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THREE DIMENSIONAL LORENTZIAN PARA α-SASAKIAN

MANIFOLDS

(COMMUNICATED BY U.C. DE)

SATISHKUMAR MANGILAL BHATI

Abstract. The object of the present paper is to introduce the notion of

Lorentzian Para (LP) α -Sasakian manifolds and study its basic results. Fur-
ther, these results are used to establish some of the properties of three dimen-

sional semisymmetric and locally ϕ-symmetric LP α-Sasakian manifolds. An

Example of three dimensional Lorentzian Para α -Sasakian manifold is given
which verifies all the Theorems.

1. Introduction

The notion of Lorentzian manifold was first introduced by K. Matsumoto [10]
in 1989. The same was independently studied by I. Mihai and R. Rosca [13].
Lorentzian Para (LP) Sasakian manifolds are extensively studied by U. C. De and
Anupkumar Sengupta [3], U. C. De and A.A. Shaikh [4], [5], U. C. De , K. Mat-
sumoto and A. A. Shaikh [6], U. C. De , Adnan Al-Aqeel and A. A. Shaikh [7], U.
C. De , Ion Mihai and A. A. Shaikh [8]. Some of the other authors have also studied
LP-Sasakian spaces such as Matsumoto and I. Mihai [11], Abolfazl Taleshian and
Nader Asghar [1], Lovjoy Das [9], Mobin Ahmad and Janardhan Ojha [12], S. M.
Bhati [2].

In this paper in Section 2, we have introduced the notion of Lorentzian Para
α-Sasakian manifold which is the generalised form of the LP-Sasakian manifolds.
In 2009, A. Yildiz, M. Turan and B. E. Acet [14] have studied the notion of three
dimensional Lorentzian α-Sasakian manifolds and established series of Theorems.
Though the concepts of Lorentzian Para α-Sasakian manifolds and Lorentzian α-
Sasakian manifolds are different and the basic definitions are also disagreed each
other. However,in Section 3, 4 and 5, it is shown that most of the basic results and
Theorems of both the manifolds are agreed one another.

In Section 3, basic results of LP α-Sasakian manifolds have been established.
Further in Section 4, it has been shown that three dimensional Ricci semisymmetric
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semisymmetric LP α-Sasakian manifold is locally isometric to a sphere. The Section
5 is devoted to the study of locally ϕ- symmetric three dimensional Lorentzian Para
α-Sasakian manifolds. We constructed two Examples of Lorentzian Para α-Sasakian
manifolds of which Example 2.1 verifies all Theorems. In fact, it is shown that there
exists a Lorentzian Para α-Sasakian manifold which is not a Lorentzian α-Sasakian
manifold.

2. Lorentzian Para α-Sasakian Manifolds

For a almost Lorentzian contact manifold M (see [4],[10]) of dimension 2n+1, we
have

ϕ2X = X + η(X)ξ, η(ξ) = −1, η(X) = g(X, ξ) (2.1)

g(ϕ(X), ϕ(Y )) = g(X,Y ) + η(X)η(Y ) (2.2)

for a C∞ vector field X on M and ϕ is a tensor field of type (1,1), ξ is a characteristic
vector field and η is 1-form. From these conditions, one can deduce that

ϕ(ξ) = 0 and η(ξ) = 0

Definition 2.1. A Manifold M with Lorentzian almost contact metric structure
(ϕ,ξ,η,g) is said to be the Lorentzian α- Sasakian manifold if

(∇Xϕ)Y = α{g(X,Y )ξ + η(Y )X},
where α is a constant function on M.

