W*(C(E,Y)Z,U)V
—WH(Z,CE, YUV — W*(Z,U)C(E,Y)V = 0. (36)
In view of ([I6]), (B6) becomes
(1+ ﬁ)[—wwz U V.Y )¢+ n(W*(Z,U)V)Y
—n(Z)W (Y, U)V +g(Y, U)W*(Z, )V —n(U)W*(Z,Y)V
+9(V,VIW(Z,U)§ —=n(VI)W™(Z,U)Y +g(Y, Z)W*(§,U)V] = 0. (37)
Taking inner product of [B1) with £ and then using lemma (), we get

. 1

(1+ m)[—w (Z,UV,Y) = m(S(Ua V)g(Y,2) = S(Z,V)g(Y,U)
+n(VnU)S(Y, Z) —n(V)n(2)S(U,Y)) — %(Q(Uv V)g(Y, Z)

—g(Y,U)g(Z, V) +n(V)n(U)g(Y,Z) —n(V)n(Z)g(U,Y))] = 0. (38)

Also replacing Z and V by £ and using (), (I2) and lemma (), we obtain

1+~ (U, Y) + ﬁsw, YY) =o.

r
(n—1)
This equation implies
either r=-n(n—1) or SUY)=—-(n—-1)g(U,Y). (39)
Thus we state
Theorem 9. Let M,, be an n—dimensional Kenmotsu manifold. Then M, satisfies
the condition
CEY) W =0
if and only if either M, is an Finstein manifold or it has scalar curvature r =
—n(n —1).
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