BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 5 Issue 1 (2013), Pages 36-43

ON WEAKLY RICCI φ -SYMMETRIC δ -LORENTZIAN TRANS-SASAKIAN MANIFOLDS

(COMMUNICATED BY UDAY CHAND DE)

S. M. BHATI

ABSTRACT. The purpose of the paper is to introduce the notion of weakly Ricci φ - symmetric δ - Lorentzian trans-Sasakian manifolds and study characteristic properties of locally φ - Ricci symmetric and φ -recurrent spaces. Finally, local symmetry of a generalized recurrent weakly symmetric δ - Lorentzian trans-Sasakian manifolds is discussed.

1. INTRODUCTION

Many authors recently have studied Lorentzian α - Sasakian manifolds [19] and Lorentzian β - Kenmotsu manifolds [14],[13]. In 2011, S.S.Pujar and V.J. Khairnar [7] have initiated the study of Lorentzian Trans-Sasakian manifolds and studied the basic results with some of its properties. Earlier to this, S. S. Pujar [9] has initiated the study of δ -Lorentzian α - Sasakian manifolds [5] and δ Lorentzian β -Kenmotsu manifolds [7]. Also, S. S. Pujar and V.J.Khairnar [8] have continued the work on Lorentzian manifolds and in fact studied the properties of weak symmetries of Lorentzian manifolds. More about the weakly symmetric spaces can be seen in a paper by Ralph R,Gomez [10].

In 2010, S.S. Shukla and D.D.Singh [12] have introduced the notion of (ϵ) - trans-Sasakian manifolds and studied its basic results and using these results studied some of its properties. Earlier to this in 1969 Takahashi [16] had introduced the notion of almost contact metric manifold equipped with pseudo Riemannian metric. In particular , he studied the Sasakian manifolds equipped with Riemannian metric g.These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are also known as (ϵ) -almost contact metric manifolds and (ϵ) - Sasakian manifolds respectively.

Recently [15] and [17], we have observed that there does not exists a light like surface in the (ϵ) - Sasakian manifolds. On the other hand in almost para contact

⁰2000 Mathematics Subject Classification:53C25,53C05,53C20,53D15

Keywords and phrases. Weakly symmetric δ -Lorentzian trans-Saskian manifolds,Weakly symmetric δ -Lorentzian α -saskian manifolds,Weakly symmetric δ -Lorentzian β -Kenmotsu manifolds (© 2013 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted November 19, 2012. Published January 27, 2013.

manifold defined by Motsumoto [5], the semi Riemannian manifold has the index 1 and the structure vector field ξ is always a time like. This motivated the Thripathi and others [17] to introduce (ϵ)-almost para contact structure where the vector field ξ is space like or time like according as $\epsilon = 1$ or $\epsilon = -1$.

In this paper, in section 2, we have listed the various preliminary results (for instance please see [7]) of δ - Lorentzian trans- Sasakian manifolds which are needed in the rest of sections.

In section 3, characterization of locally φ - Ricci -symmetric and φ - recurrent spaces are discussed. It is established that if the weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold of non zero ξ -sectional curvature is locally φ - Ricci symmetric, then the sum of the associated 1-forms A,B and C is zero everywhere. Also it is proved in section4 that if the weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold of non zero ξ -sectional curvature is φ - Ricci -recurrent, then the associated 1-forms B and C are in the opposite directions".

Finally, in section 5, local symmetry of a generalized recurrent weakly symmetric δ -Lorentzian trans-Sasakian manifolds is discussed.

2. Preliminaries

In this section , we list the basic definitions and known results of δ - Lorentzian trans-Sasakian manifolds.

Definition 2.1. [7]. A (2n+1) dimensional manifold M, is said to be the δ - almost contact metric manifold if it admits a 1-1 tensor field φ , a structure tensor field ξ , a 1-form η and an indefinite metric g such that

$$\varphi^2 X = X + \eta(X)\xi, \eta(\xi) = -1$$

$$g(\xi,\xi) = -\delta, \eta(X) = \delta g(X,\xi)$$

$$g(\varphi(X),\varphi(Y)) = g(X,Y) + \delta \eta(X)\eta(Y),$$

for all vector fields X and Y on M, where δ is such that $\delta^2 = 1$ so that $\delta = \pm 1$. The above structure $(\varphi, \xi, \eta, g, \delta)$ on M is called the the δ Lorentzian structure on M. If $\delta = 1$ and this is the usual Lorentzian structure [7] on M, the vector field ξ is the time like [19], that is M contains a time like vector field.

