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ROUGH CONVERGENCE OF A SEQUENCE OF FUZZY

NUMBERS

(COMMUNICATED BY FEYZI BASAR)

FATMA GECIT AKÇAY AND SALIH AYTAR*

Abstract. We define the concept of rough limit set of a sequence of fuzzy
numbers and obtain the relation between the set of rough limit and the extreme

limit points of a sequence of fuzzy numbers. Finally, we investigate some
properties of the rough limit set.

1. Introduction

The set of fuzzy numbers is denoted L(R), and d denotes the supremum metric
on L(R). Now let r be a nonnegative real number. Then we say that a sequence
{Xi} of fuzzy numbers is r−convergent to a fuzzy number X∗ and we write

Xi
r→ X∗ as i→∞,

provided that for every ε > 0 there is an integer iε so that

d(Xi, X∗) < r + ε

whenever i ≥ iε. The set

LIMrXi := {X∗ ∈ L(R) : Xi
r→ X∗ , as i→∞}

is called the r−limit set of the sequence {Xi}.
According to this definition, a sequence of fuzzy numbers which is divergent can

be convergent with a certain roughness degree. For instance, let us define

Xi(x) :=

{
η(x) , if i is odd integer
µ(x) , otherwise

,

where

η(x) :=

 x , if x ∈ [0, 1]
−x+ 2 , if x ∈ [1, 2]

0 , otherwise
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and

µ(x) :=

 x− 3 , if x ∈ [3, 4]
−x+ 5 , if x ∈ [4, 5]

0 , otherwise
.

Then we have

LIMrXi =

{
∅ , if r < 3/2
[µ− r1, η + r1] , otherwise

,

where r1 is nonnegative real number with [µ− r1, η + r1] :=
{X ∈ L(R) : µ− r1 � X � η + r1} .

The idea of rough convergence of a sequence can be interpreted as follows. Let
{Yi} be a convergent sequence of fuzzy numbers. Assume that Yi cannot be deter-
mined exactly for every i ∈ N (or some i ∈ N). That is, Yi cannot be calculated so
we can use approximate value of Yi for simplicity of calculation. We only know that
Yi belongs to the closed intervals [µi, λi] , where d (µi, λi) ≤ r for every i ∈ N. We
have to do with an approximated and known sequence {Xi} satisfying Xi ∈ [µi, λi]
for all i. Then the sequence {Xi} may not be convergent, but the inequality

d (Xi, X∗) ≤ d (Xi, Yi) + d (Yi, X∗) ≤ r + d (Yi, X∗)

implies that the sequence {Xi} is r−convergent.
Phu [10] and Burgin [4] introduced the notion of rough convergence indepen-

dently with different titles. Here we will adopt the definitions and notations in [10].
In [10], Phu showed that the set LIMrx is bounded, closed and convex; and he
also investigated the dependence of LIMrx on the roughness degree r. In [11], he
extended the results given in [10] to infinite dimensional normed spaces. Recently,
Aytar [3] proved that the ordinary core of a sequence x = (xi) of real numbers
is equal to its 2r-limit set, where r := inf {r ≥ 0 : LIMrx 6= ∅}. Later, Aytar [2]
defined the concept of rough statistical convergence. Defining the set of rough sta-
tistical limit points of a sequence, he obtained two statistical convergence criteria
associated with this set. He also examined the relations between the set of all sta-
tistical cluster points and the set of all rough statistical limit points of a sequence.
Pal et al. [9] and Dündar, Çakan [7] independently gave an extension of rough
convergence at the same time, by using the notion of an ideal. They also stated
some basic results related to the rough ideal limit set.

In this paper, we first define the concept of rough convergence of a sequence of
fuzzy numbers. In the second step, we obtain the relation between the set of rough
limit and the extreme limit points of a sequence of fuzzy numbers. When a sequence
is convergent, we characterize the rough limit set of this sequence. Later, we prove
that a necessary and sufficient condition for the rough limit set of a sequence to
be nonempty is the boundedness of the sequence. Finally, we show that the rough
limit set of a sequence is closed, bounded and convex.

