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SOME PROPERTIES OF LORENTZIAN SASAKIAN MANIFOLDS

WITH TANAKA-WEBSTER CONNECTION

(COMMUNICATED BY UDAY CHAND DE)

MEHMET ERDOĞAN, JETA ALO, BERAN PİRİNÇÇİ AND GÜLŞEN YILMAZ

Abstract. In this work we study some curvature properties of Lorentzian
Sasakian manifolds with respect to the Tanaka-Webster connection and obtain
some results about the slant curves of the 3-dimensional Lorentzian Sasakian
manifold with Tanaka-Webster connection.

1. Introduction

If a differentiable manifold has a Lorentzian metric g, i.e., a symmetric non-
degenerated (0,2) tensor field of index 1, then it is called a Lorentzian manifold.
Generally, a differentiable manifold has a Lorentzian metric if and only if it has
a 1-dimensional distribution. Hence odd dimensional manifold is able to have a
Lorentzian metric. It is very natural and interesting to define both a Sasakian
structure and a Lorentzian metric on an odd dimensional manifold. In fact, odd
dimensional de Sitter space and Goedell Universe, that are important examples on
relativity theory, have Sasakian structure with Lorentzian metric, [6], [8], [15].

In this paper, we will define the Tanaka-Webster connection on a Lorentzian
Sasakian manifold and investigate some of its properties like curvature tensor, pro-
jective curvature tensor and locally φ-symmetry, see [12], [14]. As is well known, the
unit 3-sphere S3 is a typical example of a Sasakian manifold. In 3-dimensional con-
tact metric geometry, Legendre curves play a fundamental role. As a generalisation
of Legendre curves, in this paper, we will also study slant curves of a Lorentzian
Sasakian 3-manifold M with the Tanaka-Webster connection, [1].

A curve on a manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field ξ. It is well known that biharmonic curves in
3-dimensional Sasakian space forms are slant helices, see, [4], [5].

2. Preliminaries

2.1. Sasakian manifolds with Lorentzian metric. Let M be a differentiable
manifold of class C∞ and φ, ξ, η be a tensor field of type (1.1), a vector field, a
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1-form on M , respectively, such that

φ2(X) = −X + η(X)ξ, φξ = 0,

η(φX) = 0, η(ξ) = 1
(2.1)

for any vector field X on M . Then M is said to have an almost contact structure
(φ, ξ, η) and is called an almost contact manifold.The almost contact structure is
said to be normal if N + 2dη⊗ξ = 0, where

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ], ∀X,Y ∈ κ(M),

is the Nijenhuis tensor field of φ and κ(M) denotes the Lie algebra of all smooth
vector fields on M , [2].

Since M has a globally defined unique vector field ξ which is also called the Reeb
vector field, it is able to have a Lorentzian metric g such that g(ξ, ξ) = −1, see
[7], [8]. If M has the normal almost contact structure (φ, ξ, η) and the Lorentzian
metric g with

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (▽Xη)(Y ) = g(φX, Y ), X, Y ∈ κ(M) (2.2)

where ▽ is the covariant derivative with respect to g, then M is called a Sasakian
manifold with the Lorentzian metric.

In a Sasakian manifold with Lorentzian metric, we have

η(X) = −g(ξ,X),▽Xξ = −φX,▽Xφ(Y ) = −η(Y )X − g(X,Y )ξ,

X, Y ∈ κ(M).
(2.3)

The formulas (2.3) imply that an almost contact manifold is Sasakian if and only
if its Reeb vector field ξ is a Killing vector field. A Frenet curve parametrised
by arc length s is said to be a slant curve if its contact angle defined by cosθ(s)
= g(T (s), ξ) is constant, where T (s) is the tangent vector field of the curve. The
Riemann curvature tensor R of a Sasakian manifold with Lorentzian metric satisfies

R(X,Y )ξ = η(Y )X − η(X)Y = g(ξ,X)Y − g(ξ, Y )X. (2.4)

If D is the contact distribution in a contact manifold (M,φ, ξ, η), defined by
the subspaces Dx = {X ∈ TxM | η(X) = 0}, then a one-dimensional integral
submanifold of D will be called a Legendre curve. These curves are the slant
curves of contact angle π