From the above equations, one can deduce that

$$\varphi \xi = 0, \eta(\varphi(X)) = 0$$

Example: Let us consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3\}$, where x,y,z are the co-ordinates of a point in \mathbb{R}^3 .Let $\{e_1, e_2, e_3\}$ be the global frames on M given by

$$e_1 = e^z (\frac{\partial}{\partial x} + y \frac{\partial}{\partial z}), e_2 = e^z \frac{\partial}{\partial y}, e_3 = e^z \frac{\partial}{\partial z}$$

Let g be the δ - Lorentzian metric on M defined by

$$g(e_1, e_2) = g(e_2, e_3) = g(e_1, e_3) = 0$$

and

$$g(e_1, e_1) = g(e_2, e_2) = 1, g(e_3, e_3) = -\delta$$

where $\delta = \pm 1$. Then δ -Lorentzian indefinite metric q on M is in the following form:

$$= \{e^{-2z} - \delta y^2\}(dx)^2 + e^{-2z}(dy)^2 - \delta e^{-2z}(dz)^2 + 2\delta y e^{-z} dx dy$$

Let $e_3 = \xi$. Let η be the 1-form defined by

 $\eta(U) = \delta q(U, e_3),$

for any vector field U on M. Let φ be the 1-1 tensor field defined by

$$\varphi(e_1) = e_2, \varphi(e_2) = e_1, \varphi(e_3) = 0$$

Then using linearity of φ and g and taking $e_3 = \xi$, one obtains

$$\eta(e_3) = -1, \varphi^2 U = U + \eta(U)e_3$$

and

$$g(\varphi(U),\varphi(W)) = g(U,W) + \delta\eta(U)\eta(W), \qquad (2.1)$$

for any vector fields X and Y on M. Also putting $W = \xi$ in (2.1), one can see that $\eta(U) = \delta g(U,\xi).$ (2.2)

$$(2..) = \delta g(U,\xi).$$

Putting $W = U = \xi$ in(2.1) and (2.2) respectively, we have

and

$$g(\xi,\xi) = -\delta$$
$$\eta(\xi) = -1$$

Clearly from (2.1) φ is symmetric. Thus $(\varphi, \xi, \eta, g, \delta)$ defines a δ - Lorentzian contact metric structure on M.

In Tanno.S.[18], classified the connected almost contact metric manifolds whose automorphism groups possesses the maximum dimension. For such a manifold the sectional curvature of the plane section containing ξ is constant, say c. He showed that they can be divided into three classes. (1) homogeneous normal contact Riemannian manifolds with c > 0. It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure. Other two classes can be seen in Tanno [21].

In Grey and Harvella [3], the classification of almost Hremitian manifolds, there appears a class W_4 of Hermitian manifolds which are closely related to the conformal Kaehler manifolds . The class $C_6 \oplus C_5$ [4] coincides with the class of the trans-Sasakian structure of type (α, β) . In fact , the local nature of the two sub classes, namely C_6 and C_5 of trans-Sasakian structures are characterized completely . An almost contact metric structure on M is called a trans-Sasakian (please see details in [6] and [3]) if (MxR, J, G) belongs to the class W_4 , where J is the almost complex structure on MxR defined by

$$J(X, f\frac{d}{dt}) = (\varphi(X) - f\xi, \eta(X)\frac{d}{dt})$$

for all vector fields X on M and smooth function f on MxR and G is the product metric on MxR. This may be expressed by the condition

$$(\nabla_X \varphi)(Y) = \alpha \{ g(X, Y)\xi - \eta(Y)X \} + \beta \{ g(\varphi(X), Y)\xi - \eta(Y)\varphi(X) \}, \qquad (2.3)$$

for any vector fields X and Y on M , ∇ denotes the Levi-Civita connection with respect to q, α and β are smooth functions on M. The existence of condition (2.3) is ensured by the above discussion .

