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Abstract. This article provides a continuation of paper by Libera and Z lotkiewicz

[Proc. Amer. Math. Soc. 87(2) (1983), 251–257], in which they investigated
upper bounds on initial coefficients of inverse of a function defined by inte-

gration of Carathéodory functions. We obtain upper bounds on Fekete-Szegö
functional and third Hankel determinant of such functions.

1. Introduction and Preliminaries

Let H denote the family of analytic functions in the unit disk D = {z ∈ C : |z| <
1} and A denote the class of functions f ∈ H, having the form

f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ D. (1.1)

We denote by S, the subclass of A consisting of functions which are also univalent
in D.

It is well-known that the function f ∈ S of the form (1.1) has an inverse f−1,
which is analytic in |w| < r0(f) (r0(f) ≥ 1/4). If f ∈ S given by (1.1), then

f−1(w) = w + γ2w
2 + γ3w

3 + · · · , |w| < r0(f). (1.2)

Löwner [19] proved that, if f ∈ S and its inverse is given by (1.2), then the sharp
estimate

|γn| ≤
Γ(2n+ 1)

Γ(n+ 1)Γ(n+ 2)
(1.3)

holds. It has been shown that the inverse of the Koebe function k(z) = z/(1− z)2

provides the best bounds for all |γk| (k = 2, 3, · · · ) in (1.3) over all members of S.
Libera et al. [16] obtained a relationship between the coefficients of f and f−1

for all f of the form (1.1) when f(D) is a convex region. On the other hand, Krzyż
et al. [14] investigated bounds on initial coefficients of inverse of starlike functions
of order α and their results were extended by Kapoor and Mishra [11]. Further,
Ali [1] studied sharp bounds on early coefficients of inverse functions when function
belongs to the class of strongly starlike functions.
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Libera et al. [17] investigated the bounds on early coefficients of inverse of
functions, which are defined by

f(z) =

∫ z

0

p(ζ) dζ, z ∈ D. (1.4)

Here p is a member of the class P of Carathéodory functions (see [5, p. 40]) that
consists of functions p ∈ H with <(p(z)) > 0, having the form

p(z) = 1 + c1z + c2z
2 + · · · , z ∈ D. (1.5)

The class of all functions f(z) satisfying (1.4) is denoted by I.
The Hankel determinant of Taylor coefficients of functions f ∈ A of the form

(1.1), is denoted by Hq,n(f), which is defined by

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ (a1 = 1; n, q ∈ N = {1, 2, · · · }).

Several researchers including Cantor [4], Noonan and Thomas [21], Pommerenke
[22], Hayman [9], Ehrenborg [6] and many more have studied the Hankel determi-
nant and given some remarkable results, which are useful, for example, in showing
that a function of bounded characteristic in the unit disk D.

Indeed, H2,1(f) = Λ1(f) is the Fekete-Szegö functional, which have been studied
for various subclasses of S [12, 13, 18]. Recently many authors have studied the
problem of calculating maxf∈F |H2,2(f)| for various subclasses of A [2, 10, 15]. The
third Hankel determinant H3,1(f) is given by

H3,1(f) =
a1 a2 a3

a2 a3 a4

a3 a4 a5

= a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

Recently, authors have obtained bounds on |H3,1(f)| for certain classes of analytic
functions [3, 20]. Also, Raza and Malik [23] have obtained the bounds on |H3,1(f)|
for a subclasses of analytic functions associated with right half of the lemniscate of
Bernoulli (x2 + y2)2 − 2(x2 − y2) = 0.

In this paper, we examine the upper bounds on |H2,1(f)| and |H3,1(f)| for the
coefficients of inverse functions f−1 of the form (1.2) when f belongs to the class
I. To obtain our main results, we shall need the following results:

Lemma 1.1. ([5, 12, 17]) Let the function p ∈ P be given by the power series (1.5).
Then

(a) |cn| ≤ 2, n ∈ N = {1, 2, . . .}. This inequality is sharp and equality holds for

every function pε(z) =
1 + εz

1− εz
(z ∈ D, |ε| = 1).

