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A GENERALIZED MEAN PROXIMAL ALGORITHM FOR

SOLVING GENERALIZED MIXED EQUILIBRIUM PROBLEMS

(COMMUNICATED BY MARTIN HERMANN)

A.M. SADDEEK

Abstract. In a recent paper [14], the fixed point and resolvent techniques

have been used to give an iterative algorithm for solving generalized mixed

equilibrium problem (GMEP). In this paper, an extended iterative algorithm,
called generalized mean proximal algorithm (GMPA) is presented and its con-

vergence to the solution of GMEP with θ-pseudomonotne and δ- Lipschitz
continuous mappings in Hilbert spaces is proved. Our approach is based on

the basic notions of generalized resolvents and fixed points. The results im-

prove and extend important recent results.

1. Introduction

The generalized mixed equilibrium problem (GMEP) is one of the most general
problems appearing in nonlinear analysis. It is well recognized that the GMEP in-
cludes variational inequalities, complementarity problems, saddle point problems,
optimization, Nash equilibria problems, and numerous problems in physics, me-
chanics and economics as special cases. For details, refer to [19].

Very recently, Kazmi et al. [14] dealt with the analysis of iterative algorithms
(which extend and improve the iterative methods given in [18], [23]) for solving
the GMEP in real Hilbert spaces by using fixed point and resolvent methods.
Further, under the θ-pseudomonotonicity and δ-Lipschitz continuity conditions for
mappings, they proved the weak convergence of the sequences generated by these
iterative algorithms to the solution of GMEP.

Inspired and motivated by recent research works in this filed, this paper intro-
duces an extended iterative algorithm, called generalized mean proximal algorithm
(GMPA); moreover, it presents the convergence of the iterative sequence generated
by this algorithm to the solution of GMEP with θ-pseudomonotone and δ-Lipschitz
continuous mappings in Hilbert spaces. The results obtained in this paper extend
the recently corresponding results.
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2. Inequalities and basic concepts

Let H be a real Hilbert space with inner product 〈·, ·〉 and corresponding norm
‖·‖. Let K be a nonempty closed and convex set in H, and let 2K denote the family
of nonempty subsets of K. We denote by R the filed of real numbers and by N the
set of all positive integers. Let T : K → K be a nonlinear mapping. The set of all
fixed points of T is denoted by F(T ). Let f : K ×K → R and g : H ×H → R be
nonlinear functions. We denote by dom(f) (resp. dom(g)) the domain of f (resp.
the domain of g ). The interior of the domain of f is denoted by int dom(f).
The GMEP (see, for example, [14]) for f, g and T is to find u ∈ K such that

f(u, v) + 〈Tu, v − u〉+ g(u, v)− g(u, u) ≥ 0, ∀v ∈ K. (2.1)

As special cases of the problem (2.1), we have the following problems:
1. If we consider f(u, v) = 0 and g(u, v) ≡ g(v), ∀u, v ∈ K, then we get the
following mixed variational inequality:
Find u ∈ K such that

〈Tu, v − u〉+ g(v)− g(u) ≥ 0, ∀v ∈ K, (2.2)

which was originally considered and studied by Duvaut et al. [10].
2. If we consider T = 0 and g = 0, then we get the following equilibrium problem:
Find u ∈ K such that

f(u, v) ≥ 0, ∀v ∈ K, (2.3)

which has been initialy introduced by Blum et al. [3].
3. If we take T = 0 , then we get the following generalized equilibrium problem:
Find u ∈ K such that

f(u, v) + g(u, v)− g(u, u) ≥ 0, ∀v ∈ K, (2.4)

which was introduced and studied by many authors (see, for example, [24]).
4. If we take g = 0 , then we get the following mixed equilibrium problem:
Find u ∈ K such that

f(u, v) + 〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.5)

which was studied by Moudafi et al. [20].
5. If f = 0 and g = 0 , then we get the following classical variational inequality:
Find u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.6)

which was first suggested and studied by Hartman et al. [12] in finite dimensional
spaces.
Now, we present the basic concepts that will be needed in the sequel.
A multivalued mapping A : K → 2K is said to be monotone mapping if for each
u, v ∈ K and w ∈ A(u), w′ ∈ A(v) , we have

〈w − w′, u− v〉 ≥ 0.

