
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 4 Issue 3(2012), Pages 48-56.

SOME PROPERTIES OF m−PROJECTIVE CURVATURE

TENSOR IN KENMOTSU MANIFOLDS

(COMMUNICATED BY PROFESSOR U. C. DE)

S. K. CHAUBEY∗, SHASHI PRAKASH∗∗ AND R. NIVAS∗∗∗

Abstract. In this paper, some properties of m−projective curvature tensor
in Kenmotsu manifolds are studied.

1. Introduction

The study of odd dimensional manifolds with contact and almost contact struc-
tures was initiated by Boothby and Wong [1] in 1958 rather from topological point
of view. Sasaki and Hatakeyama [2] re-investigated them using tensor calculus in
1961. In 1972, K. Kenmotsu studied a class of almost contact metric manifolds and
call them Kenmotsu manifold [3]. He proved that if a Kenmotsu manifold satisfies
the condition R(X,Y ).R = 0, then the manifold is of negative curvature -1, where
R is the Riemannian curvature tensor of type (1, 3) and R(X,Y ) denotes the deriva-
tion of the tensor algebra at each point of the tangent space. Recently first author
with Ojha [4] studied the properties of the m−projective curvature tensor in Rie-
mannian and Kenmotsu manifolds. They proved that an n−dimensional Kenmotsu
manifold Mn is m−projectively flat if and only if it is either locally isometric to the
hyperbolic space Hn(−1) or Mn has constant scalar curvature −n(n−1). They also
shown that the m−projective curvature tensor in an η-Einstein Kenmotsu mani-
fold Mn is irrotational if and only if it is locally isometric to the hyperbolic space
Hn(−1). The properties of Kenmotsu manifolds have been studied by several au-
thors such as De, Yildiz and Yaliniz [5], De and Pathak [6], Jun, De and Pathak [7],
Sinha and Srivastava [8], De [9], Bhattacharya [16], Yildiz and De [17] and many
others.

In 1971, Pokhariyal and Mishra [10] defined a tensor field W ∗ on a Riemannian
manifold as

W ∗(X,Y )Z = R(X,Y )Z −
1

4m
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ] (1)
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Submitted January, 2012. Accepted March 2012. Published June 28, 2012.

48



SOME PROPERTIES OF m−PROJECTIVE CURVATURE TENSOR ... 49

so that
′W ∗(X,Y, Z, U)

def
= g(W ∗(X,Y )Z,U) =′ W ∗(Z,U,X, Y ) (2)

and ′W ∗

ijklw
ijwkl =′ Wijklw

ijwkl, where ′W ∗

ijkl and
′Wijkl are components of ′W ∗

and ′W , wkl is a skew-symmetric tensor [11], [19], [21], Q is the Ricci operator,
defined by

S(X,Y )
def
= g(QX, Y ) (3)

and S is the Ricci tensor for arbitrary vector fields X , Y , Z. Such a tensor field
W ∗ is known as m−projective curvature tensor. Ojha [12], [13] defined and studied
an m−projective curvature tensor in a Kähler as well as in Sasakian manifolds.

The purpose of this paper is to study the properties of m−projective curvature
tensor in Kenmotsu manifolds. Section 2 contains some preliminaries. Section 3
is the study of m−projectively flat (that is W ∗ = 0) Kenmotsu manifolds sat-
isfying R(X,Y ).S = 0 and it has shown that the symmetric endomorphism Q

of the tangent space corresponding to S has three different non-zero eigen values
and the corresponding manifolds have no flat points. It has also shown that if
m−projectively flat Kenmotsu manifolds satisfy R(X,Y ).S = 0, then θ.θ = 0,
where θ denotes the Kulkarni-Nomizu product of g and S. In section 4, we
proved that an m−projectively semi-symmetric Kenmotsu manifold is an Einstein
manifold. Also an n−dimensional Kenmotsu manifold is m−projectively semi-
symmetric if and only if it is locally isometric to the hyperbolic space Hn(−1) or
it is m−projectively flat. Section 5 deals with Kenmotsu manifolds satisfying the
condition W (X,Y ).W ∗ = 0. In the last section, we find certain geometrical results
if the Kenmotsu manifolds satisfying the condition C(X,Y ).W ∗ = 0.