2. Preliminary Concepts

In this section, we briefly recall some of the basic notations in the theory of fuzzy
numbers and we refer to [1, 5, 6, 8, 12] for more details.

A fuzzy number X is a fuzzy subset of the real line R, which is normal, fuzzy
convex, upper semi-continuous, and the set X0 is bounded where X0 := cl{x ∈
R : X(x) > 0} and cl is the closure operator. These properties imply that for each
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α ∈ (0, 1], the α−level set Xα defined by

Xα := {x ∈ R : X(x) ≥ α} =
[
Xα, X

α
]

is a nonempty compact convex subset of R.
The supremum metric d on the set L(R) is defined by

d(X,Y ) := sup
α∈[0,1]

max(|Xα − Y α| ,
∣∣∣Xα − Y α

∣∣∣).
Now, given X,Y ∈ L(R), we define

X � Y if Xα ≤ Y α and X
α ≤ Y α for each α ∈ [0, 1].

We write X ≺ Y if X � Y and there exists an α0 ∈ [0, 1] such that Xα0 < Y α0 or

X
α0
< Y

α0
.

A subset E of L(R) is said to be bounded above if there exists a fuzzy number µ,
called an upper bound of E, such that X � µ for every X ∈ E. µ is called the least
upper bound (sup) of E if µ is an upper bound and µ � µ′ for all upper bounds µ′.
A lower bound and the greatest lower bound (inf) are defined similarly. E is said
to be bounded if it is both bounded above and below.

The notions of ”sup” and ”inf” have been defined only for bounded sets of fuzzy
numbers. An important fact, proved by Wu and Wu [12], states that if the set
E ⊂ L(R) is bounded then its supremum and infimum exist (see also [8]).

The limit infimum and the limit supremum of a sequence {Xi} is defined by

lim inf
i→∞

Xi := inf AX

lim sup
i→∞

Xi := supBX
,

where

AX := {µ ∈ L(R) : The set {i ∈ N : Xi ≺ µ} is infinite}
BX := {µ ∈ L(R) : The set {i ∈ N : Xi � µ} is infinite} .

Now, given two fuzzy numbers X,Y ∈ L (R) , we define their sum as Z = X + Y,

where Zα := Xα + Y α and Z
α

:= X
α

+ Y
α

for all α ∈ [0, 1].
To any real number a ∈ R, we can assign a fuzzy number a1 ∈ L (R) , which is

defined by

a1(x) =

{
1 if x = a
0 otherwise

.

An order interval in L (R) is defined as

[X,Y ] := {Z ∈ L (R) : X � Z � Y } ,

where X,Y ∈ L (R) .
A set E of fuzzy numbers is called convex if

λµ1 + (1− λ)µ2 ∈ E

for all λ ∈ [0, 1] and µ1, µ2 ∈ E.
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3. Main Results

First, we give the relation between the set of rough limit and the extreme limit
points of a sequence of fuzzy numbers.

Theorem 3.1. If LIMrXi 6= ∅, then we have

LIMrXi ⊆ [(lim supXi)− r1, (lim inf Xi) + r1].

In order to prove this theorem, we need the following lemma.

Lemma 3.2. If X∗ ∈ LIMrXi, then d(lim supXi, X∗) ≤ r and d(lim inf Xi, X∗) ≤
r.

Proof of Lemma 3.2. We assume that d(lim supXi, X∗) > r. Define ε̃ := d(lim supXi,X∗)−r
2 .

By definition of limit supremum, we have that given i
′

ε̃ ∈ N there exists an i ∈ N
with i ≥ i′ε̃ such that d(lim supXi, Xi) < ε̃.

Also, since Xi
r→ X∗ as i→∞, there is an integer i

′′

ε̃ so that

d(Xi, X∗) < r + ε̃

whenever i ≥ i′′ε̃ . Let iε̃ := max
{
i
′

ε̃, i
′′

ε̃

}
. There exists i ∈ N such that i ≥ iε̃ and

d(lim supXi, X∗) ≤ d(lim supXi, Xi) + d(Xi, X∗) < r + 2ε̃

= r + d(lim supXi, X∗)− r = d(lim supXi, X∗).