A monotone mapping A is said to be maximal mapping if its graph G(A) =
{(u,w) ∈ K × K : w ∈ A(u)} is not properly contained in the graph of any
other monotone mapping A′ : K → 2K (see, for example, [25]).
For a given multivalued maximal monotone mapping A : K → 2K and a constant
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r > 0, the resolvent mapping (or the proximal mapping) associated with A (see,
for example, [11]) is the single-valued mapping JAr : K → K defined by

JAr (u) = (I + rA)−1(u), (2.7)

for any u ∈ K, where I is the identity mapping.
It is known (see, for example, [4]) that a monotone mapping A is maximal if and
only if its resolvent mapping JAr is defined everywhere.
Moreover, it is well known (see, for example, [11]) that the resolvent is firmly
nonexpansive, that is,

〈JAr (u)− JAr (v), u− v〉 ≥ ‖JAr (u)− JAr (v)‖2, ∀u, v ∈ K.

Clearly, every firmly nonexpansive is nonexpansive, that is,

‖JAr (u)− JAr (v)‖ ≤ ‖u− v‖, ∀u, v ∈ K.

For every r > 0 we set Ar = 1
r (I − JAr ). It is called the Yosida approximation.

It is known (see, for example, [1], [25]) that Ar(u) ∈ AJAr (u) for all u ∈ K and
F(JAr ) = A−10.
Thus the problems of existence and approximation of zeros of maximal monotone
mappings can be formulated as the corresponding problems of fixed points of firmly
nonexpansive mappings.
For the bifunctions f : K ×K → R and g : H × H → R, let us assume that the
following conditions hold.
(C1) for each fixed v ∈ K, u 7−→ f(u, v) is a proper, convex and lower semicontin-
uous,
(C2) for each fixed v ∈ H, u 7−→ g(u, v) is a proper, convex and lower semicontin-
uous,
(C3) for all u ∈ K, f(u, v) + f(v, u) ≤ 0,
(C4) there exists u ∈ dom f(·, v) ∩ dom g(·, v) such that, either f(·, v) or g(·, v) is
continuous at u.
(C5) g is skew symmetric, i.e.,

g(u, u)− g(u, v)− g(v, u) + g(v, v) ≥ 0, ∀u, v ∈ H.

Let ∂(f + g)(·, v) = ∂f(·, v) + ∂g(·, v) denote the subdifferential of function (f +
g)(·, v).
It is well known (see, for example, [1]) that if (int dom f(·, v)) ∩ dom g(·, v) 6= φ,
then the subdifferential ∂(f +g)(·, v) is a maximal monotone mapping with respect
to the first argument, so we denote by

Jf(·,v)g(·,v)r (u) = (I + r∂(f + g)(·, v))−1(u), r > 0, (2.8)

the resolvent mapping associated with ∂(f + g)(·, v) for any fixed v ∈ K.
On the other hand, Kazmi et al. [14] used the auxiliary principle technique to
characterize the resolvents (defined by this technique) as firmly nonexpansive map-
pings.
Related to the GMEP (2.1), Kazmi et al. [14] considered the following, called the
nonlinear resolvent equations (see, for example, [21], [22]):
Find ω ∈ K such that

TJf(·,v)g(·,v)r ω +Af(·,v)g(·,v)r ω = 0, (2.9)
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where T : K → K is a given mapping, A
f(·,v)g(·,v)
r = 1

r (I − Jf(·,v)g(·,v)r ), r > 0.
The equations (2.9) can be written as

ω − Jf(·,v)g(·,v)r ω + rTJf(·,v)g(·,v)r ω = 0, (2.10)

which can be modeled by the equation

u = S̃u, (2.11)

where S̃ is a nonlinear mapping of K into itself defined by

S̃u = u− γ[ω − Jf(·,v)g(·,v)r ω + rTJf(·,v)g(·,v)r ω], γ > 0. (2.12)

Here ω = u− rTu, that is, u is a fixed point of S̃.
It has been shown in [14] that the GMEP (2.1) and equations of the type (2.9) have
the same set of solutions.
Let θ : K ×K → R be a given real-valued function.
According to [8], [15] the mapping T : K → K is said to be
(i) θ-pseudomonotone if for all u, v ∈ K, we have

〈Tu, v − u〉+ θ(u+ v) ≥ 0

implies

〈Tv, v − u〉+ θ(u+ v) ≥ 0;

(ii) δ-pseudo-contractive if for all u, v ∈ K, there exists a constant δ > 0 such that

〈Tu− Tv, u− v〉 ≤ δ‖u− v‖2;

(iii) δ-Lipschitz continuous if for all u, v ∈ K, there exists a constant δ > 0 such
that

‖Tu− Tv‖ ≤ δ‖u− v‖.

