BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 6 Issue 3(2014), Pages 44-49.

MAPS PRESERVING THE CLOSEDNESS OF OPERATOR RANGES ON A HILBERT H^* -MODULE

(COMMUNICATED BY M.MOSLEHIAN)

ESMAEIL ANSARI-PIRI, REZA SANATI

ABSTRACT. Let E be a Hilbert H^* -module over an H^* -algebra A, and $\mathcal{B}_A(E)$ be the C^* -algebra of all bounded A-linear operators on E. In this paper, we show that the set of all semi A-Fredholm operators on E equals to the set of all regular operators on E and we apply this fact to show that if the linear map φ on $\mathcal{B}_A(E)$ is surjective up to compact operators and preserves closedness of operator ranges in both directions, then φ preserves semi A-Fredholm operators in both directions.

1. INTRODUCTION

An H^* -algebra is a complex associative Banach algebra A with involution, whose underlying space is a Hilbert space (A, \langle, \rangle) which has an involution $a \to a^*$ such that $\langle ab, c \rangle = \langle b, a^*c \rangle = \langle a, cb^* \rangle$ for all $a, b, c \in A$. The trace-class in H^* -algebra Ais defined as the set $\tau(A) = \{ab : a, b \in A\}$. There is a continuous linear form tron $\tau(A)$ which is defined by $tr(ab) = \langle a, b^* \rangle$ for all $a, b \in A$.

An H^* -algebra whose annihilator is zero is called proper H^* -algebra. A Hilbert H^* -module is a left module E over a proper H^* -algebra A provided with a mapping $[.,.]: E \times E \to \tau(A)$ which satisfies the following conditions:

 $\begin{array}{ll} i. & [\alpha x,y] = \alpha [x,y] & \forall \alpha \in \mathbb{C}, \forall x,y \in E, \\ ii. & [x+y,z] = [x,z] + [y,z] & \forall x,y,z \in E, \\ iii. & [ax,y] = a [x,y] & \forall a \in A, \forall x,y \in E, \\ iv. & [x,y] = [y,x]^* & \forall x,y \in E, \\ \end{array}$

v. for every nonzero $x \in E$ there is a nonzero $a \in A$ such that $[x, x] = aa^*$,

vi. E is a Hilbert space with the inner product (x, y) = tr([x, y]).

For more details about H^* -algebras and Hilbert H^* -modules, see [4, 5, 8]. Let E be a Hilbert H^* -module over an H^* -algebra A. An operator $T : E \to E$ is called A-linear, if it is linear and for each $a \in A$ and $x \in E$, T(ax) = aT(x). The set of all bounded A-linear operators on E is denoted by $\mathcal{B}_A(E)$. It is well known ([8]) that each $T \in \mathcal{B}_A(E)$ has an adjoint $T^* \in \mathcal{B}_A(E)$ in the sense that $[Tx, y] = [x, T^*y]$ for all $x, y \in E$. Note that $\mathcal{B}_A(E)$ is a C^* -algebra contained in the algebra of all

²⁰¹⁰ Mathematics Subject Classification. 47B05, 46L08.

Key words and phrases. Hilbert H^* -module, Preserving maps, The closedness of operator ranges.

^{©2014} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted Jun 19, 2014. Published August 12, 2014.

bounded linear operators on E which is denoted by B(E). For each $x, y \in E$, we define the elementary operators $\theta_{x,y}$ by $\theta_{x,y}(z) = [z, y]x$ $(z \in E)$. Here, by a finite rank operator we mean an operator T which is a linear combination of the elementary operators and by $\mathcal{F}_A(E)$ we mean the set of all finite rank operators. In fact, the image of such a finite rank operator on E is a finitely generated submodule of E. The closed linear span of the set $\{\theta_{x,y} : x, y \in E\}$ is denoted by $\mathcal{K}_A(E)$ and its elements are called compact operators.