This contradiction proves the lemma. Similarly, d(lim inf Xi, X∗) ≤ r can be proved
using defination of limit infumum. �

Now, we are ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. We show that X∗ ∈ [(lim supXi)− r1, (lim inf Xi) + r1] for
an arbitrary X∗ ∈LIMrXi, i.e., (lim supXi) − r1 � X∗ � (lim inf Xi) + r1. First,
assume that (lim supXi)− r1 � X∗ does not hold. Thus, there exists an α0 ∈ [0, 1]
such that

(lim supXi
α0)− r > X∗

α0 or (lim supXi
α0

)− r > X∗
α0

holds which are equivalent to the inequalities

(lim supXi
α0)−X∗α0 > r or (lim supXi

α0
)−X∗

α0
> r.

On the other hand, according to Lemma 3.2, we have∣∣(lim supXi
α0)−X∗α0

∣∣ ≤ r and
∣∣∣(lim supXi

α0
)−X∗

α0
∣∣∣ ≤ r.

Thus we obtain a contradiction. Therefore, we get (lim supXi)− r1 � X∗.
The second part of this theorem can be proved using the similar arguments in

the first part. �

Note that the converse inclusion in this theorem holds for sequences of real
numbers, but it may not hold for sequences of fuzzy numbers, as can be seen in the
following example.

Example 3.3. Define

Xi(x) :=

{
− 1

2ix+ 1 , if x ∈ [0, 1]
0 , otherwise
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and

X∗(x) :=

{
1 , if x ∈ [0, 1]
0 , otherwise

.

Then we have
∣∣∣X1

∗ −X
1

i

∣∣∣ = |1− 0| = 1, i.e., d(Xi, X∗) ≥ 1 for all i ∈ N. Although

the sequence {Xi} is not convergent to X∗, lim supXi and lim inf Xi of this sequence
are equal to X∗. Hence we get X∗ ∈ [lim supXi − (1/2)1, lim inf Xi + (1/2)1], but
X∗ /∈LIM1/2Xi.

Theorem 3.4. If a sequence {Xi} converges to the fuzzy number X∗, then LIMrXi =
Br(X∗) := {µ ∈ L(R) : d(µ,X∗) ≤ r}.

Proof. Let ε > 0. Since the sequence {Xi} is convergent to X∗, there is an integer
iε so that

d(Xi, X∗) < ε

whenever i ≥ iε. Let Y ∈ Br(X∗). We have

d(Xi, Y ) ≤ d(Xi, X∗) + d(X∗, Y ) < ε+ r

for every i ≥ iε. Hence we have Y ∈LIMrXi.
Now let Y ∈LIMrXi. Hence there is an integer i

′

ε so that

d(Xi, Y ) < r + ε

whenever i ≥ i′ε. Let i′′ε := max
{
iε, i

′

ε

}
. For all i > i′′ε , we obtain

d(Y,X∗) ≤ d(Xi, Y ) + d(Xi, X∗) < r + 2ε.

Since ε is arbitrary, we have d(Y,X∗) ≤ r. Hence we get Y ∈ Br(X∗). Thus, if the
sequence {Xi} converges to X∗, then LIMrXi = Br(X∗). �

Theorem 3.5. A sequence {Xi} in L(R) is r−convergent to X∗ if there exists a
sequence {Yi} in L(R) such that

Yi → X∗ as i→∞, and d(Xi, Yi) ≤ r for every i ∈ N.

Proof. Assume that Yi → X∗ , as i → ∞, and d(Xi, Yi) ≤ r for every i ∈ N.
Yi → X∗ , as i→∞ means that for every ε > 0 there exists an iε such that

d(Yi, X∗) < ε for all i ≥ iε.
The inequality d(Xi, Yi) ≤ r yields

d(Xi, X∗) ≤ d(Xi, Yi) + d(Yi, X∗) < r + ε if i ≥ iε.
Hence the sequence {Xi} is r-convergent to the fuzzy number X∗. �

Theorem 3.6. The diameter of an r−limit set is not greater than 2r.