It should be pointed out that the class of δ-pseudo-contractive (resp. pseudo-
contractive, i.e., δ = 1 in (ii)) mappings is larger that of δ-Lipschitz continuous
(resp. nonexpansive, i.e., Lipschitz continuous with constant δ = 1 ) mappings, the
converse, however, is false (see, for example, [9]).

3. Iterative algorithms

Let T : K → K be a self mapping and let B = [an,j ] be a lower triangular matrix
with nonnegative entries, zero column limits, and row sums 1. For any u0 ∈ K, the
sequence {un} given by

un+1 = T ūn, ūn =

n∑
j=0

an,juj (3.1)

is called the Mann iterative process (see, for example, [17]).
Especially, if ūn = un (i.e., an,j = 1 when j = n and an,j = 0 for all j 6= n), then
un is called the Picard iterative sequence.
Most of the research in this filed has focused on the following special Mann iterative
sequence {un}:

u0 ∈ K, un+1 = (1− γn)un + γnTun, n ≥ 0, (3.2)
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where γn is a sequence in (0, 1) satisfying the conditions

(i) γ0 = 1, (ii) 0 < γn < 1 for n > 0, and (iii)

∞∑
n=0

γn =∞.

Recently, Combettes et al. [6] introduced the following so called generalized Mann
iterative algorithm:

u0 ∈ K, un+1 = (1− γn)ūn + γn(Snūn + en), n ≥ 0, (3.3)

where {Sn} is a sequence of mappings of K into itself, en ∈ K is the error made in
the computation of Snūn, and γn ∈ (0, 2).
Motivated by (3.3), Saddeek [26] introduced the following so called mean proximal
algorithm:

u0 ∈ K, Rnun+1 = (1− γn)Rnūn + γn(JRn,A
rn (Rn(ūn)) + en), n ≥ 0, (3.4)

where JRn,A
rn = (Rn + rnA)−1 (i.e., Rn-resolvents (or generalized resolvents) of A),

A : K → 2K is a maximal monotone mapping, {Rn} is a sequence of linear, positive
definite and self-adjoint mappings of K into itself, {en} is a bounded sequence
of elements of K introduced to take into account possible inexact computation
of JRn,A

rn (Rn(ūn)), 0 < rn <∞, and 0 < a ≤ γn ≤ b < 2.

If Rn = I and JArn = Sn, then the algorithm (3.4) is reduced to the generalized
Mann iterative algorithm (3.3).
If A = ∂f , where f : K → R is a proper, convex and lower semicontinuous function
on K, then algorithm (3.4) collapses to the following algorithm (see, for example,
[13], [25]):

u0 ∈ K, Rnun+1 = (1− γn)Rnūn + γn(JRn,f
rn (Rn(ūn)) + en), n ≥ 0, (3.5)

where

JRn,f
rn (Rn(ūn)) = (Rn + rn∂f)−1(Rn(ūn)) = Argmin

z∈K
{f(z) +

1

2rn
‖z − ūn‖2},

and {en} is a bounded sequence of elements of K introduced to take into account
possible inexact computation of JRn,f

rn (Rn(ūn)).
Based on the resolvent mapping (2.8) and the fixed point formulation (2.11), Kazmi
et al. [14] extended the iterative methods given in ([18], [23]) and they introduced
the following iterative algorithm for the GMEP (2.1):

u0 ∈ K, un+1 = S̃un, n ≥ 0, (3.6)

where u 7−→ S̃u is defined by (2.12).
This iterative approach requires the restrictive assumptions that T must be θ-
pseudomonotone and δ- Lipschitz continuous to ensure the weak convergence.
We will now introduce and analyze the following GMPA for solving the GMEP
(2.1) with T = TnRn.
Our generalized algorithm is based on the basic notions of fixed points and gener-
alized resolvents of f + g.
Let {γn} be a sequence in (0, 2) and {rn} a sequence in (0,∞). Given an initial
u0 ∈ K, define {un} by