With the above literature now we define the δ -Lorentzian trans-Sasakian manifold as follows.

Definition 2.2. A δ - Lorentzian manifold with structure $(\varphi, \xi, \eta, g, \delta)$ is said to be δ - Lorentzian trans Sasakian manifold M of type (α, β) if it satisfies the condition

$$(\nabla_X \varphi)(Y) = \alpha \{ g(X, Y)\xi - \delta \eta(Y)X \} + \beta \{ g(\varphi(X), Y)\xi - \delta \eta(Y)\varphi(X) \}, \quad (2.4)$$

for any vector fields X and Y on M

If $\delta = 1$, then the δ - Lorentzian trans Sasakian manifold is the usual Lorentzian trans -Sasakian manifold of type (α, β) [7]. δ -Lorentzian trans-Sasakian manifold of type $(0,0), (0,\beta), (\alpha, 0)$ are the Lorentzian cosympletic, Lorentzian β - Kenmotsu and Lorentzian α - Sasakian manifolds respectively. In particular if $\alpha = 1, \beta = 0$, and $\alpha = 0, \beta = 1$, then δ - Lorentzian trans -Sasakian manifold reduces to δ - Lorentzian Sasakian and δ - Lorentzian Kenmotsu manifolds respectively.

For a δ - Lorentzian trans Sasakian manifold, we have (please see with $\delta = 1$ [7]) and calculations give the following with δ .

$$\nabla_{X}\xi = \delta\{-\alpha\varphi(X) - \beta(X + \eta(X)\xi)\},$$

$$(\nabla_{X}\eta)(Y) = \alpha g(\varphi(X), Y) + \beta\{g(X,Y) + \delta\eta(X)\eta(Y)\}$$

$$R(X,Y)\xi = (\alpha^{2} + \beta^{2})\{\eta(Y)X - \eta(X)Y\} + 2\alpha\beta\{\eta(Y)\varphi(X) - \eta(X)\varphi(Y)\}$$

$$+ \delta\{-X\alpha)\varphi(Y) + (Y\alpha)\varphi(X) - (X\beta)\varphi^{2}Y + (Y\beta)\varphi^{2}X\},$$

$$R(\xi,Y)X = (\alpha^{2} + \beta^{2})\{\delta g(X,Y)\xi - \eta(X)Y\}$$

$$+ \delta(X\alpha)\varphi(Y) + \delta g(\varphi(X),Y)(grad\alpha)$$

$$+ \delta(X\beta)(Y + \eta(Y)\xi) - \delta g(\varphi(Y),\varphi(X))(grad(\beta)$$

$$+ 2\alpha\beta\{\delta g(\varphi(X),Y)\xi + \eta(X)\varphi(Y)\},$$

$$\eta(R(X,Y)Z) = \delta(\alpha^{2} + \beta^{2})[\eta(X)g(Y,Z) - \eta(Y)g(X,Z)]$$

$$+ 2\delta\alpha\beta[-\eta(X)g(\varphi(Y),Z) + \eta(Y)g(\varphi(X),Z)]$$

$$- [(Y\alpha)(g(\varphi(X),Z) + (X\alpha)g(Y,\varphi(Z)))$$

$$- (Y\beta)g(\varphi^{2}X,Z) + (X\beta)g(\varphi^{2}Y,Z)],$$

$$S(X,\xi) = \{2n(\alpha^{2} + \beta^{2}) - \delta(\xi\beta)\}\eta(X) + (2n - 1)\delta(X\beta)$$

$$+ \{2\alpha\beta\eta(X) + \delta(X\alpha)\}f + \delta(\varphi(X))\alpha.$$
(2.6)

$$S(\xi,\xi) = -2n(\alpha^2 + \beta^2 - \delta\xi\beta).$$
(2.7)

$$2\alpha\beta - \delta\xi\alpha = 0 \tag{2.8}$$

for any vector fields X,Y,Z on M

In this section , we define the $\xi\text{-}$ sectional curvature of $\delta\text{-}$ Lorentzian trans-Sasakian manifold .