Unlike Hilbert C^* -modules, it is well known that every Hilbert H^* -module has an orthonormal basis and all orthonormal bases in a Hilbert H^* -module have the same cardinal number [5; Corollary 1.10, Proposition 1.11]. The same cardinal number of all orthonormal bases for a Hilbert H^* -module over an H^* -algebra A is denoted by $\dim_A(E)$. Let e be a minimal projection in A in the sense that $eAe = \mathbb{C}e$. Then the set $E_e = \{ex : x \in E\}$ is a closed subspace of the Hilbert space (E, (., .)) and also E_e generates a dense submodule in E [4; Lemma 2.7]. Moreover, if A is a simple H^* -algebra (that is, an H^* -algebra without nonterivial closed two-sided ideal), we have the following theorem:

Theorem 1.1. Let E be a Hilbert H^* -module over a simple H^* -algebra A and e be a minimal projection in A. Then

i.
$$dim_A(E) = dim(E_e);$$

ii. the map $\psi : \mathcal{B}_A(E) \to B(E_e), \ \psi(T) = T|_{E_e}$ is an isomorphism between C^* -algebras.

Proof. See [4; Corollary 2.9, Theorem 2.10].

Let $\mathcal{C}_A(E)$ be the quotient algebra $\mathcal{B}_A(E)/\mathcal{K}_A(E)$ and $\pi : \mathcal{B}_A(E) \to \mathcal{C}_A(E)$ be the canonical quotient map. An operator $T \in \mathcal{B}_A(E)$ is called A-Fredholm (resp. semi A-Fredholm) if and only if $\pi(T)$ is invertible (resp. right or left invertible). The set of all A-Fredholm operators (resp. semi A-Fredholm operators) is denoted by $\mathcal{FR}_A(E)$ (resp. $\mathcal{SF}_A(E)$).

In [4], D. Bakić and B. Guljaš apply Theorem 1.1 and show that $T \in \mathcal{B}_A(E)$ is *A*-Fredholm (resp. semi *A*-Fredholm) if and only if the range of *T* is closed and both $dim_A Ker(T)$ and $dim_A Ker(T^*)$ are finite (resp. $dim_A Ker(T)$ or $dim_A Ker(T^*)$ is finite). However, in the case that *W* is a Hilbert *C**-module over a *C**-algebra *B*, even it is not necessary that the range of every *B*-Fredholm operator is closed [1; Example 2.2]. Although the Hilbert *C**-modules are the extensions of Hilbert spaces, there are many differences between these two categories. Let B(H) be the set of all bounded linear operators on a Hilbert space *H*. If G(H) denotes the set of all operators on *H* with closed range, then Lemma 3.1. of [6] shows that R(H) = SF(H) where,

$$R(H) = \{T \in B(H) | \forall A \notin G(H), \exists \lambda \in \mathbb{C} \text{ such that } A + \lambda T \in G(H) \setminus \{0\} \}.$$

But the similar conclusion is not necessarily valid, if we replace the Hilbert space H by the Hilbert C^* -module W over a C^* -algebra B [1; Example 2.2]. T. Aghasizadeh and H. Hejazian show that if $W = \mathcal{H}_B$ (standard Hilbert module over the C^* -algebra B), then the self-adjoint part of R(W) is contained in SF(W) [1; Proposition 2.5].

An important consequence of this note is that if W is a Hilbert C^* -module over the C^* - algebra of all compact operators on a Hilbert space, then SF(W) = R(W).

Now let E be a Hilbert H^* -module over an H^* -algebra A. An operator $T \in \mathcal{B}_A(E)$ is called generalized invertible, if there is an operator $R \in \mathcal{B}_A(E)$ such that

TRT = T. We denote the set of all generalized invertible operators on E by $\mathcal{G}_A(E)$. The set of regular operators on E is denoted by $\mathcal{R}(E)$ and define as follows:

 $\mathcal{R}(E) = \{ T \in \mathcal{B}_A(E) | \forall A \notin \mathcal{G}_A(E), \exists \lambda \in \mathbb{C} \text{ such that } A + \lambda T \in \mathcal{G}_A(E) \setminus \{0\} \}.$

In this paper, first we show that $\mathcal{R}(E) = \mathcal{SF}_A(E)$ and we apply this equality to study a certain class of maps on $\mathcal{B}_A(E)$. For example, we show that if $\varphi : \mathcal{B}_A(E) \to \mathcal{B}_A(E)$ is a surjective map up to finite rank operators and φ preserves the closedness of operator ranges in both directions, then φ preserves semi *A*-Fredholm operators in both directions. Recall that we say φ preserves the property p in both directions, whenever $\varphi(T)$ has the property p if and only if T has this property.