Rnun+1 = Rnūn − γn[ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn + en], n ≥ 0, (3.7)

where ωn = ūn − rnTnRnūn and JRn,f,g
rn = (Rn + rn∂(f + g))−1.
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Remark 3.1.
(i) If rn = r, γn = γ, Rn = I, Tn = T, en = 0 and ūn = un for all n ≥ 0, then the
GMPA (3.7) reduces to algorithm 4.1 in Kazmi et al. [14].
(ii) If Tn = 0, g = 0, and I − JRn,f

rn is replaced by JRn,f,
rn Rn, then the GMPA

collapses to algorithm (24) in Saddeek [26].
Henceforth, l1 (resp. l1+) denotes the class of summable sequences in R (resp. R+).
We now recall the following definitions and lemma for our main results:
Definition 3.1. (see [6]) A matrix B is concentrating if every sequence {µn} in
R+ such that

(∃(εn) ∈ l1+) µn+1 ≤ µ̄n + εn ∀n ∈ N
converges.
Definition 3.2. (see, for example, [7, p. 40]). A subset K of a Hilbert space H is
said to be boundedly compact if every bounded sequence in K has a subsequence
converging to a point in K.
Lemma 3.1. (see [16, Theorem 3.5.4]). Let {µn} be a sequence in R. Then
µn → µ⇒ µ̄n → µ.

4. Convergence analysis

In this section, we first extend Theorem 4.1 of Kazmi et al. [14] to the case of
two sequences of mappings. Then on a Hilbert space, we establish the convergence
analysis of the GMPA (3.7) to the solution of the GMEP (2.1) with T = TnRn.
For this purpose, we define, as in Saddeek [26], ‖Tnu‖R−1

n
by

‖Tnu‖R−1
n

= sup
η 6=0∈K

|〈Tnu, η〉|
‖η‖Rn

,

where ‖ · ‖2Rn
= 〈·, ·〉Rn

= 〈Rn·, ·〉.
If ‖η‖ ≤ ‖η‖Rn , one can easily show that ‖Tnu‖R−1

n
≤ ‖Tnu‖.

Theorem 4.1. Let K be a nonempty closed and convex subset of a real Hilbert
space H. Let f : K ×K → R and g : H ×H → R be nonlinear bifunctions such
that (int dom(f) ∩ dom(g) 6= φ) and the conditions (C1) − (C5) hold. Let {Rn}
and {Tn} be two sequences of mappings of K into itself such that for each n ∈ N
(i) Rn is linear, positive definite and self adjoint,
(ii) TnRn is θ-pseudomonotone, where

θ(u, v) = f(u, v) + g(u, v)− g(u, u) ∀ u, v ∈ K,
(iii) TnRn is δ-pseudocontractive.
Let ũ ∈ K be a solution of the following GMEP

f(u, v) + 〈TnRnu, v − u〉+ g(u, v)− g(u, u) ≥ 0, ∀v ∈ K. (4.1)

Then

〈u− ũ, R̃nu− rn(TnRnu− Tnωn)〉 ≥ (1− rnδ)‖R̃nu‖2R−1
n
, ∀u ∈ K, (4.2)

where R̃nu = u − JRn,f,g
rn (u − rnTnRnu) and ωn = u − rnTnRnu, provided ‖η‖ ≤

‖η‖Rn
∀η 6= 0 ∈ K.

Proof. Note that for each n ∈ N, Rn is invertible and R−1n is linear because of
condition (i).
Since for each n ∈ N, the mapping TnRn is θ-pseudomonotone, then for all ũ, ỹ ∈ K

〈TnRnũ, ỹ − ũ〉+ θ(ũ+ ỹ) ≥ 0
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implies

〈TnRnỹ, ỹ − ũ〉+ θ(ũ+ ỹ) ≥ 0,

where

θ(ũ+ ỹ) = f(ũ, ỹ) + g(ũ, ỹ)− g(ũ, ũ),

i.e.,

f(ũ, ỹ) + 〈TnRnỹ, ỹ − ũ〉+ g(ũ, ỹ)− g(ũ, ũ) ≥ 0, ∀ỹ ∈ K.
This together with condition (C3) implies that

