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ALGEBRABILITY OF SPACE OF QUASI-EVERYWHERE

SURJECTIVE FUNCTIONS

(COMMUNICATED BY D. KALAJ)

ALI FAROKHINIA

Abstract. Existence of an infinitely generated algebra in a certain set, is
called algebrability. In this paper we will show that the space of quasi-

everywhere surjective functions is algebrable.

1. Introduction

The main theorem of this paper concerns the existence of an infinitely gen-
erated algebra in the space of quasi-everywhere surjective functions that are not
everywhere surjective. This is a contribution to a very new area of research in
mathematical analysis, that is to search for large algebraic structures (linear spaces
or algebras) in the space of functions that are enjoying a special property. It has
become a usual notation to call a subset M of a topological vector space X, µ-
lineable (respectively, µ-spaceable) if M ∪{0} contains a vector space (respectively,
closed vector space) of dimension µ. If M contains an infinite-dimensional (closed)
vector space, then M will be shortly called lineable (spaceable).

The origin of lineability and spaceability is due to Gurariy ([20, 21]) that showed
that there exists an infinite dimensional linear space such that every non-zero el-
ement of which is a continuous nowhere differentiable function on C[0; 1]. Many
examples of vector spaces of functions on R or C enjoying certain special properties
have been constructed in the recent years. More recently, many authors got inter-
ested in this subject and gave a wide range of examples. For instance, in [4] it was
shown that the set of everywhere surjective functions in R is 2c-lineable (where c
denotes the cardinality of R) and that the set of differentiable functions on R which
are nowhere monotone is lineable in C(R). These behaviors occur, sometimes, in
particularly interesting ways. For example, in [22], Hencl showed that any separa-
ble Banach space is isometrically isomorphic to a subspace of C[0; 1] whose non-zero
elements are nowhere approximately differentiable and nowhere Holder. We refer
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the interested reader to [2, 3, 7, 8, 9, 11, 12, 13, 14, 16, 18, 19] for a wider range of
results in lineability and spaceability.

Of course, one could go further and not just consider linear spaces but, instead,
larger or more complex structures. For instance, in [1] the authors showed that there
exists an uncountably generated algebra, that every non-zero element of which is
an everywhere surjective function on C, and in [5] it was shown that, if E ⊂ T,
the unit circle, is a set of measure zero, and if F(T) denotes the subset of C(T)
of continuous functions whose Fourier series expansion diverges at every point of
E, then F(T) contains an infinitely generated and dense subalgebra. One of the
newest result in this area ([8]) proves the existence of uncountably generated alge-
bras inside the following sets of special functions: Sierpinski-Zygmund functions,
perfectly everywhere surjective functions, and nowhere continuous Darboux func-
tions. That a space contains an infinitely generated algebra is called algebrability.
It is clear that algebrability implies lineability but studying the algebrability of a
space is sometimes far harder than lineability.

The notation of everywhere surjective functions that was mentioned before was
first introduced by Lebesgue ([23]) in 1904 by showing the existence of a function
f : R→ R with the property that

f((a, b)) = R,

for every non-trivial interval (a, b). Space of everywhere surjective functions on
R will be denoted by ES in this paper. These sort of functions was not taken in
to account until recently that Aron and Seoane-Sepulveda [6] has investigated the
algebraic structure contained in the space of these functions. This trend of research
was continued in [17] that they defined perfectly everywhere surjective and strongly
everywhere surjective functions and showed some pathological properties of space
of such functions. The author proved the existence of infinite dimensional vector
space in the space quasi-everywhere surjective functions that are not everywhere
surjective([15]).

Our main concept in this paper is to expand the theory of everywhere surjective
functions by defining quasi-everywhere surjective functions and investigating the
pathological properties of those spaces.

2. Quasi-everywhere surjective functions

This section is devoted to defining quasi-everywhere surjective functions and
studying their pathological properties.

Definition 2.1. Let X and Y be two topological vector spaces. A function f : X →
Y is called quasi-everywhere surjective if f(U) is dense in Y for every open subset
U of X. We will show the collection of all quasi-everywhere surjective functions by
QES(X,Y ) and if X = Y , it will be shown by QES(X).

Here we provide the reader with an example of a quasi-everywhere surjective
function f : C→ C that is not everywhere surjective.

Example 2.2. A functions f : C → C that is quasi-everywhere surjective but not
everywhere surjective.
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To construct this function let {Qj , j = 1, 2, . . .} be the collection of all open
rectangles in R2 whose vertexes have rational components, i. e.

Qj = {x+ iy, aj < x < bj , cj < y < dj}

where aj , bj , cj , dj are rational numbers for all j = 1, 2, . . .. We construct a collec-
tion {Cj} of uncountable nowhere dense subsets of R with the following properties.

• Cj ⊂ (aj , bj);

• Cj+1 ∩
(
∪jn=1Cn

)
= ∅.

To construct this collection, let C1 ⊂ (a1, b1) be any uncountable nowhere dense

subset and assume that C2, . . . , Cj have been constructed. Since ∪jn=1Cj is nowhere

dense, we can take Cj+1 ⊂ (aj+1, bj+1)\
(
∪jn=1Cj

)
to be uncoutable and nowhere

dense set. This completes the construction of the collection {Cj}.
Now let hj be a bijection between (cj , dj) and C\

(
∪∞j=1Cj

)
, and Φj be a bijection

between [0, 1] and Cj. Let α ∈ [0, 1] be fixed and define fα : C→ C as follow.

fα(z) =

{
hj(Im z) if Re z = Φj(α) and Im z ∈ (cj , dj) for some j ∈ N,
1 otherwise.