An almost contact metric structure (for details see [1], [7], [9]) is called a Lorentzian
Para Sasakian manifold (or simply LP-Sasakian manifold) if

(∇Xϕ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ,

where ∇ is the Levi-Civita connection with respect to g. Using above formula, one
can deduce

∇Xξ = ϕ(X), (∇Xη)(Y ) = g(X,ϕ(Y ))

More generally in this paper, we introduce the notion of Lorentzian Para α -
Sasakian manifold as follows and study its basic properties.
Definition 2.2. A Manifold M with Lorentzian almost contact metric structure
(ϕ,ξ,η,g) is said to be the Lorentzian Para (LP) α- Sasakian manifold if

(∇Xϕ)Y = α{g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ}, (2.3)

where α is a smooth function on M.
Note that if α = 1, then LP- Sasakian manifold is the special case of Lorentzian
Para α Sasakian manifold

Lemma 2.1. With usual notations, for a Lorentzian Para α- Sasakian manifold
M, we have

∇Xξ = αϕ(X) (2.4)

for any vector field X on M.

Proof. For a Lorentzian Para α- Sasakian manifold M, from (2.3), we have

∇X(ϕ(Y ))− ϕ(∇XY ) = α{(g(X,Y )ξ + η(Y )X + 2η(Y )η(X)ξ}
Now taking Y=ξ in the above equation using (2.1), we get

−ϕ(∇Xξ) = α{η(X)ξ −X − 2η(X)ξ}
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Applying ϕ on both sides of the above equation and using the fact that
(∇Xg)(ξ, ξ) = 0 implies g((∇Xξ), ξ) = 0 so that η((∇Xξ)) = g(∇Xξ, ξ) = 0 and
simplifying, we get (2.4). �

Example 2.1.We consider the 3-dimensional manifold M = {(x, y, z)εR3 : z 6=
0}, where x, y, z are the standard co-ordinates in R. Let {e1, e2, e3} be the linearly
independent global frame on M given by

e1 = ez
∂

∂y
, e2 = ez(

∂

∂x
+

∂

∂y
), e3 = α

∂

∂z

where α is a nonzero constant on M. Let g be the Lorentzian metric on M defined
by
g(e1, e3) = g(e2, e3) = g(e1, e2) = 0 and g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) = −1
Let e3 = ξ. Then Lorentzian metric on M is given by

g = (e−z)2{2(dx)2 + (dy)2 − 2dxdy} − α−2(dz)2

Clearly g is a Lorentzian metric on M. Let η be the 1-form defined by

η(U) = g(U, e3)

for any vector field U on M. Let ϕ be the 1-1 tensor field defined by

ϕ(e1) = −e1, ϕ(e2) = −e2, ϕ(e3) = 0

Then using the linearity property, one obtains

η(e3) = −1 , ϕ2U = U + η(U)e3

g(ϕ(U), ϕ(W )) = g(U,W ) + η(U)η(W )

Also for ξ = e3, it is easy to see that

η(e1) = 0 , η(e2) = 0 , η(e3) = −1

Hence for e3 = ξ, (ϕ, ξ, η, g) defines a Lorentzian almost contact metric structure
on M. Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g. The the following results hold.

[e1, e2] = 0 , [e1, e3] = −αe1 , [e2, e3] = −αe2
Using Koszul’s formula for Levi-Civita connection ∇ with respect to g, that is

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z]) + g[Y, [Z,X]) + g(Z, [X,Y ]).

One can easily calculate

∇e1e3 = −αe1 ,∇e3e3 = 0 ,∇e2e3 = −αe2
∇e2e2 = −αe3 ,∇e1e2 = 0 ,∇e2e1 = 0

∇e1e1 = −αe3 ,∇e3e2 = 0 ,∇e3e1 = 0

Also one can verify the condition (2.3) of the Definition 2.2. Hence M(ϕ, ξ, η, g)
defines a 3 - dimensional Lorentzian Para α-Sasakian manifold and satisfies (2.4).