Definition 2.3. [11] The ξ - sectional curvature of δ - Lorentzian trans- Sasakian manifold for a unit vector field X orthogonal to ξ is defined by

$$K(\xi, X) = R(\xi, X, \xi, X) \tag{2.9}$$

From (2.5), we have

$$R(\xi, X, \xi, X) = \{(\alpha^2 + \beta^2 - \delta(\xi\beta))\}g(\varphi^2 X, X) + (2\alpha\beta - \delta(\xi\alpha))g(\varphi(X), X)\}$$

Finally by virtue of (2.8), the ξ -sectional curvature is given by

$$K(\xi, X) = \alpha^2 + \beta^2 - \delta(\xi\beta). \tag{2.10}$$

If $\alpha^2 + \beta^2 - \delta(\xi\beta) \neq 0$, then M is of nonvanishing . ξ -sectional curvature.

3. Weakly Ricci φ -symmetric and locally Ricci φ -symmetric spaces

In this section, we introduce the notion of weakly Ricci φ - symmetric δ -Lorentzian trans -Sasakian manifolds and in such a space characterization of locally Ricci φ -symmetric property is discussed.

Definition 3.1. A δ -Lorentzian trans -Sasakian manifold M (n > 1) is said to be weakly Ricci φ -symmetric if the non zero Ricci curvature tensor Q of type(1,1)satisfies the condition

$$\varphi^2(\nabla_X Q)(Y) = A(X)Q(Y) + B(Y)Q(X) + g(QX,Y)\rho$$
(3.1)

where the vector fields X and Y on M, ρ is a vector field such that $g(\rho, V) = C(V)$, A and B are associated vector fields (not simultaneously zero) and φ is tensor field of type(1,1) on M.

Definition 3.2. A weakly Ricci φ - symmetric δ -Lorentzian trans -Sasakian manifolds (M, g)(n > 1) is said to be locally Ricci φ -symmetric if

$$\varphi^2(\nabla Q) = 0$$

We proceed with these definitions. Equation (3.1) can be written as

$$g(\varphi^2(\nabla_X Q)(Y), V) = A(X)S(Y, V)) + B(Y)S(X, V) + S(X, Y)C(V)$$
(3.2)

Suppose weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) is locally Ricci φ symmetric. Then from(3.2) and definition, we have

$$A(X)S(Y,V) + B(Y)S(X,V) + C(V)S(X,Y) = 0$$
(3.3)

Setting $X = Y = V = \xi$ in (3.3), we find

$$A(\xi) + B(\xi) + C(\xi) = 0, \qquad (3.4)$$

provided $\alpha^2 + \beta^2 - \delta(\xi\beta) \neq 0$. Hence one can state the following theorem.

Theorem 3.3. If a weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of non vanishing ξ -sectional curvature is locally Ricci φ symmetric, then the relation (3.4) holds.

Putting $Y = V = \xi$ in (3.3), we get

$$A(X)S(\xi,\xi) = -\{B(\xi) + C(\xi)\}S(X,\xi)$$

Similarly, we have

$$B(Y)S(\xi,\xi) = -\{A(\xi) + C(\xi)\}S(Y,\xi)$$

$$C(V)S(\xi,\xi) = -\{A(\xi) + B(\xi)\}S(V,\xi)$$

40

where $S(\xi,\xi) \neq 0$ on M is given by (2.7) and $S(X,\xi)$ is given by (2.6). Adding above equations by taking X = Y = V and using (3.4), we get

$$A(X) + B(X) + C(X) = 0 (3.5)$$

for any vector field X on M so that A+B+C=0 provided $\alpha^2+\beta^2-\delta(\xi\beta)\neq 0$. Hence we state

Theorem 3.4. If a weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of non vanishing ξ -sectional curvature is locally Ricci φ -symmetric, then the sum of the associated 1-forms A, B and C is zero everywhere.

Corollary 3.5. If a weakly Ricci φ -symmetric δ -Lorentzian β -Kenmotsu manifold M (n > 1) with β non zero constant is locally Ricci φ -symmetric ,then the sum of the associated 1-forms A, B and C is zero everywhere..