2
. A curve γ : I → M , parametrized by its arc length is a

Legendre curve if and only if η(γ′) = 0, [1].
A plane section in TpM is called a φ-section if there exists a vector X ∈ TpM

orthogonal to ξ such that {X,φX} span the section. The sectional curvature,
K(X,φX), is called φ-sectional curvature. A Sasakian manifold of constant φ-
sectional curvature with Lorentzian metric g will be called a Lorentzian Sasakian
space form and denoted by M(c). The curvature tensor of a Sasakian space form
with Lorentzian metric is given by

4R(X,Y )Z = (c− 3){g(Y, Z)X − g(X,Z)Y }+ (c+ 1){g(X,φZ)φY

−g(Y, φZ)φX + 2g(X,φY )φZ} + (c+ 1){η(Y )η(Z)X − η(X)η(Z)Y

+g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

(2.5)

where c is a constant, [8].



SOME PROPERTIES OF LORENTZIAN SASAKIAN MANIFOLDS 49

2.2. Tanaka-Webster connection on a Sasakian manifold. Now, we review
the Tanaka-Webster connection, on a (2n + 1)- dimensional Sasakian manifold M

with Lorentzian metric g, see [16] and [17]. We denote by ▽ the Lorentzian con-
nection defined by g. Let r be arbitrary fixed real number, and let A be a tensor
fields of type (1,2) defined by

A(X)Y = g(φX, Y )ξ + rη(X)φ(Y ) + η(Y )φX (2.6)

for all vector fields X,Y on M . Then we can define a linear connection D ( D-
connection, for short ) as

DXY = ▽XY +A(X)Y. (2.7)

The tensor fields ξ, η, g and A are parallel with respect to the D- connection, for the
proof, see [8]. If we choose r = 1 in (2.6) we get the special form of D-connection

which is called the Tanaka-Webster connection and denoted by ▽̂, that is we will
define

▽̂XY = ▽XY + g(φX, Y )ξ + η(X)φ(Y ) + η(Y )φX. (2.8)

We see that the Tanaka-Webster connection ▽̂ for Sasakian manifold M with
Lorentzian metric g has the torsion

T̂ (X,Y ) = −2g(X,φY )ξ. (2.9)

Lemma 2.1. ([8]) The tensor A satisfies followings

A(A(Z)X)Y = g(X,φZ)φY − g(X,Y )η(Z)ξ − g(Y, Z)η(X)ξ

−η(Y )η(Z)X − η(X)η(Y )Z,

A(Z)A(X)Y −A(X)A(Z)Y = η(X)g(Z, Y )ξ − η(Z)g(X,Y )ξ + η(Y )η(X)Z

+g(φX, Y )φZ − g(φZ, Y )φX − η(Z)η(Y )X.

3. Curvature tensors of Tanaka-Webster connection

Since the curvature tensor R̂ of the Tanaka-Webster connection and the curvature
tensor R of the Lorentzian connection satisfies

R̂(X,Y )Z = R(X,Y )Z +A(A(Y )X)Z −A(A(X)Y )Z +A(X)A(Y )Z −A(Y )A(X)Z,

from Lemma 2.1, we have the following :

Proposition 3.1. ([8]) Curvature tensors R̂ and R satisfies following equation

R̂(X,Y )Z = R(X,Y )Z + 2g(φX, Y )φZ + g(Z, Y )η(X)ξ − g(X,Z)η(Y )ξ

+η(X)η(Z)Y − η(Y )η(Z)X + g(φX,Z)φY − g(φY, Z)φX.
(3.1)

As the Reeb vector field ξ is a parallel vector field with respect to the Tanaka-
Webster connection, we obtain following

Theorem 3.2. ([8]) Let M be a Sasakian manifold with Lorentzian metric. Then

the sectional curvature K̂(X, ξ) of the Tanaka-Webster connection with respect to
a section spanned by ξ and X is identically zero.