− f(ỹ, ũ) + 〈TnRnỹ, ỹ − ũ〉+ g(ũ, ỹ)− g(ũ, ũ) ≥ 0, ∀ỹ ∈ K. (4.3)

Now taking ỹ = u− R̃nu in (4.3), we have

−f(u−R̃nu, ũ)+〈TnRn(u−R̃nu), (u−R̃nu)−ũ〉+g(ũ, u−R̃nu)−g(ũ, ũ) ≥ 0. (4.4)

Now, let ũ be a solution of GMEP (4.1), hence

f(ũ, v) + 〈TnRnũ, v − ũ〉+ g(ũ, v)− g(ũ, ũ) ≥ 0. (4.5)

In particular for ũ = JRn,f,g
rn u, u = JRn,f,g

rn u− rnTnRnJRn,f,g
rn u, we have

f(JRn,f,g
rn u, v)+

1

rn
〈JRn,f,g
rn u−u, v−JRn,f,g

rn u〉+g(JRn,f,g
rn u, v)−g(JRn,f,g

rn u, JRn,f,g
rn u) ≥ 0.

(4.6)

Putting v = JRn,f,g
rn (u− rnTnRnu) = u− R̃nu in (4.5), we obtain

f(ũ, u− R̃nu) + 〈TnRnũ, (u− R̃nu)− ũ〉+ g(ũ, u− R̃nu)− g(ũ, ũ) ≥ 0. (4.7)

Setting u := u − rnTnRnu, JRn,f,g
rn (u) := JRn,f,g

rn (u − rnTnRnu) = u − R̃nu and
v = ũ in (4.6), we obtain

f(u−R̃nu, ũ)+
1

rn
〈u−R̃nu−(u−rnTnRnu), ũ−(u−R̃nu)〉+g(u−R̃nu, ũ)−g(u−R̃nu, u−R̃nu) ≥ 0.

(4.8)
Now, adding (4.4) and (4.8) and using (C5), we obtain

〈R̃nu− rnTnRnu+ rnTnRn(u− R̃nu), (u− R̃nu)− ũ〉 ≥ 0. (4.9)

This together with the δ-pseudocontractivity of Tn implies that

〈R̃nu− rn(TnRnu− TnRn(u− R̃nu)), u− ũ〉 ≥ 〈R̃nu− rn(TnRnu− TnRn(u− R̃nu)), R̃nu〉
≥ ‖R̃nu‖2Rn

− rn〈TnRnu− TnRn(u− R̃nu), R̃nu〉
≥ ‖R̃nu‖2R−1

n
− rn〈TnRnu− TnRn(u− R̃nu),

u −(u− R̃nu)〉
≥ (1− rnδ)‖R̃nu‖2R−1

n
,

the required result (4.2).
Theorem 4.2. Let all assumptions in Theorem 4.1 be satisfied, except for condition
(iii) let it be replaced by the δ-Lipschitz continuous condition. Let ũ be a solution
of GMEP (4.1).
Then the iterative sequence {un} generated by (3.7), where en ∈ H, {‖en‖R−1

n
} ∈ l1,

rnδ < 1, limn→∞ rn = r > 0, 0 < a ≤ γn <
2(1−rnδ)−a
(1+rnδ)2

, a ∈ (0, 1), u0 ∈ K, and

B is concentrating, converges weakly to ũ. If in addition dom (Rn(I − rnTnRn) +
rn∂(f +g)(I− rnTnRn)) is boundedly compact, then {un} converges strongly to ũ.
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Proof. Let ũ be a solution of GMEP (4.1). By using (3.7), and the convexity of
‖ · ‖Rn , we get for n ≥ 0