2. Preliminaries

Let on an odd dimensional differentiable manifold Mn, n = 2m+ 1, of differen-
tiability class Cr+1, there exist a vector valued linear function φ, a 1−form η, the
associated vector field ξ and the Riemannian metric g satisfying

φ2X = −X + η(X)ξ, (4)

η(φX) = 0, (5)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (6)

for arbitrary vector fields X and Y , then (Mn, g) is said to be an almost contact
metric manifold and the structure {φ, η, ξ, g} is called an almost contact metric
structure to Mn [14].

In view of (4), (5) and (6), we find

η(ξ) = 1, g(X, ξ) = η(X), φ(ξ) = 0. (7)

If moreover,
(DXφ)(Y ) = −g(X,φY )ξ − η(Y )φX, (8)

and
DXξ = X − η(X)ξ, (9)

where D denotes the operator of covariant differentiation with respect to the Rie-
mannian metric g, then (Mn, φ, ξ, η, g) is called a Kenmotsu manifold [3]. Also, the
following relations hold in a Kenmotsu manifold [5], [6], [7]

R(X,Y )ξ = η(X)Y − η(Y )X, (10)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (11)
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S(X, ξ) = −(n− 1)η(X), (12)

η(R(X,Y )Z) = η(Y )g(X,Z)− η(X)g(Y, Z), (13)

for arbitrary vector fields X , Y , Z.
A Kenmotsu manifold (Mn, g) is said to be η−Einstein if its Ricci-tensor S takes

the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) (14)

for arbitrary vector fields X , Y ; where a and b are smooth functions on (Mn, g)
[3, 14]. If b = 0, then η−Einstein manifold becomes Einstein manifold. Kenmotsu
[3] proved that if (Mn, g) is an η−Einstein manifold, then a+ b = −(n− 1).

In consequence of (1), (3), (7), (10), (12) and (13), we find

Lemma 1. In an n−dimensional Kenmotsu manifold, the following relation holds

η(W ∗(X,Y )Z) =
1

2
{η(Y )g(X,Z)− η(X)g(Y, Z)}

−
1

2(n− 1)
{η(X)S(Y, Z)− η(Y )S(X,Z)} .

The Weyl projective curvature tensor W and concircular curvature tensor C of
the Riemannian connection D are given by

W (X,Y, Z) = R(X,Y, Z)−
1

(n− 1)
{S(Y, Z)X − S(X,Z)Y } , (15)

C(X,Y, Z) = R(X,Y, Z)−
r

n(n− 1)
{g(Y, Z)X − g(X,Z)Y } , (16)

where R and r are respectively the curvature tensor and scalar curvature of the
Riemannian connection D [14].

3. m−projectively flat Kenmotsu manifolds satisfying R(X,Y ).S = 0

In view of W ∗ = 0, (1) becomes

R(X,Y )Z =
1

4m
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]. (17)

Contracting (17) with respect to X and using (3), we obtain

S(Y, Z) =
r

n
g(Y, Z).

Thus, an m−projectively flat Riemannian manifold is an Einstein manifold.
Now, R(X,Y ).S = 0 gives

S(R(X,Y )Z,U) + S(Z,R(X,Y )U) = 0.

In consequence of (17), above relation becomes

1

4m
[S(QX,U)g(Y, Z) − S(QY,U)g(X,Z)

+ g(Y, U)S(QX,Z)− g(X,U)S(QY,Z)] = 0.

Putting Y = Z = ξ in the last relation and then using (7), we obtain

S(QX,U) − η(X)S(Qξ,U)

+ η(U)S(QX, ξ)− g(X,U)S(Qξ, ξ) = 0. (18)
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With the help of (7) and (12), (18) gives

S(QX,U) = −(n− 1)2g(X,U), (19)

where S2(X,U)
def
= S(QX,U).

It is well known that

Lemma 2. [18] If θ = g∧A be the Kulkarni-Nomizu product of g and A, where g

being Riemannian metric and A be a symmetric tensor of type (0, 2) at point x of
a semi-Riemannian manifold (Mn, g). Then the relation

θ.θ = αQ(g, θ), α ∈ R

is satisfied at x if and only if the condition

A2 = αA+ λg, λ ∈ R

holds at x.

In consequence of (19) and lemma (2), we state

Theorem 1. If an m−projectively flat Kenmotsu manifold satisfies the condition
R(X,Y ).S = 0, then θ.θ = 0, where θ = g∧S and α = 0.

Let λ be the eigen value of the endomorphism Q corresponding to an eigen vector
X , then putting QX = λX in (18) and using (3), we find

λ2g(X,U) − 4m2η(X)η(U)

− 2mλη(X)η(U)− 4m2g(X,U) = 0. (20)

Again, putting U = ξ in the equation (20) and then using (7), we have

[λ2 − 2mλ− 8m2]η(X) = 0.