From Proposition 3.1, we have the following equations about the Ricci tensors
and the scalar curvatures.
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Proposition 3.3. ([8]) The Ricci tensor R̂ic of the Tanaka-Webster connection
and the Ricci tensor Ric of the Lorentzian connection satisfies

R̂ic(X,Y ) = Ric(X,Y )− 2g(X,Y )− 2(n+ 1)η(X)η(Y ). (3.2)

The scalar curvature ρ̂ of the Tanaka-Webster connection and the scalar cur-
vature of the Lorentzian connection satisfies ρ̂ = ρ − 2n. Now, we will prove the
following theorem:

Theorem 3.4. Let M be a Sasakian manifold with Lorentzian metric. If M is of
constant curvature c with respect to the Tanaka-Webster connection, then c = 0.
Proof.

From Proposition 3.1, it follows that

R(X,Y )Z = cg(Y, Z)X − cg(X,Z)Y − 2g(φX, Y )φZ − g(Z, Y )η(X)ξ

+g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y − g(φX,Z)φY + g(φY, Z)φX

by virtue of the assumption. Hence, using (2.4), we have

R(X, ξ)Z = (1− c)η(Z)X + (1 − c)g(X,Z)ξ = η(Z)X + g(X,Z)ξ,

so that c{η(Z)X + g(X,Z)ξ} = 0, for any vectors X and Z. Putting Z = ξ and
η(X) = 0 in this equation, we obtain c = 0.

4. Projective curvature tensor on Lorentzian Sasakian manifolds
with Tanaka-Webster connection

Let M be an (2n+1)-dimensional Lorentzian Sasakian manifold equipped with

a Tanaka-Webster connection. Since the Ricci tensor R̂ic of the Tanaka-Webster
connection is symmetric, the projective curvature tensor of the Sasakian manifold
with respect to the Tanaka-Webster connection can be defined by

P̂ (X,Y )Z = R̂(X,Y )Z −
1

2n
{R̂ic(Y, Z)X − R̂ic(X,Z)Y }. (4.1)

Using (3.1) and (3.2), (4.1) reduces to

P̂ (X,Y )Z = R(X,Y )Z + 2g(φX, Y )φZ + g(Z, Y )η(X)ξ − g(X,Z)η(Y )ξ

+η(X)η(Z)Y − η(Y )η(Z)X + g(φX,Z)φY − g(φY, Z)φX

−
1

2n
{Ric(Y, Z)X − 2g(Y, Z)X − 2(n+ 1)η(Y )η(Z)X

−Ric(X,Z)Y + 2g(X,Z)Y + 2(n+ 1)η(X)η(Z)Y }

or

P̂ (X,Y )Z = P (X,Y )Z + 2ng(φX, Y )φZ + g(Z, Y )η(X)ξ − g(X,Z)η(Y )ξ

−η(X)η(Z)Y + η(Y )η(Z)X + g(φX,Z)φY − g(φY, Z)φX

+g(Y, Z)X − g(X,Z)Y,
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where P is the projective curvature tensor with respect to the Lorentzian metric
on the manifold, [12]. Putting Z = ξ in the last equation and using (2.3), we have
that

P̂ (X,Y )ξ = 0. (4.2)

Definition. A Sasakian manifold is called ξ-projectively flat if the condition
P (X,Y )ξ = 0 is satisfied on the manifold.

So from (4.2) we have that the following

Theorem 4.1. A Lorentzian Sasakian manifold with Tanaka-Webster connection

is ξ-projectively flat with respect to the Tanaka-Webster connection ▽̂ .

Now we express the following definitions which we will need later.

Definition. A Sasakian manifold is called φ-projectively flat if the condition

φ2P (φX, φY )φZ) = 0 (4.3)

is satisfied on the manifold, [13].

Definition. A Sasakian manifold is called η-Einstein manifold if it satisfies the
condition Ric(X,Y ) = αg(X,Y ) + βη(X)η(Y ) for any real numbers α and β, [18].

Let us assume that M is a φ-projectively flat Lorentzian Sasakian manifold with
a Tanaka-Webster connection on it. Then, it can be verified that

g(P̂ (φX, φY )φZ, φW ) = 0, (4.4)

so from (4.1) we have

g(R̂(φX, φY )φZ, φW ) =
1

2n
{R̂ic(φY, φZ)g(φX, φW ) − R̂ic(φX, φZ)g(φY, φW )}.

for X,Y, Z,W ∈ T (M).
Let {e1, e2, ..., e2n, ξ} be an orthonormal basis of the vector fields in M . Putting

X = W = ei in the last equation and summing up over i, we have

2n∑

i=1

g(R̂(φei, φY )φZ, φei) =
1

2n

2n∑

i=1

{R̂ic(φY, φZ)g(φei, φei)−R̂ic(φei, φZ)g(φY, φei}.