Theorem 2.2. There exists a Lorentzian Para α-Sasakian manifold which is not
a Lorentzian α-Sasakian manifold

Corollary 2.3. There exists a LP Sasakian manifold which is not a Lorentzian
Sasakian manifold
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Example 2.2. We consider the 3-dimensional manifold M = {(x, y, z)εR3 : z 6=
0}, where x, y, z are the standard co-ordinates in R. Let {e1, e2, e3} be the linearly
independent global frame on M given by

e1 = ez
∂

∂y
, e2 = ez(

∂

∂x
+

∂

∂y
), e3 = ez

∂

∂z

Let g be the Lorentzian metric on M defined by
g(e1, e3) = g(e2, e3) = g(e1, e2) = 0 and g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) =
−1. Let e3 = ξ. Then Lorentzian metric on M is given by

g = (e−z){2(dx)2 + (dy)2 − 2dxdy} − e−2z(dz)2

Let η be the 1-form defined by

η(U) = g(U, e3)

for any vector field U on M. Let ϕ be the 1-1 tensor field defined by

ϕ(e1) = −e1, ϕ(e2) = −e2, ϕ(e3) = 0

Then using the linearity property, one obtains

η(e3) = −1 , ϕ2U = U + η(U)e3

g(ϕ(U), ϕ(W )) = g(U,W ) + η(U)η(W ) (2.5)

It is easy to see that

η(e1) = 0 , η(e2) = 0 , η(e3) = −1

. Replacing W by ϕ(W ) in (2.5) we have g(ϕ(U),W ) = g(U,ϕ(W ), that is, ϕ
is symmetric. Hence for e3 = ξ, (ϕ, ξ, η, g) defines a Lorentzian almost contact
metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g.
Then the following results hold.

[e1, e2] = 0, [e1, e3] = −eze1, [e2, e3] = −eze2
Using Koszul’s formula for Levi-Civita connection ∇ with respect to g, one can
easily calculate

∇e1e3 = −eze1 ,∇e3e3 = 0 ,∇e2e3 = −eze2
∇e2e2 = −eze3 ,∇e1e2 = 0 ,∇e2e1 = 0

∇e1e1 = −eze3 ,∇e3e2 = 0 ,∇e3e1 = 0

Also one can verify the condition (2.3) of the Definition 2.2.
HenceM(ϕ, ξ, η, g) defines a 3- dimensional Lorentzian Para α-Sasakian manifold

with α = ez and satisfies (2.4).

Lemma 2.4. For a Lorentzian Para α- Sasakian manifold M, we have

(∇Xη)(Y ) = αg(ϕ(X), Y ) (2.6)

for all X, Y on M.

Proof. Consider,

(∇Xη)Y = ∇X(η(Y ))− η(∇XY )

= ∇X(g(Y, ξ))− g(∇XY, ξ)
= g(Y,∇Xξ)

By virtue of (2.2)and (2.4), we get (2.6). �
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Lemma 2.5. With usual notations, for a Lorentzian Para α- Sasakian manifold
M, we have

R(X,Y )ξ = α2{η(Y )X − η(X)Y }+ {(Xα)ϕ(Y )− (Y α)ϕ(X)}, (2.7)

R(ξ, Y )ξ = α2{Y + η(Y )ξ}+ (ξα)ϕ(Y )}, R(ξ, ξ)ξ = 0 (2.8)

for all vector fields X, Y on M and R is the curvature tensor of M.

Proof. From (2.1), (2.3) and (2.4), further using the fact that [X,Y ] = ∇XY −∇YX
we have

R(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

= ∇X{αϕ(Y )} − ∇Y {αϕ(X)} − {αϕ(∇XY −∇YX)}
= [(Xα)ϕ(Y )− (Y α)ϕ(X)] + α[α{(g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ}]
− α[α{(g(X,Y )ξ + η(X)Y + 2η(X)η(Y )ξ}] + αϕ(∇XY − αϕ(∇YX)

− {αϕ(∇XY −∇YX)}
Finally, after simplification, we get (2.7). (2.8) follows from (2.7). �

Lemma 2.6. With usual notations, for a Lorentzian Para α- Sasakian manifold
M, we have

R(ξ, Y )X = α2{g(X,Y )ξ − η(X)Y } − (Xα)ϕ(Y ) + g(ϕ(X), Y )(gradα) (2.9)

Proof. We have the identity,

g(R(ξ, Y )X,Z) = g(R(X,Z)ξ, Y )

g(R(ξ, Y )X,Z) = g(R(X,Z)ξ, Y )

= α2{g(Z, ξ)g(X,Y )− η(X)g(Z, Y )} − {(Zα)g(ϕ(X), Y )}
+ {(Xα)g(Z,ϕ(Y )}

After simplification, we get (2.9). �

Lemma 2.7. With usual notations, for a Lorentzian Para α- Sasakian manifold
M, we have

S(Y, ξ) = 2nα2η(Y )− {(Y α)ω + (ϕ(Y )α} (2.10)

S(ξ, ξ) = −2nα2 − (ξα)ω (2.11)

for any vector field Y on M , ω = g(ϕ(ei), ei) and S is the Ricci curvature on M.
Note that repeated indices imply the summation.