If X is perpendicular to ξ, then (20) gives

λ2 = 4m2 =⇒ λ = ±2m (21)

and hence the corresponding eigen values of Q would be ±2m. Since η(X) is not
equal to zero, in general, therefore

λ2 − 2mλ− 8m2 = 0, (22)

which follows that the symmetric endomorphismQ of the tangent space correspond-
ing to S has three different non-zero eigen values namely 4m and ±2m.

Thus, we can state

Theorem 2. If an m−projectively flat Kenmotsu manifold satisfies R(X,Y ).S = 0,
then the symmetric endomorphism Q of the tangent space corresponding to S has
three different non-zero eigen values.

Now, putting Y = Z = ξ in (17) and using (3), (7), (10) and (12), we obtain

QX = −(n− 1)X

which gives
r = −n(n− 1). (23)

If λ1, λ2 and λ3 be the eigen values of the Ricci operator Q and let multiplicity
of λ1 and λ2 be p and q respectively, then multiplicity of λ3 is n− p− q. Since the
scalar curvature is the trace of the Ricci operator Q, therefore

r = pλ1 + qλ2 + (n− p− q)λ3. (24)
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In consequence of (21), (22), (23), (24) and theorem (2), we obtain

pλ1 + qλ2 + (n− p− q)λ3 = −n(n− 1)

and

λ1 + λ2 + λ3 = 2(n− 1),

which gives

3p+ 2q = 0.

Next, if V1, V2 and V3 denote the eigen subspaces corresponding to the eigen
values λ1, λ2 and λ3 respectively of the manifold, then the sectional curvature on
V1 for orthonormal eigen vectors X , Y is λ1

n−1
.

Similarly on V2 and V3, the sectional curvature for orthonormal eigen vectors X
and Y is λ2

n−1
and λ3

n−1
respectively. Since λ1 = 2(n−1), which is not equal to zero,

therefore we have

Theorem 3. If an m−projectively flat Kenmotsu manifold Mn, (n≥2), satisfies
R(X,Y ).S = 0, then the manifold has no flat points.

4. m−projectively semi-symmetric Kenmotsu manifolds

We suppose that W ∗ is semi-symmetric, i.e.,

R(X,Y ).W ∗ = 0 =⇒ R(ξ, Y ).W ∗ = 0

which is equivalent to

R(ξ, Y )W ∗(Z,U)V−W ∗(R(ξ, Y )Z,U)V−W ∗(Z,R(ξ, Y )U)V−W ∗(Z,U)R(ξ, Y )V = 0.

In view of (1) and (11), above equation becomes

R(ξ, Y )R(Z,U)V − η(Z)R(Y, U)V + g(Y, Z)R(ξ, U)V − η(U)R(Z, Y )V

+g(Y, U)R(Z, ξ)V − η(V )R(Z,U)Y + g(Y, V )R(Z,U)ξ

−
1

4m
[S(U, V )R(ξ, Y )Z − S(Z, V )R(ξ, Y )U + g(U, V )R(ξ, Y )QZ

−g(Z, V )R(ξ, Y )QU − η(Z)S(U, V )Y + η(Z)S(Y, V )U − η(Z)g(U, V )QY

+η(Z)g(Y, V )QU + g(Y, Z)S(U, V )ξ − g(Y, Z)S(ξ, V )U + g(Y, Z)g(U, V )Qξ

−η(V )g(Y, Z)QU − η(U)S(Y, V )Z + η(U)S(Z, V )Y − η(U)g(Y, V )QZ

+η(U)g(Z, V )QY + g(Y, U)S(ξ, V )Z − g(Y, U)S(Z, V )ξ + η(V )g(Y, U)QZ

−g(Y, U)g(Z, V )Qξ − η(V )S(U, Y )Z + η(V )S(Z, Y )U − η(V )g(U, Y )QZ

+η(V )g(Y, Z)QU + g(Y, V )S(U, ξ)Z − g(Y, V )S(Z, ξ)U

+η(U)g(Y, V )QZ − η(Z)g(Y, V )QU ] = 0.
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Using (7), (10), (11), (12) and (13) in the above expression, we obtain