Proof. Follows from Theorem 3.4

Corollary 3.6. If a weakly Ricci φ -symmetric δ -Lorentzian α -Sasakian manifold $M \ (n > 1)$ with α non zero constant is locally Ricci φ -symmetric, then the sum of the associated 1-forms A, B and C is zero everywhere..

Proof. Follows from Theorem 3.4

4. Recurrent Spaces

Definition 4.1. A weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) is said to be Ricci φ -recurrent if it satisfies condition

$$\varphi^2(\nabla_X Q)(Y) = A(X)Q(Y),$$

where A is the nonzero associated 1-form and X,Y are any vector fields on M. From this equation, we have

$$g(\varphi^2(\nabla_X Q)(Y), V)) = A(X)S(Y, V),$$

where S is the Ricci tensor of type (0,2) is given by

$$S(Y,V) = g(Q(Y),V)$$

If a weakly Ricco φ -symmetric δ -Lorentzian trans-Sasakian manifold M is Ricci φ -recurrent, then (4.1) holds. From (3.2), we find

$$B(Y)S(X,V) + S(X,Y)C(V) = 0$$
(4.1)

for any vector fields X,Y on M, Next putting $X = Y = V = \xi$ in (4.2) and then using (2.3), we obtain

$$B(\xi) + C(\xi) = 0$$

provided $\alpha^2 + \beta^2 - \delta(\xi\beta) \neq 0$. Further proceeding as in the proof of Theorem3.4, using the fact that $B(\xi) + C(\xi) = 0$, obviously, one finds that

$$B(X) + C(X) = 0$$

for any vector field X on M, so that B+C=0. Hence we state

Theorem 4.2. If a weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of non vanishing ξ -sectional curvature is Ricci φ -recurrent, then the 1-forms B and C are in the opposite directions.

Corollary 4.3. If a weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of type ($\alpha, 0$) with α non zero constant is Ricci φ -recurrent, then both the associated 1-forms B and C are in the opposite directions.

Proof. Follows from Theorem 5.2.

Corollary 4.4. If a weakly Ricci φ -symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of type (0, β) with β non zero constant is Ricci φ -recurrent, then both the associated 1-forms B and C are in the opposite directions.

5. GENERALIZED RECURRENT SPACES

In this section , we study the characterizations of locally symmetric generalized recurrent spaces.Generalised recurrent spaces was introduced by U.C.De and Guha [2].

Definition 5.1. A non flat Riemannian manifold M is said to be the generalised recurrent manifold if its curvature tensor R satisfies the condition

$$(\nabla_X R)(Y, Z)V = A(X)R(Y, Z)V + B(X)\{g(Z, V)Y - g(Y, V)Z\}$$
(5.1)

where A and B are associated 1-forms and X,Y,Z.V are any vector fields on M.

Suppose a generalized recurrent weakly symmetric δ - Lorentzian trans-Sasakian manifold is locally symmetric. Then $\nabla R = 0$ so that from (5.1), we have

$$A(X)R(Y,Z)V + B(X)\{g(Z,V)Y - g(Y,V)Z\} = 0,$$
(5.2)

Now (5.2) can be written as

$$A(X)R(Y,Z,V,U) + B(X)\{g(Z,V)g(Y,U) - g(Y,V)g(Z,U)\} = 0$$
(5.3)

where R(X, Y, V, U) = g(R(X, Y)V, U). Now contracting Y and U,in (5.3), we get

$$A(X)S(Z,V) + 2nB(X)g(Z,V) = 0$$
(5.4)

Next put $Z = V = \xi$ in (5.4), we find

$$(\alpha^2 + \beta^2 - \delta(\xi\beta))A(X) - 2n\delta B(X) = 0$$

for any vector field X so that

$$(\alpha^2 + \beta^2 - \delta(\xi\beta))A - 2n\delta B = 0 \tag{5.5}$$

Theorem 5.2. If a generalized recurrent weakly symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of non vanishing ξ -sectional curvature is locally symmetric ,then the 1-forms A and B are related by (5.5).

