BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 5 Issue 2 (2013), Pages 1-7

FIXED POINT THEOREMS FOR SET-VALUED GENERALIZED ASYMPTOTIC CONTRACTIONS

(COMMUNICATED BY HELGE GLOECKNER)

S. N. MISHRA, RAJENDRA PANT AND S. STOFILE

ABSTRACT. The purpose of this paper is to obtain some coincidence and fixed point theorems for a generalized hybrid pair of single-valued and set-valued non continuous maps. Our results generalize some recent results.

1. INTRODUCTION

Kirk [14] introduced a new class of maps known as *asymptotic contractions* on a metric space and obtained a fixed point theorem (see Definition 1.1 and Theorem 1.2) below.

Definition 1.1. Let (X, d) be a metric space. A self-map T of X is an *asymptotic* contraction on X if

$$d(T^n x, T^n y) \le \varphi_n(d(x, y)) \text{ for } x, y \in X,$$

where φ is a continuous function, from $[0,\infty)$ into itself, $\varphi(t) < t$ for all t > 0and $\{\varphi_n\}$ is a sequence of functions from $[0,\infty)$ into itself such that $\{\varphi_n\} \to \{\varphi\}$ uniformly on the range of d.

Theorem 1.2. Let (X, d) be a complete metric space and T an asymptotic contraction on X with $\{\varphi_n\}$ and φ as in Definition 1.1. Assume that there exists $x \in X$ such that the orbit $\{T^n x : n \in \mathbb{N}\}$ of x is bounded, and that φ_n is continuous for $n \in \mathbb{N}$. Then there exists a unique fixed point $z \in X$. Moreover $\lim_n T^n x = z$ for all $x \in X$.

Remark 1.3. We remark that:

- Theorem 1.2 is an asymptotic version of Boyd and Wong contraction [4] (see [12]).
- (2) Jachymski and Jóźwic [12] showed that the continuity of the map T is essential for the conclusion of Theorem 1.2 to hold.
- (3) In respect of Definition 1.1, it has been observed (cf. [1, 12, 21–23]) that $\varphi(0) = 0$.

⁰2000 Mathematics Subject Classification: 54H25.

Keywords and phrases. Coincidence point; fixed point; asymptotic contraction.

^{© 2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted April 18, 2012. Published October 30, 2012.

(4) For the equivalent formulation of Theorem 1.2 in topological spaces with the so called TCS-convergence, we refer to Tasković [24, 25].

Subsequently many extensions and generalizations of Theorem 1.2 appeared (see, for instance, [1–3, 5–13, 16, 18–23, 26, 27]). Underlying the power and importance of this new class of maps, Briseid [5, 7] has observed that a continuous self-map of a compact metric space satisfying any one of the first 50 contractive conditions listed by Rhoades [17] is an asymptotic contraction.

Recently, Fakhar [10] and Wlodarczyk *et al.* [26, 27] extended Kirk's asymptotic contraction to set-valued maps and obtained some endpoint theorems for such contractions. In [26, 27] some applications of the theory of asymptotic contractions to the analysis of set-valued dynamical systems are also discussed. On the other hand, a generalization of the well known Banach contraction principle due to Meir-Keeler [15] has been of continuing interest in fixed point theory. Recently Suzuki [21] combined the ideas of Meir-Keeler contraction and Kirk's asymptotic contraction and introduced the following notion of *asymptotic contraction of Meir-Keeler type*.

Definition 1.4. Let (X, d) be a metric space. A self-map T of X is called an *asymptotic contraction of Meir-Keeler type* if there exists a sequence φ_n of functions from $[0, \infty)$ into itself satisfying the following conditions:

- (S1): $\limsup \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$;
- **(S2):** for each $\varepsilon > 0$, there exists $\delta > 0$ and $\nu \in \mathbb{N}$ such that $\varphi_{\nu}(t) \leq \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$;
- (S3): $d(T^n x, T^n y) < \varphi_n(d(x, y))$, for all $n \in \mathbb{N}$ and $x, y \in X$ with $x \neq y$.