η(U)g(Z, V )Y − η(Z)g(U, V )Y −′ R(Z,U, V, Y )ξ − η(Z)R(Y, U)V

+η(V )g(Y, Z)U − g(Y, Z)g(U, V )ξ − η(U)R(Z, Y )V + g(Y, U)R(Z, ξ)V

−η(V )R(Z,U)Y + η(Z)g(Y, V )U − η(U)g(Y, V )Z

−
1

4m
[g(U, V )S(Z, ξ)Y − S(Y, Z)g(U, V )ξ − g(Z, V )S(U, ξ)Y

+g(Z, V )S(Y, U)ξ + η(Z)S(Y, V )U − η(Z)g(U, V )QY − 2mη(V )g(Y, U)Z

+g(Y, Z)g(U, V )Qξ − η(U)S(Y, V )Z + η(U)g(Z, V )QY + 2mη(V )g(Y, Z)U

−g(Y, U)g(Z, V )Qξ − η(V )S(U, Y )Z + η(V )S(Z, Y )U

−2mη(U)g(Y, V )Z + 2mη(Z)g(Y, V )U ] = 0.

Putting Z = ξ in the above relation and then using η(R(V, Y )U) = −′R(V, Y, ξ, U),
(10), (12) and (13), we find

−R(Y, U)V − g(U, V )Y + g(Y, V )U −
1

4m
[−2mg(U, V )Y

+2mη(Y )g(U, V )ξ + 2mη(U)η(V )Y + η(V )S(Y, U)ξ + S(Y, V )U

−g(U, V )QY + η(Y )g(U, V )Qξ − η(U)S(Y, V )ξ + η(U)η(V )QY

−2mη(V )g(Y, U)ξ − η(V )g(Y, U)Qξ − η(V )S(U, Y )ξ

−2mη(U)g(Y, V )ξ + 2mg(Y, V )U ] = 0. (25)

Contracting above with respect to Y , we get

S(U, V ) =

(

r − (n− 1)2

2n− 1

)

g(U, V )−

(

r + n(n− 1)

2n− 1

)

η(U)η(V ). (26)

Hence, the manifold is an η−Einstein manifold.
Again, from (3), (7) and (26), we obtain

QU =

(

r − (n− 1)2

2n− 1

)

U −

(

r + n(n− 1)

2n− 1

)

η(U)ξ (27)

and

r = −n(n− 1). (28)

In consequence of (28), (26) becomes

S(U, V ) = −(n− 1)g(U, V ). (29)

Thus, we can state

Theorem 4. An m−projectively semi-symmetric Kenmotsu manifold is an Ein-
stein manifold.

In view of (27), (28) and (29), (25) becomes

R(Y, U)V = −g(U, V )Y + g(Y, V )U. (30)

A space form (i.e., a complete simply connected Riemannian manifold of constant
curvature) is said to be elliptic, hyperbolic or Euclidean according as the sectional
curvature is positive, negative or zero [15]. Thus we have

Theorem 5. An n−dimensional Kenmotsu manifold Mn is m−projectively semi-
symmetric if and only if it is locally isometric to the hyperbolic space Hn(−1).
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In view of (29) and (30), (1) becomes

W ∗(X,Y )Z = 0.

Thus we state

Theorem 6. An n−dimensional Kenmotsu manifold Mn is m−projectively semi-
symmetric if and only if it is m−projectively flat.

It is well known that

Lemma 3. [4] In an n−dimensional Riemannian manifold Mn, the following are
equivalent

(i) Mn is an Einstein manifold,
(ii) m−projective and Weyl projective curvature tensors are linearly dependent.
(iii) m−projective and concircular curvature tensors are linearly dependent.
(iv) m−projective and conformal curvature tensors are linearly dependent.

In consequence of above equivalent relations and theorems (4), (5) and (6), we
state

Corollary 1. In an n−dimensional Kenmotsu manifold Mn, the following are
equivalent

(i) Mn is an m−projectively semi-symmetric manifold,
(ii) Mn is m−projectively flat,
(iii) Mn is Weyl projectively flat,
(iv) Mn is concircularly flat,
(v) Mn is conformally flat,
(vi) Mn is locally isometric to the hyperbolic space Hn(−1).