(4.5)
Using (2.1)-(2.3) and (3.2), it can be easily verified that

2n∑

i=1

g(R̂(φei, φY )φZ, φei) =
2n∑

i=1

g(R(φei, φY )φZ, φei) + (2n+ 1)g(Y, Z) + η(Y )η(Z)

=
2n∑

i=1

g(R(φei, φY )φZ, φei) + 2ng(Y, Z) + g(φY, φZ)

= Ric(Y, Z) +R(ξ, Y, Z, ξ) + 2ng(Y, Z) + g(φY, φZ)

= Ric(Y, Z) + η(Z)Y − η(Y )Z + (2n+ 1)g(Y, Z) + η(Y )η(Z)

= R̂ic(Y, Z) + (4n+ 1)g(Y, Z)− (4n+ 1)η(Y )η(Z).

On the other hand taking into account that

2n∑

i=1

g(φei, φei) = 2n,
2n∑

i=1

R̂ic(φei, φZ)g(φY, φei) = R̂ic(φY, φZ),
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from (4.5) we obtain that

2n− 1

2n
R̂ic(φY, φZ) =

2n− 1

2n
{R̂ic(Y, Z) + η(Y )η(Z)}

= R̂ic(Y, Z) + (4n+ 1)g(Y, Z)− (4n+ 1)η(Y )η(Z).
(4.6)

Using (3.2) and Ric(X, ξ) = 2nη(X), from (4.6) we get

R̂ic(Y, Z) = αg(Y, Z) + βη(Y )η(Z), (4.7)

where α = −2n(4n+ 1) and β = 4n(2n+ 1)− 1.
Hence we can state the following

Theorem 4.2. If a Lorentzian Sasakian manifold is φ-projectively flat with respect
to the Tanaka-Webster connection then the manifold is an η-Einstein manifold with
respect to the Tanaka-Webster connection.

5. Locally φ-symmetric Lorentzian Sasakian manifolds with
Tanaka-Webster connection

Definition. A Sasakian manifold M is called to be locally φ-symmetric if the con-
dition φ2(▽WR)(X,Y )Z = 0 for all vector fields X,Y, Z,W ∈ T (M) orthogonal to
ξ. This notion was introduced by Takahashi [14].

Now, we will consider a Lorentzian Sasakian manifold M with Tanaka-Webster
connection and define locally φ-symmetry on it by

φ2(▽̂W R̂)(X,Y )Z = 0 (5.1)

for all vector fields X,Y, Z,W ∈ T (M) orthogonal to ξ.
From (2.8) we have that

(▽̂W R̂)(X,Y )Z = (▽W R̂)(X,Y )Z + g((φR̂)(X,Y )Z,W )ξ

+η(W )(φR̂)(X,Y )Z + η(R̂(X,Y )Z)φ(W )
(5.2)

and from (3.1), we may rewrite the curvature tensor of Tanaka-Webster connection
as follows

R̂(X,Y )Z = R(X,Y )Z + 2dη(X,Y )φZ + dη(X,Z)φ(Y )− dη(Y, Z)φ(X)

+g(Z, Y )η(X)ξ − g(X,Z)η(Y )ξ + η(X)η(Z)Y − η(Y )η(Z)X.

Differentiating this equation in the direction of W we get

(▽W R̂)(X,Y )Z = (▽WR)(X,Y )Z + 2dη(X,Y )(▽Wφ)(Z) + dη(X,Z)(▽Wφ)(Y )

−dη(Y, Z)(▽Wφ)(X) + {(▽W η)(X)g(Y, Z)− (▽W η)(Y )g(X,Z)}ξ

+(▽W ξ){η(X)g(Y, Z)− η(Y )g(X,Z)}+ (▽W η)(X)η(Z)Y + (▽W η)(Z)η(X)Y

−(▽W η)(Y )η(Z)X − (▽W η)(Z)η(Y )X.