Proof. From (2.7), we have

g(R(X,Y )ξ, Z) = α2{η(Y )g(X,Z)− η(X)g(Y,Z)}
+ {−(Y α)g(ϕ(X), Z) + (Xα)g(ϕ(Y ), Z)}

(2.12)

Let{ei}, for i=1,2,.........,2n+1 be the orthonormal basis at each point of the tangent
space of M. Then in the equation (2.12), taking X = Z = ei, we have

g(R(ei, Y )ξ, ei) = α2{η(Y )g(ei, ei)− η(ei)g(Y, ei)}
+ {−(Y α)g(ϕ(ei), ei) + (eiα)g(ϕ(Y ), ei)}

which after simplification gives (2.10).
Put Y = ξ in (2.10) to get (2.11). �
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Lemma 2.8. With usual notations, for a Lorentzian Para α- Sasakian manifold
M, we have

η(R(X,Y )Z) = α2{{g(Y,Z)η(X)− g(X,Z)η(Y )}
− (Xα)g(ϕ(Y ), Z)− (Y α)g(ϕ(X), Z)

(2.13)

Proof. From (2.7, we have

η(R(X,Y )Z) = g(R(X,Y )Z, ξ)

= g(R(X,Y )ξ, Z)

= −α2{η(Y )g(X,Z)− η(X)g(Y,Z)

− {(Xα)g(ϕ(Y ), Z)− (Y α)g(ϕ(X), Z)}

which proves (2.13). �

3. Three Dimensional Lorentzian Para α-Sasakian Manifolds

In this Section and in the rest of the Sections, we assume that α is constant on
M. Following definition is needed to prove some Theorems.
Definition A Lorentzian Para α-Sasakian manifold is said to be η-Einstein if its
Ricci curvature tensor S of type (0,2) satisfies

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) (3.1)

where X and Y are any vector fields on M and a, b are smooth functions on M.
In three dimensional Lorentzian Para α-Sasakian manifold, the curvature tensor

satisfies

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r

2
[g(Y,Z)X − g(X,Z)Y ],

(3.2)

where r is the scalar curvature of M and Q is the Ricci operator such that S(X,Y ) =
g(QX,Y )

Now putting Z = ξ in (3.2), we have

R(X,Y )ξ = η(Y )QX − η(X)QY + S(Y, ξ)X − S(X, ξ)Y

− r

2
[η(Y )X − η(X)Y ],

(3.3)

Further using (3.2)and (2.10)(2.10) in (3.3) and simplifying , we get

η(Y )QX − η(X)QY = [
r

2
− α2][η(Y )X − η(X)Y ], (3.4)

where r is the scalar curvature of M. The above equation (3.4) may be written as

η(Y )S(X,Z)− η(X)S(Y,Z) = [
r

2
− α2][η(Y )g(X,Z)− η(X)g(Y, Z)], (3.5)

Now put Y = ξ in (3.5)and simplifying using (2.10)(2.10). Finally we get

S(X,Z) = [
r

2
− α2]g(X,Z) + [

r

2
− 3α2]η(X)η(Z) (3.6)

which by (3.1) of definition shows that M is η-Einstein. Hence we state

Theorem 3.1. A three dimensional Lorentzian Para α -Sasakian manifold is η
-Einstein.



THREE DIMENSIONAL LORENTZIAN PARA α-SASAKIAN MANIFOLDS 85

If r = 6α2, then from (3.6), M is η -Einstein By virtue of (3.6) and (3.2), we find

R(X,Y )Z = [
r

2
− 2α2][g(Y,Z)X − g(X,Z)Y ]

+ [
r

2
− 3α2][g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ]

(3.7)

From (3.7), one can state the following Theorem.