5. Kenmotsu manifolds satisfying W (X,Y ).W ∗ = 0

In consequence of W (X,Y ).W ∗ = 0, we have

W (X,Y )W ∗(Z,U)V −W ∗(W (X,Y )Z,U)V

−W ∗(Z,W (X,Y )U)V −W ∗(Z,U)W (X,Y )V = 0. (31)

Replacing X by ξ in (31), we find

W (ξ, Y )W ∗(Z,U)V −W ∗(W (ξ, Y )Z,U)V

−W ∗(Z,W (ξ, Y )U)V −W ∗(Z,U)W (ξ, Y )V = 0. (32)

Using (11), (12) and (15) in (32), we obtain

g(Y,W ∗(Z,U)V )ξ − g(Y, Z)W ∗(ξ, U)V − g(Y, U)W ∗(Z, ξ)V − g(Y, V )W ∗(Z,U)ξ

+
1

n− 1
[S(Y,W ∗(Z,U)V )ξ − S(Y, Z)W ∗(ξ, U)V − S(Y, U)W ∗(Z, ξ)V − S(Y, V )W ∗(Z,U)ξ] = 0.

Taking inner product of above equation with ξ and then using (1), (2), (7), (12)
and (13), we obtain

′W ∗(Z,U, V, Y ) +
1

n− 1
[S(U, V )g(Y, Z)− S(Z, V )g(Y, U) + (n− 1)(g(U, V )g(Y, Z)

− g(Y, U)g(Z, V )] +
1

n− 1
[S(Y,W ∗(Z,U)V ) +

1

2(n− 1)
(S(Y, Z)S(U, V )

− S(Y, U)S(Z, V )) +
1

2
(S(Y, Z)g(U, V )− S(Y, U)g(Z, V ))] = 0. (33)
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Again replacing Z and V by ξ in (33) and using (1), (7), (12) and (13), we find

S(QU, Y ) = −2(n− 1)S(U, Y )− (n− 1)2g(U, Y ), (34)

where S(QU, Y )
def
= S2(U, Y ). Thus we state

Theorem 7. If an n−dimensional (n ≥ 2) Kenmotsu manifold Mn satisfies the
condition W (X,Y ).W ∗ = 0, then the relation (34) holds on Mn.

In consequence of lemma (2) and theorem (7), we state

Theorem 8. If an n−dimensional Kenmotsu manifold (Mn, g) (n ≥ 2) satisfying
the condition W (X,Y ).W ∗ = 0, then θ.θ = αQ(g, θ), where θ = g∧S and α =
−2(n− 1).

6. Kenmotsu manifolds satisfying C(X,Y ).W ∗ = 0

We suppose C(X,Y ).W ∗ = 0, then

C(X,Y )W ∗(Z,U)V −W ∗(C(X,Y )Z,U)V

−W ∗(Z,C(X,Y )U)V −W ∗(Z,U)C(X,Y )V = 0. (35)

Replacing X by ξ in (35), we find

C(ξ, Y )W ∗(Z,U)V −W ∗(C(ξ, Y )Z,U)V

−W ∗(Z,C(ξ, Y )U)V −W ∗(Z,U)C(ξ, Y )V = 0. (36)

In view of (16), (36) becomes

(1 +
r

n(n− 1)
)[−W ∗(Z,U, V, Y )ξ + η(W ∗(Z,U)V )Y

−η(Z)W ∗(Y, U)V + g(Y, U)W ∗(Z, ξ)V − η(U)W ∗(Z, Y )V

+g(Y, V )W ∗(Z,U)ξ − η(V )W ∗(Z,U)Y + g(Y, Z)W ∗(ξ, U)V ] = 0. (37)

Taking inner product of (37) with ξ and then using lemma (1), we get

(1 +
r

n(n− 1)
)[−W ∗(Z,U, V, Y )−

1

2(n− 1)
(S(U, V )g(Y, Z)− S(Z, V )g(Y, U)

+η(V )η(U)S(Y, Z)− η(V )η(Z)S(U, Y ))−
1

2
(g(U, V )g(Y, Z)

−g(Y, U)g(Z, V ) + η(V )η(U)g(Y, Z)− η(V )η(Z)g(U, Y ))] = 0. (38)

Also replacing Z and V by ξ and using (7), (12) and lemma (1), we obtain

(1 +
r

n(n− 1)
)[g(U, Y ) +

1

n− 1
S(U, Y )] = 0.

This equation implies

either r = −n(n− 1) or S(U, Y ) = −(n− 1)g(U, Y ). (39)

Thus we state

Theorem 9. Let Mn be an n−dimensional Kenmotsu manifold. Then Mn satisfies
the condition

C(ξ, Y ).W ∗ = 0

if and only if either Mn is an Einstein manifold or it has scalar curvature r =
−n(n− 1).
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