In this paper first we introduce the notion of *set-valued generalized asymptotic* contraction of Meir-Keeler type, which includes the known notions of asymptotic contractions due to Kirk [14], Suzuki [21] and Fakhar [10] (see Example 2.7 for illustration). Subsequently, this notion is utilized to obtain some coincidence and fixed point theorems for such contractions which generalize, and unify several known results including [10], [26] and others.

2. Generalized asymptotic contractions

Throughout this section, Y denotes an arbitrary nonempty set, (X, d) a metric space, CB(X) the collection of all nonempty closed bounded subsets of X, φ_n as in Definition 1.4 and H the Hausdorff metric induced by d, i.e.,

$$H(A,B) = \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\right\},\$$

for all $A, B \subseteq CB(X)$, where $d(x, B) = \inf_{y \in B} d(x, y)$.

We denote by $\delta(A) = \sup\{d(x, y) : x, y \in A\}.$

Further, let

$$\begin{split} m(x,y) : &= \max \left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} [d(x,Ty) + d(y,Tx)] \right\}; \\ M(x,y) : &= \max \left\{ d(fx,fy), d(fx,Tx), d(fy,Ty), \frac{1}{2} [d(fx,Ty) + d(fy,Tx)] \right\}. \end{split}$$

Now, we introduce the notion of *set-valued generalized asymptotic contraction of Meir-Keeler type* as follows. FIXED POINT THEOREMS FOR SET-VALUED GENERALIZED ASYMPTOTIC CONTRACTIONS

Definition 2.1. Let (X, d) be a metric space $f : Y \to X$ and $T : Y \to CB(X)$. The map T will be called a generalized asymptotic contraction of Meir-Keeler type with respect to f if the following hold:

- (G1): $\limsup_{n} \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$;
- (G2): for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\varphi_k(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$ and $k \in \mathbb{N}$;
- (G3): $H(T^nx, T^ny) < \varphi_n(M(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in Y$ with M(x, y) > 0.

As a special case of the above definition, we have the following:

Definition 2.2. Let (X, d) be a metric space and $T : X \to CB(X)$. The map T will be called a generalized asymptotic contraction of Meir-Keeler type if the following hold:

- $\limsup_{n} \varphi_n(\varepsilon) \leq \varepsilon$ for all $\varepsilon \geq 0$;
- for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\varphi_k(t) < \varepsilon$ for all $t \in [\varepsilon, \varepsilon + \delta]$ and $k \in \mathbb{N}$;
- $H(T^nx, T^ny) < \varphi_n(m(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with m(x, y) > 0.

The following theorem is our main result.

Theorem 2.3. Let (X, d) be a metric space, $f : Y \to X$ and $T : Y \to CB(X)$ such that $TY \subseteq fY$. Let T be a generalized asymptotic contraction of Meir-Keeler type with respect to f.

If T(Y) or f(Y) is a complete subspace of X then T and f have a coincidence point.

Further, if Y = X, then T and f have a common fixed point provided that ffu = fu and T and f commute at a coincidence point.

Proof. Pick $x_0 \in Y$. We construct a sequence $\{x_n\}$ in the following manner. Since $TY \subseteq fY$, we may choose a point $x_1 \in Y$ such that $fx_1 \in Tx_0$. If $Tx_0 = Tx_1$ then $x_1 = z$ is a coincidence point of T and f and we are done. So assume that $Tx_0 \neq Tx_1$ and choose $x_2 \in Y$ such that $fx_2 \in Tx_1$ and

$$d(fx_1, fx_2) \le H(Tx_0, Tx_1)$$

If $Tx_1 = Tx_2$, i.e., x_2 is a coincidence point of T and f, we are done. If not continuing in the same manner we have

$$d(fx_{n+1}, fx_{n+2}) \le H(Tx_n, Tx_{n+1}).$$

By (G3),

$$d(fx_n, fx_{n+1}) \le H(Tx_{n-1}, Tx_n) < \varphi_n(M(x_0, x_1)).$$

First we show that

$$\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0. \tag{1}$$

It initially holds if $x_1 = x_2$. In the other case of $x_1 \neq x_2$, we assume that

$$\alpha := \limsup d(fx_{n+1}, fx_{n+2}) > 0.$$

From the condition (G2), we can choose $k \in \mathbb{N}$ satisfying $\varphi_k(d(fx_1, fx_2)) < d(fx_1, fx_2)$. By (G3) and (G1),

$$d(fx_{k+1}, fx_{k+2}) \le H(Tx_k, Tx_{k+1}) < \varphi_k(M(x_0, x_1)) < M(x_1, x_2).$$
(2)