2. Semi A-Fredholm operators on a Hilbert H^* -module

Throughout this section A denotes a simple H^* -algebra, e is a minimal projection in A, ψ denotes the isomorphism given in Theorem 1.1, and $G(E_e)$ is the set of all generalized invertible operators on the Hilbert space E_e .

Lemma 2.1. Let $T \in \mathcal{B}_A(E)$. The range of $\psi(T)$ is closed if and only if the range of T is closed.

Proof. Since $Im(\psi(T)) = eIm(T)$, it is clear that the closedness of Im(T) implies the closedness of $Im(\psi(T))$. For the converse, we show that $T|_{Ker(T)^{\perp}}$ is bounded below. If this is not the case, there is a sequence (x_n) in $Ker(T)^{\perp}$ such that for each $n, ||x_n|| = 1$ and $lim_n T(x_n) = 0$. Therefore, $lim_n eT(x_n) = lim_n T(ex_n) = 0$. But (ex_n) is a sequence in the $Ker(\psi(T))^{\perp}$ which is a contradiction with the closedness of $Im(\psi(T))$.

As an immediate consequence of this lemma, we have the following corollary:

Corollary 2.2. Let E be a Hilbert H^* -module over A. Then $T \in \mathcal{G}_A(E)$ if and only if the range of T is closed.

Proof. Let $T \in \mathcal{G}_A(E)$. Then there is an operator $R \in \mathcal{B}_A(E)$ such that TRT = T. Since ψ is a homomorphism, $\psi(T)\psi(R)\psi(T) = \psi(T)$. This shows that $\psi(T) \in G(E_e)$. Hence, $Im(\psi(T))$ is closed and so Im(T) is closed. For the converse, let Im(T) be closed. Since $Im(\psi(T)) = eIm(T)$, $Im(\psi(T))$ is closed and so there is a bounded linear operator R on the Hilbert space E_e such that $\psi(T)R\psi(T) = \psi(T)$. Now there is an operator $U \in \mathcal{B}_A(E)$ such that $\psi(U) = R$, hence $\psi(TUT) = \psi(T)$ which implies that TUT = T. Thus $T \in \mathcal{G}_A(E)$.

Let H be a Hilbert space, $T \in G(H)$ and F be a finite rank operator on H. Then it is well known that $T + F \in G(H)$.

Remark 2.3. Let $e \in A$ be a minimal projection, $T \in \mathcal{G}_A(E)$ and $L \in \mathcal{F}_A(E)$. Then $\psi(L) \in F(E_e)$ and Corollary 2.2 implies that $\psi(T) \in G(E_e)$. Hence, $\psi(T + L) = \psi(T) + \psi(L) \in G(E_e)$. By Lemma 2.1, T + L is closed and so $T + L \in \mathcal{G}_A(E)$.

Theorem 2.4. Let E be a Hilbert H^* -module over A, then $\mathcal{R}(E) = \mathcal{SF}_A(E)$.

Proof. Let $T \in \mathcal{R}(E)$ and $R \notin G(E_e)$. There is $U \in \mathcal{B}_A(E)$ such that $\psi(U) = R$. Since $R \notin G(E_e)$ and Im(R) = eIm(U), Im(U) can not be closed and so $U \notin \mathcal{G}_A(E)$. Hence, there is $\lambda \in \mathbb{C}$ such that $U + \lambda T \in \mathcal{G}_A(E) \setminus \{0\}$. This shows that $\psi(U + \lambda T) = \psi(U) + \lambda \psi(T) \in G(E_e) \setminus \{0\}$. Hence, $\psi(T) \in R(E_e)$. Since E_e is a Hilbert space, we have $R(E_e) = SF(E_e)$. So $Im(\psi(T))$ is closed and one of $dim(Ker(\psi(T)))$ or $dim(Ker(\psi(T)^*))$ is finite. Lemma 2.1 implies that Im(T) is closed. On the other hand, $Ker(\psi(T)) = eKer(T)$, $Ker(\psi(T)^*) = eKer(T^*)$. Hence, part (i) of Theorem 1.1 implies that one of the $dim_A(Ker(T))$ or $dim_A(Ker(T^*))$ is finite. Therefore $T \in SF_A(E)$.