We claim that fα ∈ QES(C)\ES(C). To prove the claim, let U be an open subset
of plane. Qj ⊂ U for some j ∈ N. Ran(fα|Qj ) = C\

(
∪∞j=1Cj

)
. This shows that

fα ∈ QES(C)\ES(C).

Note 2.3. We have used the fact that if X is a nowhere dense subset of R then its
complement is uncountable. This can be easily proved by Bair’s theorem.

The following lemma help us creating an infinitely generated algebra contained
in the space of all quasi-everywhere surjective functions that are not everywhere
surjective.

Lemma 2.4. If α1, α2 ∈ [0, 1] with α1 6= α2, then fα1
fα2
∈ QES(C)\ES(C).

Proof. Let U be an open subset of plane. Qj ⊂ U for some j ∈ N. We claim that
for each z ∈ C, fα1

(z) = 1 or fα2
(z) = 1. Let fα1

(z) 6= 1. By the definition of fα1
,

there exists j1 ∈ N such that Im z ∈ (cj1 , dj1) and Re z = Φj1(α1). This shows that
Re z ∈ Cj1 . Now by contradiction, let fα2(z) 6= 1 then there there exists j2 ∈ N
such that Im z ∈ (cj2 , dj2) and Re z = Φj2(α2). This shows that Re z ∈ Cj2 . Since
{Cj} are mutually disjoint, so j1 = j2. Let j = j1 = j2. But Φj is a bijection
between [0, 1] and Cj . Since Re z = Φj(α1) = Φj(α2), so α1 = α2, that is a
contradiction to the hypothesis. Therefore Ran(fα1

fα2
|Qj

) = {fα1
(z)fα2

(z), z ∈
Qj} = C\

(
∪∞j=1Cj

)
. �

Theorem 2.5. QES(C)\ES(C) is c-algebrable.

Proof. Fix α0 ∈ [0, 1] and assume that A is the algebra generated by {fα0fα : α0 6=
α, α ∈ [0, 1]}. For each f in A, we have that

f = P (fα0
fα1

, . . . , fα0
fαn

),
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for some n ∈ N, where P ∈ C[z1, . . . , zn] (the set of polynomials in C of n
variables) with P (0) = 0. In order to show that f ∈ QES(C)\ES(C), define
q(z) := P (z, . . . , z). Two cases can be occurred.

Case 1: q(z) is non-constant. Let ε > 0 and z ∈ C are given. There exists
w ∈ C such that q(w) = z. For every non empty open set U of C, there exists j ∈ N
such that Qj ⊂ U . By continuity of q and the properties of hj ,

|q(hj(t))− q(w)| < ε,

for some t ∈ (cj , dj). Put

w′ = Φj(α0) + it.

It is clear that w′ ∈ U and fα0
(w′) = hj(t) and fα(w′) = 1 for all α ∈ [0, 1] that

α 6= α0. Therefore

f(w′) = P (fα0
fα1

, . . . , fα0
fαn

)(w′) = P (hj(t), . . . , hj(t)) = q(hj(t)).

Thus

|f(w′)− z| < ε.

This completes the proof of case one.
Case2: q is constant. Proof of this part is from [1]. For the sake of completeness,

we adapt the proof and take it here.
This implies that q = 0. For each k = 1, . . . , n, we can decompose P as zkpk+qk,

where pk ∈ C[z1, . . . , zn], and qk is a (n− 1)-variable polynomial depending on zj ,
j 6= k. If we fix all variables in P and pk as 1, except the k-th variable , equal to
z, we obtain polynomials rk(z) and sk(z) respectively. Easily, rk(z) is constant if
and only if sk(z) = 0. If for some k the corresponding rk(z) is non-constant, we
proceed as in case 1, with rk(z) and αk, to get that, given arbitrary z ∈ C and
U ⊂ C open and ε > 0, there are z̃ ∈ C and z′ ∈ U with |rk(z̃) − z| < ε and
fαk

(z′) = z̃. Therefore |f(z′)− z| = |rk(z̃)− z| < ε and this shows that f ∈ QES.
If this is not the case, then sk(z) = 0, k = 1, . . . , n. We will show that this yields a
contradiction. Indeed, given z ∈ C, we either have fαk

(z) = 1, k = 1, . . . , n, which
implies f(z) = q(fα0

(z)) = 0, or there is some j so that z′ := fαj
(z) 6= 1. Thus

fαk
(z) = 1 for k 6= j and

f(z) = rj(z
′) = z′Sj(z

′) + qj(1, . . . , 1) = qj(1, . . . , 1)

= sj(1) + qj(1, . . . , 1) = rj(1) = q(1) = 0.

That is, f = 0, which is a contradiction. This completes the proof of case two.
To show that A is uncountably generated, we just have to show that fα0fα 6=

P (fα0
fα1, . . . , fα0

fαn) for any n ∈ N, where P ∈ C[z1, . . . , zn], if α 6= αk, k =
1, . . . , n.

If this is not the case then there exists z ∈ C such that fα(z) /∈ {1, q(1)}. This
shows that Re(z) = Φj(α) for some j ∈ N. Thus Re(z) 6= Φm(αi), i = 0, 1, . . . , n
and m ∈ N, which gives that fαi(z) = 1, i = 0, 1, . . . , n. That is

fα(z) = fα0(z)fα(z) 6= P (1, . . . , 1) = P (fα0fα1, . . . , fα0fαn)(z)

�



42 A. FAROKHINIA

Note 2.6. One can continue this trend of research by finding the maximum cardi-
nal number µ that QES\ES is µ-algebrable. A new concept of strong and densely
algebrability was recently expanded in [10]. The other question that can be asked
here is that is QES\ES strongly of densely algebrable?
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