Proof. We have to show that sup {d(Y, Z) : Y, Z ∈ LIMrXi} ≤ 2r. Assume on the
contrary that sup {d(Y,Z) : Y,Z ∈ LIMrXi} > 2r. By this assumption, there exist
Y,Z ∈LIMrXi satisfying λ := d(Y,Z) > 2r. For an arbitrary ε ∈ (0, λ/2 − r), we
have

∃i′ε ∈ N : ∀i ≥ i′ε ⇒ d(Xi, Y ) < r + ε

∃i
′′

ε ∈ N : ∀i ≥ i
′′

ε ⇒ d(Xi, Z) < r + ε.

Define iε := max
{
i
′

ε, i
′′

ε

}
. Thus we get

d(Y, Z) ≤ d(Xi, Y ) + d(Xi, Z) < 2(r + ε) < 2r + 2(λ/2− r) = λ
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for all i ≥ iε which contradicts to the fact that λ = d(Y, Z). �

The rest of the paper contains some basic properties of the rough limit set.

Theorem 3.7. A sequence {Xi} is bounded if and only if there exists an r ≥ 0
such that LIMrXi 6= ∅.

Proof. (⇒) Let {Xi} be a bounded sequence and s := sup{d(Xi, 01) : i ∈ N} <∞.
Then we have 01 ∈LIMsXi, i.e., LIMrXi 6= ∅, where r = s .

(⇐) If LIMrXi 6= ∅ for some r ≥ 0, then there exists X∗ ∈LIMrXi. By defini-
tion, for every ε > 0 there is an integer iε so that

d(Xi, X∗) < r + ε

whenever i ≥ iε. Define t = t(ε) := max{d(X∗, 01), d(X1, 01), d(X2, 01), ..., d(Xiε , 01), r+
ε}. Then we have Xi ∈ {µ ∈ L (R) : d(µ, 01) ≤ t+ r + ε} for every i ∈ N, which
proves the boundedness of the sequence {Xi}. �

The next theorem gives the inclusion relation between the rough limit sets of a
sequence and its subsequence. Its proof is straightforward.

Theorem 3.8. If {Xki} is a subsequence of {Xi}, then LIMrXi ⊂LIMrXki .

Theorem 3.9. For all r ≥ 0, the r−limit set LIMrXi of an arbitrary sequence
{Xi} is closed.

Proof. Let {Yi} ⊂ LIMrXi and Yi → Y∗ as i → ∞. Let ε > 0. Since the sequence
{Yi} converges to Y∗, there is an integer jε so that

d(Yi, Y∗) <
ε

2

whenever i ≥ jε. Since Yjε ∈LIMrXi, there is an integer iε so that

d(Xi, Yjε) < r +
ε

2

whenever i ≥ iε. Therefore, we have

d(Xi, Y∗) ≤ d(Xi, Yjε) + d(Yjε , Y∗)

< r + ε/2 + ε/2 = r + ε

for every i ≥ iε. Hence Y∗ ∈LIMrXi implies that the set LIMrXi is closed. �

4. Discussion

In this section, we would like to give a general picture for would-be applications.
Let the sequence of fuzzy numbers that we have obtained by fuzzification from some
real data be denoted by {Xi} (For sequences having finitely many terms, we can give
similar results). It is possible that to operate with the terms of this sequence and
to defuzzify it are difficult. Instead, we may use the terms of a sequence {Yi} for
approximating to the terms of the sequence {Xi}, where each Yi is a triangular
or trapezoidal fuzzy number, and d (Xi, Yi) ≤ r for each i ∈ N. Thus it will be
much easier to apply the fuzzy process to the sequence {Yi} because it consists of
triangular or trapezoidal fuzzy numbers. It should not be forgotten that there is
always an error rate if r is positive in the operations done with the sequence {Yi}.
However, such an error rate can mostly be tolerated, compared to the difficulty of
the operations.
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