‖un+1 − ũ‖2Rn
= ‖ūn − ũ− γnR−1n (ωn − JRn,f,g

rn ωn + rnTnRnJ
Rn,f,g
rn ωn) + en)‖2Rn

≤ (‖ūn − ũ− γnR−1n (ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn)‖Rn

+ γn‖R−1n en‖Rn
)2

= ([‖ūn − ũ‖2Rn
− 2γn〈R−1n (ωn − JRn,f,g

rn ωn + rnTnRnJ
Rn,f,g
rn ωn), ūn − ũ〉Rn

+ γ2n‖R−1n (ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn)‖2Rn

]
1
2 + γn‖R−1n en‖Rn)2

= ([‖ūn − ũ‖2Rn
− 2γn〈ωn − JRn,f,g

rn ωn + rnTnRnJ
Rn,f,g
rn ωn, ūn − ũ〉

+ γ2n‖ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn‖2R−1

n
]
1
2 + γn‖en‖R−1

n
)2

= ([‖ūn − ũ‖2Rn
− 2γn〈R̃nūn − rn(TnRnūn − TnRn(ūn − R̃nūn)), ūn − ũ〉

+ γ2n‖R̃nūn − rn(TnRnũn − TnRn(ũn − R̃nūn)‖2
R−1

n
]
1
2 + γn‖en‖R−1

n
)2

= ([‖ūn − ũ‖2Rn
− 2γn〈R̃nūn − rn(TnRnūn − TnRn(ūn − R̃nūn)), ūn − ũ〉

+ γ2n[‖R̃nūn‖2R−1
n
− 2rn〈R̃nūn, TnRnūn − TnRn(ūn − R̃nūn)〉R−1

n

+ r2n‖TnRnũn − TnRn(ũn − R̃nūn)‖2
R−1

n
]
1
2 + γn‖en‖R−1

n
)2

≤ ([‖ūn − ũ‖2Rn
− 2γn〈R̃nūn − rn(TnRnūn − TnRn(ūn − R̃nūn)), ūn − ũ〉

+ γ2n[‖R̃nūn‖2R−1
n

+ 2rn‖R̃nūn‖R−1
n
‖TnRnūn − TnRn(ūn − R̃nūn)‖R−1

n

+ r2n‖TnRnũn − TnRn(ũn − R̃nūn)‖2
R−1

n
]
1
2 + γn‖en‖R−1

n
)2. (4.10)

As any δ-Lipschitz continuous mapping is δ -pseudocontractive, it results by (4.2),
and (4.10) that

‖un+1 − ũ‖2Rn
≤ (‖ūn − ũ‖Rn

− γn[2(1− rnδ)− γn(1 + rnδ)
2]‖R̃nūn‖2R−1

n
]
1
2

+ γn‖en‖R−1
n

)2. (4.11)

This, together with (3.1) (taking into account γn <
2(1−rnδ)
(1+rnδ)2

and rnδ < 1, implies

that

‖un+1 − ũ‖Rn
≤

n∑
j=0

an,j‖uj − ũ‖Rn
+ 2‖en‖R−1

n
. (4.12)

Since B is concentrating and {‖en‖R−1
n
∈ l1}, it results that limn→∞ ‖un− ũ‖Rn =

ρ(ũ).
Then, it follows from Lemma 3.1 and (4.12) that limn→∞ ‖ūn− ũ‖Rn

= ρ(ũ) <∞.
Moreover, the sequence {εn} defined by εn = σ‖en‖R−1

n
+ 4‖en‖2R−1

n
, where σ =

4 supn≥0 ‖un+1 − ũ‖Rn <∞ lies in l1.

Using the convexity of ‖ · ‖2Rn
and the restrictions on γn and rn, from (4.11) we

obtain

‖R̃nūn‖2R−1
n
≤ 1

a2
[‖ūn − ũ‖2Rn

− [‖un+1 − ũ‖Rn
− γn‖en‖R−1

n
]2] (4.13)

≤ 1

a2
[‖ūn − ũ‖2Rn

− ‖un+1 − ũ‖2Rn
+ 2γn‖un+1 − ũ‖Rn

‖en‖R−1
n

+ γ2n‖en‖2R−1
n

]

≤ 1

a2
[

n∑
j=0

an,j‖uj − ũ‖2Rn
− ‖un+1 − ũ‖2Rn

+ εn].
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Since {‖ūn − ũ‖2Rn
} converges, then it follows from Lemma 3.1 that

n∑
j=0

an,j‖uj − ũ‖2Rn
− ‖un+1 − ũ‖2Rn

→ 0.