(b) max |c2 − λc21| = 2 max{1, |2λ− 1|}, for any complex number λ.



COEFFICIENT BOUNDS FOR INVERSE OF CERTAIN UNIVALENT FUNCTIONS 61

Lemma 1.2. ([8]) The power series (1.5) converges in D to a function in P, if
and only if the Toeplitz determinants

Tn(p) =

∣∣∣∣∣∣∣∣∣∣∣

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2

...
...

...
. . .

...
c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N

and c−n = cn, are all nonnegative. The only exception is when p(z) has the form

p(z) =

m∑
ν=1

ρν
1 + ενz

1− ενz
, m ≥ 1,

where ρν > 0, |εν | = 1, and εk 6= εl if k 6= l; k, l = 1, 2, · · · ,m; we have then
Tn(p) > 0 for n < m− 1 and Tn(p) = 0 for n ≥ m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and
can be found in [8]. Note that for n = 2

T2(p) =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣ = 8 + 2<{c21c2} − 2|c2|2 − 4|c1|2 ≥ 0,

is equivalent to

2c2 = c21 + x(4− c21) (1.6)

for some x with |x| ≤ 1. Further, if

T3(p) =

∣∣∣∣∣∣∣∣
2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

∣∣∣∣∣∣∣∣ ,
then T3(p) ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (1.7)

Solving (1.7) with the help of (1.6), we get

4c3 = c31 + 2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z, (1.8)

for some x and z with |x| ≤ 1 and |z| ≤ 1.

Lemma 1.3. ([17, Theorem 1]) If f ∈ I and its inverse f−1 having the form (1.2).
Then

|γ2| ≤ 1, |γ3| ≤
4

3
, |γ4| ≤

13

6
, |γ5| ≤

59

15
and |γ6| ≤

344

45
. (1.9)

The bounds in (1.9) are best possible.

2. Main Results

Theorem 2.1. Let f ∈ I be of the form (1.1) and its inverse f−1 be given by
(1.2). Then

|γ2γ3 − γ4| ≤
13
√

78

108
and |γ2γ4 − γ2

3 | ≤
137

288
. (2.1)
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Proof. Let f ∈ I be of the form (1.1) and its inverse f−1 is given by (1.2). Then it
is well known [17, Eq. 3.4] that

γ2 = −1

2
c1, γ3 =

1

6
(3c21 − 2c2) and γ4 =

1

24
(20c1c2 − 15c31 − 6c3), (2.2)

which gives
|γ2γ3 − γ4| =

1

24
|9c31 − 16c1c2 + 6c3|

and

|γ2γ4 − γ2
3 | =

1

144
|9c41 − 12c21c2 − 16c22 + 18c1c3|.

(2.3)

By using (1.6) and (1.8) from Lemma 1.2 in (2.3), we obtain
|γ2γ3 − γ4| =

1

48
|5c31 + (4− c21){−10c1x− 3c1x

2 + 6(1− |x|2)z}|
and

|γ2γ4 − γ2
3 | =

1

288
|7c41 + (4− c21){−10c21x− 8x2(4− c21)

−9c21x
2 + 18c1(1− |x|2)z}|.

(2.4)

If p(z) ∈ P, then p(eiαz) ∈ P. We can always select a real α in p(eiαz) so that
cne

iαn ≥ 0. Hence we may suppose that cn ≥ 0 (n ∈ N). Further, the power series
(1.5) converges in D to a function in P, if and only if the Toeplitz determinants
Tn(p) and c−n = cn, are all nonnegative, i.e. c1 is real, c1 ≥ 0, and by Lemma
1.1, it is clear that |c1| ≤ 2. Therefore, letting c1 = c, we may assume without
restriction that c ∈ [0, 2]. Hence, applying triangle inequality with µ = |x|, we
obtain

|γ2γ3 − γ4| ≤
1

48
[5c3 + (4− c2){10cµ+ 3cµ2 + 6(1− µ2)}]

:= A(c, µ)
and

|γ2γ4 − γ2
3 | ≤

1

288
[7c4 + (4− c2){10c2µ+ 32µ2 + c2µ2 + 18c(1− µ2)}]

:= B(c, µ).