Now, we have

$$\begin{aligned} \alpha : &= \lim_{n \to \infty} \sup d(fx_{k+n+1}, fx_{k+n+2}) \le \lim_{n \to \infty} \sup H(Tx_{k+n}, Tx_{k+n+1}) \\ &\le \lim_{n \to \infty} \sup \varphi_n(M(x_k, x_{k+1})) \le M(x_k, x_{k+1}) \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_k, Tx_k), d(fx_{k+1}, Tx_{k+1}), \\ &\frac{1}{2}[d(fx_k, Tx_{k+1}) + d(fx_{k+1}, Tx_k)\} \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2}), \\ &\frac{1}{2}[d(Tx_k, Tx_{k+2}) + 0)\} \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2})\} \\ &= \max\{d(fx_k, fx_{k+1}) + d(fx_{k+1}, fx_{k+2})\} \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2})\}. \end{aligned}$$

If

$$\max\{d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2})\} = d(fx_{k+1}, fx_{k+2})$$

then

$$\begin{aligned} d(fx_{k+1}, fx_{k+2}) &\leq H(Tx_k, Tx_{k+1}) \\ &< \varphi_1(M(x_k, x_{k+1})) < M(x_k, x_{k+1}) \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_k, Tx_{k+1}), d(fx_{k+1}, Tx_{k+1}), \\ &\frac{1}{2}[d(fx_k, Tx_{k+1}) + d(fx_{k+1}, Tx_k)]\} \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2}), \\ &\frac{1}{2}[d(fx_k, fx_{k+1}) + 0]\} \\ &= \max\{d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2})\} \\ &= d(fx_{k+1}, fx_{k+2}), \end{aligned}$$

a contradiction. Therefore

$$\max\{d(fx_k, fx_{k+1}), d(fx_{k+1}, fx_{k+2})\} = d(fx_k, fx_{k+1})$$

and we conclude that $M(x_k, x_{k+1}) = d(fx_k, fx_{k+1})$. By (2),

$$\begin{aligned} d(fx_{k+2}, fx_{k+3}) &\leq H(Tx_{k+1}, Tx_{k+2}) \\ &< \varphi_k(M(x_1, x_2)) < M(x_1, x_2) \\ &= \max\{d(fx_1, fx_2), d(fx_1, Tx_2), d(fx_1, Tx_2), \\ &\quad \frac{1}{2}[d(fx_1, Tx_2) + d(fx_1, Tx_2)]\} \\ &= d(fx_1, fx_2). \end{aligned}$$

So $\alpha < d(fx_1, fx_2)$. By a similar argument, we obtain $\alpha < d(fx_{k+1}, fx_{k+2})$ for all $k \in \mathbb{N}$. Hence $\{d(fx_n, fx_{n+1}\}$ converges to α . Since $0 < \alpha < d(fx_1, fx_2) < \infty$, there exists $\delta_2 > 0$ and $l \in \mathbb{N}$ such that

$$\varphi_l(t) \leq \alpha \text{ for all } t \in [\alpha, \alpha + \delta_2].$$

4

We choose $p \in \mathbb{N}$ with $d(fx_{p+1}, fx_{p+2}) < \alpha + \delta_2$. Then we have

 $d(fx_{l+p+1}, fx_{l+p+2}) \le H(Tx_{l+p}, Tx_{l+p+1}) < \varphi_l d(fx_p, fx_{p+1}) \le \alpha,$

a contradiction. This proves that $\lim_{n\to\infty} d(fx_n, fx_{n+1}) = 0$. Now following the proof of Theorem 3.1 [20], it can be easily shown that $\{fx_n\}$ is a Cauchy sequence.