Then, using (2.2), (2.3) in this equation we have

(▽W R̂)(X,Y )Z = (▽WR)(X,Y )Z − 2dη(X,Y ){g(Z,W )ξ + η(Z)W}

−dη(X,Z){g(Y,W )ξ + η(Y )W}+ dη(Y, Z){g(X,W )ξ + η(X)W}

+{g(X,φW )g(Y, Z)− g(Y, φW )g(X,Z)}ξ − φW{η(X)g(Y, Z)− η(Y )g(X,Z)}

+g(X,φW )η(Z)Y + g(Z, φW )η(X)Y − g(Y, φW )η(Z)X − g(Z, φW )η(Y )X.
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Now, applying φ2 both sides of (5.2) we have

φ2(▽̂W R̂)(X,Y )Z = φ2(▽W R̂)(X,Y )Z + η(W )φ2(φR̂)(X,Y )Z

−φ(W )η(R̂(X,Y )Z)

and using (2.1) and this equation in (5.2) we get

φ2(▽̂W R̂)(X,Y )Z = η(W )φ2(φR̂)(X,Y )Z − φ(W )η(R̂(X,Y )Z) + φ2(▽WR)(X,Y )Z

−2dη(X,Y ){η(Z)η(W ) + η(Z)W} − dη(X,Z){η(Y )η(W ) + η(Y )W}

+dη(Y, Z){η(X)η(W ) + η(X)W}+ φW{η(X)g(Y, Z)− η(Y )g(X,Z)}

−{g(X,φW )η(Y )η(Z) + g(Y, φW )η(X)η(Z)}ξ − g(X,φW )η(Z)Y − g(Z, φW )η(X)Y

+g(Y, φW )η(Z)X − g(Z, φW )η(Y )X.

If we take X,Y, Z,W orthogonal to ξ, from the last equation we find that

φ2(▽̂W R̂)(X,Y )Z = φ2(▽WR)(X,Y )Z.

Hence we can state the following:

Theorem 5.1. For a Lorentzian Sasakian manifold the Lorentzian connection ▽

is locally φ-symmetric if and only if the Tanaka-Webster connection ▽̂ is locally
φ-symmetric.

6. Slant curves in 3-dimensional Lorentzian Sasakian manifolds with
Tanaka-Webster connection

Let M be 3-dimensional Lorentzian Sasakian manifold equipped with Tanaka-

Webster connection ▽̂ and γ be a slant curve parametrised by arc length s in M .
Then cosθ(s)=g(T̂ (s), ξ) is constant and satisfies cosθ(s) = −η(T̂ ), where g is the

Lorentzian metric. Since ▽̂ is a metrical connection, i.e., ▽̂g = 0, there exists
an orthonormal frame field {T̂ , N̂ , B̂} along γ such that T̂ = γ

′

and satisfies the
following Frenet-Serret equation with respect to the Tanaka-Webster connection:

▽̂
T̂
T̂ = κ̂N̂

▽̂
T̂
N̂ = −κ̂T̂ + τ̂ B̂

▽̂
T̂
B̂ = −κ̂N̂ .

Here κ̂ and τ̂ are the curvature and the torsion of γ, respectively. For a unit speed
curve γ(s) in 3-dimensional Lorentzian Sasakian manifold, by virtue of (2.3) and
(2.8) we get

▽̂
T̂
T̂ = ▽

T̂
T̂ + 2η(T̂ )φT̂ = ▽

T̂
T̂ + 2cosθ(s)φT̂ , (6.1)

where ▽ is the Lorentzian connection of M , [4],[5]. Now, if γ(s) is a Legendre curve
in M and {T,N,B} the Frenet frame along γ(s), then the tangent vector field T

can be defined by T (s)=γ́ and the curvature κ(s) of γ(s) is given by ▽TT=κN .
Since the formula (6.1) implies that every Legendre curve γ(s) in M satisfies

▽̂γ́ γ́ = ▽γ́ γ́, (6.2)

the mean curvature vector field ▽γ́ γ́ coincides with the ▽̂γ́ γ́ so that we have N̂ =
N = φT and κ̂ = κ. Thus every Legendre curve has zero torsion with respect to
the Tanaka-Webster connection and so we have that every Legendre curve in M is
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▽̂-geodesic if and only if it is a ▽-geodesic, [1]. Now we choose an adapted local
orthonormal frame field X,φX, ξ of M such that η(X) = 0.