Now let $T \in SF_A(E)$. A similar argument shows that $\psi(T) \in SF(E_e) = R(E_e)$. Let $R \notin \mathcal{G}_A(E)$, then $\psi(R) \notin G(E_e)$. So there is $\lambda \in \mathbb{C}$ such that

$$\psi(R + \lambda T) = \psi(R) + \lambda \psi(T) \in G(E_e) \setminus \{0\}.$$

Therefore, $R + \lambda T \in \mathcal{G}_A(E)$ and so $T \in \mathcal{R}(E)$.

Remark 2.5. (i). We know that $\psi(T)$ is compact if and only if T is compact [See 4]. Also the Calkin algebra $C(E_e) = B(E_e)/K(E_e)$ is a prime C^* -algebra of real rank zero. So the isomorphism map ψ in Theorem 1.1 implies that the algebra $\mathcal{C}_A(E) = \mathcal{B}_A(E)/\mathcal{K}_A(E)$ is a prime C^* -algebra of real rank zero.

(ii). An operator $T \in \mathcal{B}_A(E)$ is semi A-Fredholm if and only if $\psi(T)$ is a semi Fredholm operator on the Hilbert space E_e . Since $Ker(\psi(T)) = eKer(T)$ and $T \in \mathcal{G}_A(E)$ if and only if $\psi(T) \in G(E_e)$.

Let H be an infinite dimensional Hilbert space. Then Lemma 2.3 of [7] shows that a bounded linear operator T on H is compact if and only if for every semi Fredholm operator S on H, T + S is again semi Fredholm. Now we have:

Proposition 2.6. An operator $T \in \mathcal{B}_A(E)$ is compact if and only if for every semi A-Fredholm operator S, T + S is semi A-Fredholm.

Proof. Let $\pi : \mathcal{B}_A(E) \to \mathcal{B}_A(E)/\mathcal{K}_A(E)$ be the canonical quotient map, $T \in \mathcal{K}_A(E)$ and $S \in \mathcal{SF}_A(E)$. Then $\pi(T) = 0$ and $\pi(S)$ has a right or left inverse. So $\pi(T+S) = \pi(S)$ has a right or left inverse, that is T+S is semi A-Fredholm operator. For the converse, let $T \in \mathcal{B}_A(E)$ such that for each $S \in \mathcal{SF}_A(E)$, $T+S \in \mathcal{SF}_A(E)$. Let $R \in SF(E_e)$, Since ψ is onto, there is an operator $S \in \mathcal{B}_A(E)$ such that $\psi(S) = R$. But Ker(R) = eKer(S) and $Ker(R^*) = eKer(S^*)$, so S must be semi A-Fredholm. By assumption, $T+S \in \mathcal{SF}_A(E)$. Hence, $\psi(T+S) = \psi(T) + \psi(S) =$ $\psi(T) + R \in SF(E_e)$. Therefore, $\psi(T) \in K(E_e)$ and so $T \in \mathcal{K}_A(E)$.

Definition 2.7. Let E be a Hilbert H^* -module over A. The map $\varphi : \mathcal{B}_A(E) \to \mathcal{B}_A(E)$ is said to be surjective up to compact operators (resp. finite rank operators), if for each $T \in \mathcal{B}_A(E)$ there is $A \in \mathcal{B}_A(E)$ and $M \in \mathcal{K}_A(E)$ (resp. $L \in \mathcal{F}_A(E)$) such that $T = \varphi(A) + M$ (resp. $T = \varphi(A) + L$).