Suppose f(Y) is complete. Then $\{fx_n\}$ being contained in f(Y) has a limit in f(Y). Call it z. Let $u \in f^{-1}z$. Then fu = z. Using (G2),

$$\begin{aligned} d(fu, Tu) &\leq H(Tx_n, Tu) < \varphi_1(M(u, x_n)) \\ &= \varphi_1(\max\{d(fu, fx_n), d(fu, Tu), d(fx_n, Tx_n), \\ &\frac{1}{2}[d(fu, Tx_n) + d(fx_n, Tu)]\}). \end{aligned}$$

Making $n \to \infty$, $d(fu, Tu) \le \varphi_1(d(fu, Tu)) < d(fu, Tu)$. This yields $fu \in Tu$.

Further, if Y = X, ffu = fu, and the maps f and T commute at their coincidence point u then $fu \in fTu \subseteq Tfu$ and fu is a common fixed point of f and T.

In case TY is a complete subspace of X, the condition $TY \subseteq fY$ implies that the sequence $\{fx_n\}$ converges in fY and the previous argument works. \Box

Remark 2.4. We remark that a set-valued asymptotic contraction of Meir-Keeler type is the set-valued generalized contraction of Meir-Keeler type when m(x, y) = d(x, y). Further it includes the set-valued asymptotic contraction given in [10] and [26].

Now in the view of Definition 2.2 and the above remark we have the following corollaries.

Corollary 2.5. Let (X,d) be a complete metric space and $T : X \to CB(X)$ a generalized asymptotic contraction of Meir-Keeler type. Then T has a fixed point in X.

Corollary 2.6. Let (X, d) be a complete metric space and $T : X \to CB(X)$ an asymptotic contraction of Meir-Keeler type. Then T has a fixed point in X.

The following example shows the generality of Theorem 2.3 over [26, Th. 2.1] and [10, Th. 2.3].

Example 2.7. Let $Y = (-\infty, \infty)$ and $X = [0, \infty)$ endowed with the usual metric d. Let $f: Y \to X$ and $T: Y \to CB(X)$ be defined by

$$fx = \begin{cases} -2x & \text{if } x < 0, \\ 2x & \text{if } x \ge 0 \end{cases} \text{ and } Tx = \begin{cases} \{-x\} & \text{if } x < 0, \\ [0,x] & \text{if } 0 \le x \le 1, \\ \{x\} & \text{if } x > 1 \end{cases}$$

for all $x \in Y$. Let $\varphi_n(t) = \frac{3}{4}t$ for t > 0.

Then for x > 1 and y > 1,

$$H(T^{n}x, T^{n}y) = |x - y| > \frac{3}{4} |x - y| = \varphi_{n}(d(x, y)),$$

and the contractive condition of Theorem 2.3 [10] is not satisfied.

Further, $\delta(T^n([0,1])) = \delta([0,1])$ and condition (d) of Theorem 2.1 [26] is not satisfied. It can be verified that the maps f and T satisfy all the hypotheses of Theorem