Corollary 5.3. If a generalized recurrent weakly symmetric δ -Lorentzian Sasakian manifold M (n > 1) with α non zero constant is locally symmetric, then the relation $A - 2n\delta B = 0$ holds.

Theorem 5.4. If a generalized recurrent weakly symmetric δ -Lorentzian trans-Sasakian manifold M (n > 1) of zero ξ -sectional curvature is locally symmetric if and only if both A and B vanish.

Proof. For a Locally symmetric space, (5.2) holds. If the ξ -sectional curvature vanishes, then from (5.5), B=0. Again from (5.2), it follows that A=0. Second part is obvious from (5.1).

Corollary 5.5. If a generalized recurrent weakly symmetric δ -Lorentzian Sasakian manifold M (n > 1) of zero ξ -sectional curvature is locally symmetric if and only if both A and B vanish.

References

- K.L. Duggal, Space time manifold and contact structures, International. J. of Math. and Mathematical Sciences, 13(3)(1990), 545-554.
- [2] U.C. De and N. Guha, On generalised recurrent manifolds, Proceedings of Math.Soc, 7(1991),7-11.
- [3] A. Gray and L.M. Harvella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pura Appl, 123(4)(1980),35-58.
- [4] J.C. Morrero and D. Chinea, On trans-Sasakian manifolds, Proceedings of the XIV in Spanish -Portugues Conference, Vol.-I-III (Spanish)(Puerto de la Craz, (1989)655-659, Uni.La Laguna,(1990).
- [5] K. Motsumoto, On Lorentzian para contact manifolds, Bull. of the Yamagata Uni, 12(2)(1989),151-156.
- [6] J.A. Oubina, New classes og almost contact metric structure, Publ. Math. Debercen, 32 (1987), 187-193.
- S.S.Pujar and V.J.Khairnar, On Lorentzian trans-Sasakian manifold-I, Int. J. of Ultra Sciences of Physical Sciences, 23(1)(2011),53-66.
- [8] S.S. Pujar and V.J.Khairnar, On weak symmetries of Lorentzian trans-Sasakian manifolds, Acta Ciencia, 38(2) (2012),287-300.
- [9] S.S. Pujar, On δ Lorentzian α Sasakian manifolds, to appear in Antactica J. of Mathematics **8**(2012).
- [10] R. Ralph and Gomez, Lorentzian Sasakian-Einstein metrics on connected sums of S²XS³, Geom.Dedicata, 59(2011),249-255.
- [11] A.A. Shaikh and S. Hui, On weak symmetries of trans-Sasakian manifolds, Proceedings of Estonian Acad. of Sciences, 58(2009), 213-223.
- [12] S.H. Shukla and D.D. Singh, On (ϵ)-trans-sasakian manifolds, Int.J.of math analysis, 4(2010),2401-2414.
- [13] G.T. Srinivas, Venatesh and C.S. Bagewadi, On Lorentzian β Kenmotsu manifolds, *General Mathematics*, **18**(4)(2010),61-69.
- [14] Mine Turan A.Y. and Eftal Acet A,On three dimensional Lorentzian α- Sasakian manifolds, Bulletin of Mathematical Analysis and Applications, ISSN 1821-1291 (2009),90-98.
- [15] L.Tamassy and T.Q.Binha, On weak symmetries of Einstein and Sasakian manifolds, *Tensor N.S.* 53(1993),140-148.
- [16] T.Takahashi, Sasakian manifolds with Pseudo -Riemannian metric, Tohoku Math. J. 21 (1969),271-290.
- [17] M.M. Thripathi, Erole Kilic and S.Y.Perktas, Indefinite almost metric manifolds, Int.J. of Math. and Mathematical Sciences, (2010) Article ID 846195, doi:10.1155/846195.
- [18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, *Tohoku Math.J.* 21 (1969),21-38.
- [19] Ahmed Yildiz, On Lorentzian α Sasakian manifolds, Kyungpock Math. J. 45 (2005), 95-103.

SANDIP FOUNDATION'S SANDIP INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE, MAHIRAVANI-422213, NASHIK, MAHARASHTRA STATE, INDIA

E-mail address: satishbhati1@rediffmail.com