Theorem 2.8. Let E be a Hilbert H^* -module over A and $\varphi : \mathcal{B}_A(E) \to \mathcal{B}_A(E)$ be a linear map.

(i) If φ is surjective up to finite rank operators and preserves the closedness of operator ranges in both directions, then φ preserves semi A-Fredholm operators in both directions.

(ii) If φ is surjective up to compact operators and preserves semi A-Fredholm operators in both directions, then φ preserves compact operators in both directions.

Proof. For (i), by Theorem 2.4, it is enough to show that $T \in \mathcal{R}(E)$ if and only if $\varphi(T) \in \mathcal{R}(E)$. Let $T \in S\mathcal{F}_A(E) = \mathcal{R}(E)$ and $B \notin \mathcal{G}_A(E)$. Since φ is surjective up to finite rank operators, there is $U \in \mathcal{B}_A(E)$ and $L \in \mathcal{F}_A(E)$ such that $B = \varphi(U) + L$. This shows that the range of U is not closed. (otherwise, $\varphi(U)$ also has closed range and since $L \in \mathcal{F}_A(E)$, Remark 2.3 implies that B has closed range which is

a contradiction). Since $T \in \mathcal{R}(E)$, there is $\lambda \in \mathbb{C}$ such that $0 \neq U + \lambda T \in \mathcal{G}_A(E)$ and so $\varphi(U) + \lambda \varphi(T) = \varphi(U + \lambda T) \in \mathcal{G}_A(E)$. Apply again Remark 2.3, we have

$$B + \lambda \varphi(T) = \varphi(U) + L + \lambda \varphi(T) \in \mathcal{G}_A(E).$$

Since $T \in SF_A(E) = \mathcal{R}(E)$, the range of T is closed and so is the range of $\varphi(T)$. This shows that $B + \lambda \varphi(T) \neq 0$. For if $B = -\lambda \varphi(T)$, then B has the closed range and this is a contradiction. Thus $\varphi(T) \in \mathcal{R}(E)$.

Now let $\varphi(T) \in \mathcal{R}(E) = \mathcal{SF}_A(E)$ and $R \notin \mathcal{G}_A(E)$, so $\varphi(R) \notin \mathcal{G}_A(E)$. Hence, there is $\lambda \in \mathcal{C}$ such that $\varphi(R + \lambda T) = \varphi(R) + \lambda \varphi(T) \in \mathcal{G}_A(E) \setminus \{0\}$. This shows that $R + \lambda T \in \mathcal{G}_A(E) \setminus \{0\}$. Thus $T \in \mathcal{R}(E)$.

For (*ii*), let $T \in \mathcal{K}_A(E)$ and $S \in \mathcal{SF}_A(E)$. Since φ is surjective up to compact operators, there is $U \in \mathcal{B}_A(E)$ and $M \in \mathcal{K}_A(E)$ such that $\varphi(U) = S + M$. Proposition 2.6 implies that $\varphi(U) \in \mathcal{SF}_A(E)$ and so $U \in \mathcal{SF}_A(E)$. Therefore, $T + U \in \mathcal{SF}_A(E)$ and so $\varphi(T) + \varphi(U) = \varphi(T + U) \in \mathcal{SF}_A(E)$. Since M is compact, $\varphi(T) + S = \varphi(T) + \varphi(U) - M \in \mathcal{SF}_A(E)$. So $\varphi(T) \in \mathcal{K}_A(E)$. On the other hand, if $\varphi(T) \in \mathcal{K}_A(E)$ and S is an arbitrary semi A-Fredholm operator, then $\varphi(S)$ is semi A-Fredholm and so $\varphi(T + S) = \varphi(T) + \varphi(S) \in \mathcal{SF}_A(E)$. Therefore, $T + S \in \mathcal{SF}_A(E)$. This shows that $T \in \mathcal{K}_A(E)$.