It therefore follows from (4.13) that

lim
n→∞

‖R̃nūn‖R−1
n

= 0. (4.14)

Further, since TnRn is δ-Lipschitz continuous and

‖un+1 − ūn‖Rn = γn‖R−1n (ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn + en)‖Rn

≤ 2(‖R−1n (ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn)‖Rn

+ ‖R−1n en‖Rn
)

= 2(‖ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn‖R−1

n
‖R−1

n
+ ‖en‖R−1

n
)

= 2(‖ωn − JRn,f,g
rn ωn + rnTnRnJ

Rn,f,g
rn ωn‖R−1

n
+ ‖en‖R−1

n
)

= 2(‖R̃nūn + rn(TnRnJ
Rn,f,g
rn ωn − TnRnūn)‖R−1

n
+ ‖en‖R−1

n
)

≤ 2(‖R̃nūn‖R−1
n

+ rn‖R̃nūn‖R−1
n

+ ‖en‖R−1
n

),

then from (4.14) we obtain

lim
n→∞

‖un+1 − ūn‖Rn
= 0. (4.15)

As {un} is bounded, it results that there exists a subsequence of {un}, denoted by
{unk

}, which converges to some ṽ ∈ K.
Following the arguments in the proof of ([2, Corollary 6.1]), we can show that

lim
k→∞

R̃nk
unk

= 0. (4.16)

Therefore ṽ ∈ F(JRn,f,g
rn (I − rnTnRn)) (i.e., ṽ is a solution of GMEP (4.1) (see [14,

Lemma 3.3]).
Suppose there are two weak limit points of {ūn}, say ṽ and ω̃. As above, we have
ṽ and ω̃ are solutions of GMEP (4.1) and that

lim
n→∞

‖v̄n − ṽ‖Rn
= ρ(ṽ), lim

n→∞
‖v̄n − ω̃‖Rn

= ρ(ω̃). (4.17)

Similar to the proof of [6, Theorem 3.5], we can show that the sequences {‖v̄n‖2Rn
−

2〈v̄n, ṽ〉Rn} and {‖v̄n‖2Rn
− 2〈v̄n, ω̃〉Rn} converge and therefore so does {〈v̄n, ṽ −

ω̃〉Rn
}.

This and the weak convergence of {v̄n}, imply that ‖ṽ − ω̃‖2Rn
= 0 and, hence,

ṽ = ω̃.
Thus, all the weak limit points of {v̄n} coincide and hence, the sequence {v̄n}
converges weakly to the solution ũ of GMEP (4.1). This together with (4.15) yields

un ⇀ ũ. (4.18)

Since dom (Rn(I − rnTnRn) + rn∂(f + g)(I − rnTnRn)) is boundedly compact, it
follows by (4.16) and [5, Theorem 6.9] that the set of strong cluster points of the
sequence {ūn} is nonempty.
The rest of the argument now follows exactly as in the proof of second assertion of
Theorem 3.5 in [6] to yield that {un} converges strongly to ũ, completing the proof
of the Theorem.
Remark 4.1. As was mentioned in Remark 3.1, our results improve and extend
many important recent results (for example, [6, 14,18 23,26]).
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5. Application to minimization problem

We consider the problem of finding a minimizer of the sum of two proper convex
lower semicontinuous bifunctions.
Theorem 5.1. Let f : K × K → R and g : H × H → R be two proper convex
lower semicontinuous bifunctions such that (int dom(f) ∩ dom(g) 6= φ) and the
conditions (C3) − (C5) hold. Let {Rn} be a sequence of linear, positive definite
and self adjoint mappings of K into itself. Let u0 ∈ K and let {un} be a sequence
generated by

Rnun+1 = Rnūn−γn[ūn−Argmin
v∈K
{(f + g)(ūn, v) +

1

2rn
‖v− ūn‖2Rn

}+ en], n ≥ 0,

(5.1)
where rn ⊂ (0,∞), γn ⊂ (0, 2), and {‖en‖R−1

n
} satisfy limn→∞ rn = r > 0, 0 <

a ≤ γn < 2 and {‖en‖R−1
n
} ∈ l1. If B is concentrating, dom (Rn + rn∂(f + g))

is boundedly compact and (∂(f + g))−1(0) 6= φ, then {un} converges strongly to
v ∈ K, which is the minimizer of f + g.
Proof. Putting Tn = 0, n ∈ N and taking

JRn,f,g
rn (ūn) = Argminv∈K {(f + g)(ūn, v) + 1

2rn
‖v − ūn‖2Rn

}
in Theorem 4.2. The desired conclusion follows immediately.

Acknowledgments. The author is extremely grateful to the referee for his/her
valuable comments and suggestions.
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