Let γ(s) be a non-geodesic Frenet curve in 3-dimensional Lorentzian Sasakian
manifold with Tanaka-Webster connection.
Differentiating the equation cosθ(s)=g(T̂ (s), ξ) along γ(s), then it follows that

−θ′.sinθ = g(▽̂
T̂
T̂ , ξ) + g(T̂ , ▽̂

T̂
ξ) = g(κ̂N̂ , ξ) + g(T̂ ,▽T ξ + φT̂ + g(φT̂ , ξ)ξ).

(6.3)
If γ(s) is a slant curve of M , then from (6.3) it follows that

g(κ̂N̂ , ξ) + g(T̂ ,▽T ξ) + g(T̂ , φT̂ ) + cosθ(η(φT )) = 0.

This equation and from (2.1) we have η(N̂) = 0. Hence we proved the following
result, see [4],[9].

Proposition 6.1. A non-geodesic curve γ(s) in a 3-dimensional Lorentzian Sasakian
manifold with Tanaka-Webster connection is a slant curve if and only if it satisfies
η(N̂) = 0.

Hence the reeb vector field ξ can be written as follows ξ = cosθT̂ ∓ sinθB̂.
This means that the reeb vector field is in the plane spanned by T̂ and B̂, namely
g(ξ, N̂) = 0. On the other hand, with respect to an adapted local orthonormal
frame fields X,φX, ξ of M such that η(X) = 0 we have the following equalities of

the Frenet vector fields T̂ , N̂ and B̂ for some function λ(s),

T̂ = sinθ{cosλX + sinλφX}+ cosθξ,

N̂ = −sinλX + cosλφX.

B̂ = ∓cosθcosλX ∓ cosθsinλφX ± cosecθξ.

Differentiating the equation g(ξ, N̂) = 0 along the slant curve γ(s) of M and using
(6.1) Frenet-Serre equations and the following identities

φT̂ = −sinθsinλX + sinθcosλφX − g(X, ξ)sinθsinλξ

φN̂ = −cosλX − sinλφX − g(X, ξ)cosλξ,

it follows that

g(▽̂
T̂
N̂, ξ) + g(N̂ , ▽̂

T̂
ξ) = 0,

g(▽
T̂
N̂ − g(T̂ , ξ)φN̂ + g(φT̂ , N̂)ξ, ξ) + g(N̂, g(φT̂ , ξ), ξ) = 0,

g(−κ̂T̂ + τ̂ B̂ − cosθφN̂ , ξ)− g(φT̂ , N̂) + g(N̂, g(φT̂ , ξ)ξ) = 0,

κ̂cosθ ± τ̂ sinθ − cosθg(φN̂, cosT̂ ± sinθB̂)− g(φT̂ , N̂) = 0,

κ̂cosθ ± τ̂ sinθ − cos2θ{−sinθ+ cosθcosλg(X, ξ)}

∓sinθcosθ{±cosθ±
cosλ

sinθ
g(X, ξ)} − sinθ = 0,

from this we have that κ̂cosθ+(±τ̂ +1)sinθ = 0 or κ̂
±τ̂−1

= const.. Thus we proved
that the following result

Theorem 6.2. If a non-geodesic curve of a 3-dimensional Lorentzian Sasakian
manifold with Tanaka-Webster connection is a slant curve, then κ̂

±τ̂−1
= const.
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Department of Biomedical Engineering, Faculty of Engineering and Architecture ,
Yeni Yuzyil University, Topkapi, Istanbul, TURKEY.

E-mail address: mehmet.erdogan@yeniyuzyil.edu.tr

Jeta Alo
Department of Mathematics and Computing, Faculty of Science and Letters, Beykent
University, Ayazağa, Istanbul, TURKEY.

E-mail address: jeta@beykent.edu.tr

Beran PİRİNÇÇİ
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