Theorem 3.2. A three dimensional Lorentzian Para α -Sasakian manifold is of
constant curvature r

2 − 2α2 if and only if the scalar curvature is 6α2

Remark. If the scalar curvature is 6α2 , then (3.7) gives

R(X,Y )Z = α2[g(Y, Z)X − g(X,Z)Y ]

which shows that M is locally isometric to a sphere S2n+1)(c), where c = α2.

4. Three Dimensional Ricci Semisymmetric Lorentzian Para α-Sasakian
Manifolds

Definition 4.1: A Lorentzian Para α-Sasakian manifold M is said to be Ricci
symmetric if the Ricci tensor of M satisfies

R(X,Y ).S = 0, (4.1)

where R(X,Y ) is the derivation of the tensor algebra at each point of the manifold.

Theorem 4.1. A three dimensional Ricci semisymmetric Lorentzian Para α -
Sasakian manifold is locally isometric to a sphere S2n+1(c), where c = α2.

Proof. Suppose (4.1) holds for Lorentzian Para α -Sasakian manifold. Then

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0. (4.2)

Setting X = ξ in (4.2), further using (2.9), we have

2α2g(Y,U)η(V )− S(Y, V )η(U) + 2α2g(Y, V )η(U)− S(Y,U)η(V ) = 0 (4.3)

where α 6= 0.
Let {e1, e2, ξ} be an orthonormal basis of the tangent space at each point of M.

Putting Y = U = ξ in (4.3)and further using (3.6), we obtain

η(V )[2ξ2g(ei, ei)− S(ei, ei)] = 0

From which we have r = 6α2 so that Theorem follows from (3.7). �

5. Locally ϕ -Symmertic Three dimensional Lorentzian Para α-Sasakian
Manifolds

Definition. A Lorentzian Para α -Sasakian manifold is said to be locally ϕ
symmetric if

ϕ2(∇WR)(X,Y )Z = 0 (5.1)

for all vector fields X, Y, Z orthogonal to ξ.
Let us prove the following Theorem for three dimensional Lorentzian Para α-

Sasakian Manifolds

Theorem 5.1. A three dimensional Lorentzian Para α-Sasakian manifold is locally
ϕ-symmetric if and only if the scalar curvature r is constant on M.
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Proof. Differentiating (3.2) covariantly with respect to W, we get

(∇WR)(X,Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y ]

+
dr(W )

2
[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ]

+ [
r

2
− 3α2][g(Y, Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ

+ g(Y,Z)η(X)∇W ξ − g(X,Z)η(Y )∇W ξ + (∇W η)(Y )η(Z)X

+ η(Y )(∇W η)(Z)X − (∇W η)Xη(Z)Y − η(X)(∇W η)(Z)Y ].

(5.2)

Now taking X, Y, Z, W vector fields orthogonal to ξ in (5.2), we get

(∇WR)(X,Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y ]

+ [
r

2
− 3α2][g(Y, Z)(∇W η)(X)ξ − g(X,Z)(∇W η)(Y )ξ]

(5.3)

Using (2.2) in (5.3), after simplification, we have

(∇WR)(X,Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y ]

+ α[
r

2
− 3α2][g(Y,Z)g(W,ϕ(X))ξ − g(X,Z)g(W,ϕ(Y ))ξ]

(5.4)

Now applying ϕ2 on both sides of (5.4), finally we have

ϕ2(∇WR)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y ], (5.5)

from which proof of the Theorem follows from (5.1)(5.1) of the definition stated
above. �

Theorem 5.2. A three dimensional Ricci semisymmetric Lorentzian Para α-Sasakian
manifold is locally ϕ- symmetric.

Proof. For a semisymmetric Lorentzian Para α-Sasakian manifold M , it is seen in
the proof of Theorem 4.1 that the scalar curvature r = 6α2 i.e. r is constant on M
so that from Theorem 5.1, the proof follows. �
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