2.3. Notice that $TY \subseteq fY$ and f and T commute at 0. Hence $f0 \in T0$ is a common fixed point of f and T.

References

- Arandelović, I. D., On a fixed point theorem of Kirk, J. Math. Anal. Appl. 301(2005), 384-385.
- [2] Arandelović, I. D., Note on asymptotic contractions, App. Anal. Disc. Math. 1(2007), 211-216.
- [3] Arav, M., Santos, F. E. Castillo, Reich, S. and Zaslavski, A. J., A note on asymptotic contractions, Fixed Point Theory Appl. 2007, Article ID 39465, 6 pp.
- [4] Boyd, D. W. and Wong, J. S. W., On nonlinear contractions, Proc. Amer. Math. Soc. 20(1969), 458-464.
- [5] Briseid, E. M., A rate of convergence for asymptotic contractions. Journal of Mathematical Analysis and Applications, 330(2007), 364-376.
- [6] Briseid, E. M., Some results on Kirk's asymptotic contractions Fixed Point Theory 8(2007), 17-27.
- [7] Briseid, E. M., Fixed points of generalized contractive mappings, J. Nonlinear Convex Anal. 9(2008), 181-204.
- [8] Briseid, E. M., A new uniformity for asymptotic contractions in the sense of Kirk, Int. J. Math. Stat. 6(2010), 2-13.
- [9] Chen, Y. -Z., Asymptotic fixed points for nonlinear contractions, Fixed Point Theory and Applications, 2(2005), 213-217.
- [10] Fakhar, M., Endpoints of set-valued asymptotic contractions in metric spaces, Appl. Math. Lett. 24(2011) 428431.
- [11] Gerhardy, P., A quantitative version of Kirks fixed point theorem for asymptotic contractions, J. Math. Anal. Appl. 316(2006), 339-345.
- [12] Jachymski, J. R. and Jóźwic, I., On Kirk's asymptotic contractions, J. Math. Anal. Appl. **300** (2004), 147-159.
- [13] Jachymski, J. R., A note on a paper of I. D. Arandelović on asymptotic contractions, J. Math. Anal. Appl. 358(2009), 491-492.
- [14] Kirk, W. A., Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277(2003), 645-650.
- [15] Meir, A. and Keeler, E., A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
- [16] Reich, S. and Zaslavski, A. J., A convergence theorem for asymptotic contractions, J. Fixed Point Theory Appl. 4(2008), 27-33.
- [17] Rhoades, B. E., A comparison of various definitions of contracting mappings, Trans. Amer. Math. Soc. 226(1977), 257-290.
- [18] Sastry, K. P. R., Babu, G. V. R., Ismail, S. and Balaiah, M., A fixed point theorem on asymptotic contractions, Mathematical Communications 12(2007), 191-194.
- [19] Singh, S. L., and Rajendra Pant, Remarks on some recent fixed point theorems, C. R. Math. Rep. Acad. Sci. Canada Vol. **30** (2)(2008), 56-63.
- [20] Singh, S. L., Mishra, S. N. and Rajendra Pant, Fixed points of generalized asymptotic contractions, Fixed point Theory 12(2)(2011), 475-484.
- [21] Suzuki, T., Fixed-point theorem for asymptotic contractions of Meir- Keeler type in complete metric spaces, Nonlinear Anal. 64(2006), 971-978.

FIXED POINT THEOREMS FOR SET-VALUED GENERALIZED ASYMPTOTIC CONTRACTIONS

- [22] Suzuki, T., A definitive result on asymptotic contractions, J. Math. Anal. Appl. 335(2007) 707-715.
- [23] Suzuki, T., Fixed point theorems for more generalized contractions in complete metric space, Demons. Math. 1(2007), 219-227.
- [24] Tasković, M. R., Fundamental elements of the fixed point theory, Mat. Biblioteka 50 (Beograd), English sumary 268-271, Zavod za udžbenik nastavna sredstva-Beograd, in Serbian, 50(1986), 274 pages.
- [25] Tasković, M. R., On Kirk's fixed point main theorem for asymptotic contractions, Mathematica Moravica 11(2007), 45-49.
- [26] Wlodarczyk, K., Klim, D. and Plebaniak, R., Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl. **328**(2007), 4657.
- [27] Wlodarczyk, K., Plebaniak, R. and Cezary Obczyński, Endpoints set-valued dynamical systems of asymptotic contractions of Meir-Keeler type and strict contractions in uniform spaces, Nonlinear Anal. 67(2007), 3373-3383.

S. N. MISHRA AND S. STOFILE Department of Mathematics, Walter Sisulu University Nelson Mandela Drive, Mthatha 5117 South Africa

E-mail address: smishra@wsu.ac.za E-mail address: sstofile@wsu.ac.za

RAJENDRA PANT Department of Mathematics, Visvesvaraya National Institute of Technology Nagpur 440010, Maharashtra, India.

E-mail address: pant.rajendra@gmail.com