Remark 2.9. Let E be a Hilbert H^* -module over A and $\varphi : \mathcal{B}_A(E) \to \mathcal{B}_A(E)$ be a linear map preserving the closedness of operator ranges(resp. semi A-Fredholm operators) on E in both directions. It is straightforward to check that the map $\psi\varphi\psi^{-1}: B(E_e) \to B(E_e)$ preserves the closedness of the range of operators (resp. semi Fredholm operators) on the Hilbert space E_e . Moreover, if φ is surjective up to compact operators, then so is $\psi\varphi\psi^{-1}$. Also if φ is surjective up to finite rank operators, then $\psi\varphi\psi^{-1}$ is surjective up to finite rank operators.

Corollary 2.10.

(i). If φ is surjective up to finite rank operators and preserves the closedness of operator ranges in both directions, then $\psi \varphi \psi^{-1}$ preserves both finite rank operators and semi Fredholm operators in both directions on the Hilbert space E_e .

(ii). If φ is surjective up to compact operators and preserves semi A-Fredholm operators in both directions, $\psi \varphi \psi^{-1}$ preserves compact operators in both directions on the Hilbert space E_e .

Proof. Apply Remark 2.9, (ii) and (ν) of Theorem 2.2 of [2].

Remark 2.11. Let H be an infinite dimensional Hilbert space and W be a Hilbert C^* -module over the C^* -algebra K(H) of all compact operators on H. Consider the space $\mathcal{HS} \subseteq K(H)$ of all Hilbert-Schmidt operators on H. Let $\mathcal{W}^0_{\mathcal{HS}}$ denote the linear span of the set \mathcal{HSW} . The submodule $\mathcal{W}^0_{\mathcal{HS}}$ of W can be made to a pre Hilbert H^* -module over the H^* -algebra \mathcal{HS} with the inner product $(x, y) = tr(\langle x, y \rangle)$. Let us denotes by $\|.\|_{\mathcal{HS}}$ the resulting norm:

$$\|x\|_{\mathcal{HS}} = \sqrt{tr(\langle x, x \rangle)} \quad \forall x \in \mathcal{W}^0_{\mathcal{HS}}.$$

The completion of $\mathcal{W}^{0}_{\mathcal{HS}}$ in the norm $\|.\|_{\mathcal{HS}}$, is a Hilbert H^* -module over the H^* algebra \mathcal{HS} which is a dense submodule in W with respect to the original norm [See 3]. D. Bakić and B. Guljaš apply this fact and obtain a similar result to the Theorem 1.1 in the case that W is a Hilbert C^* -module over the C^* -algebra K(H), instead of an Hilbert H^* -module [3; Theorem 5]. Therefore the results of this paper valid in the case that W is a Hilbert C^* -module over the C^* -algebra K(H). In particular, SF(W) = R(W).

References

- T. Aghasizadeh and H. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C^{*}modules, J. Math. Anal. Appl. 354 (2009) 625-629.
- [2] T. Aghasizadeh and H. Hejazian, Some equivalence classes of operators on B(H), Bull. Iran Math. Soc. 37, No. 1, (2011) 225-233.
- [3] D. Bakić, B. Guljaš, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. (szeged), 68, No. 1-2, (2002) 249-269.
- [4] D. Bakić, B. Guljaš, Operators on Hilbert H*modules, J. Operator Theory 46 (2001), 123-137.
- [5] M. Cabrera, J. Martinez, A. Rodriguez, Hilbert module revisited: Orthonormal bases and Hilbert-Schmidt operators, Glasgow Math. J. 37 (1995) 45-54.
- [6] J. Hou, J. Cui, Linear maps preserving essential spectral functions and closedness of operator ranges, Bull. London Math. Soc. 39 (2007) 575-582.
- [7] M. Mbekhta and P. Šemrl, Linear maps preserving semi-Fredholm operators and generalized invertibility, Linear Multilinear Algebra, 57 (2009) 55-64.
- [8] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968) 191-197.

Esmaeil Ansari-Pir

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF GUILAN, P.O.BOX 1914, RASHT, IRAN.

E-mail address: e_ansari@guilan.ac.ir

Reza Sanati

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF GUILAN, P.O.BOX 1914, RASHT, IRAN.

E-mail address: re_gaba64@guilan.ac.ir