Now to prove our results, we need to maximize the values of A and B over the
region Ω = {(c, µ) : 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1}. For this, first differentiating A
with respect to µ and c, we obtain

∂A

∂µ
=

1

48

[
(4− c2){10c+ 6µ(c− 2)}

]
, (2.5)

and
∂A

∂c
=

1

48

[
40µ+ 12µ2 + 12(µ2 − 1)c+ 3(5− 10µ− 3µ2)c2

]
. (2.6)

A critical point of A(c, µ) must satisfy ∂A
∂µ = 0 and ∂A

∂c = 0. The condition ∂A
∂µ = 0

gives c = ±2 or µ = 5c
3(2−c) . Points (c, µ) satisfying such conditions are not interior

point of Ω. So the maximum cannot attain in the interior of Ω. Now to see on
the boundary, taking the boundary line L1 = {(0, µ) : 0 ≤ µ ≤ 1}, we have
A(0, µ) = (1−µ2)/2, and its maximum on this line is equal to 1/2, which is attained
at the point (0, 0). On the boundary line L2 = {(2, µ) : 0 ≤ µ ≤ 1}, we have
A(2, µ) = 5/6, which is a constant. On the boundary line L3 = {(c, 0) : 0 ≤ c ≤ 2},
we have A(c, 0) = (5c3 − 6c2 + 24)/48, and the maximum on this line is 5/6, which
is attained at the point (2, 0). On the line L4 = {(c, 1) : 0 ≤ c ≤ 2}, we have
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A(c, 1) = (52c − 8c3)/48, and the maximum on this line is 13
√

78/108 which is

attained at the point (
√

13/6, 1). Comparing these results, we observe that

A(0, 0) < A(2, µ) < A(
√

13/6, 1).

Thus we get

max
Ω

A(c, µ) = A(
√

13/6, 1) = 13
√

78/108.

Using the same procedure to find the maxima for B(c, µ), we get

max
Ω

B(c, µ) = B(
√

3/2, 1) = 137/288.

This completes the proof of Theorem 2.1. �

Theorem 2.2. Let f ∈ I be of the form (1.1) and its inverse f−1 be given by
(1.2). Then for any complex number µ,

|γ3 − µγ2
2 | ≤

2

3
max

{
1,
|4− 3µ|

2

}
. (2.7)

Proof. Using (2.2), we get

|γ3 − µγ2
2 | =

1

3

∣∣∣∣c2 − 6− 3µ

4
c21

∣∣∣∣ . (2.8)

The result now follows from Lemma 1.1. �

If we take µ = 1 in Theorem 2.2, we get

Corollary 2.3. Let f ∈ I be of the form (1.1) and its inverse f−1 be given by
(1.2). Then

|γ3 − γ2
2 | ≤

2

3
. (2.9)

Theorem 2.4. Let f ∈ I be of the form (1.1) and its inverse f−1 be given by
(1.2). Then

|H3,1(f−1)| ≤ 10551 + 845
√

78

3240
.

Proof. By definition,

H3,1(f−1) =
γ1 γ2 γ3

γ2 γ3 γ4

γ3 γ4 γ5

= γ3(γ2γ4 − γ2
3)− γ4(γ4 − γ2γ3) + γ5(γ3 − γ2

2).

Now by using, Lemma 1.3, Theorem 2.1, Corollary 2.3 and the triangle inequality,
we get

|H3,1(f−1)| ≤ |γ3||γ2γ4 − γ2
3 |+ |γ4||γ2γ3 − γ4|+ |γ5||γ3 − γ2

2 |

≤ 4

3

137

288
+

13

6

13
√

78

108
+

59

15

2

3

=
10551 + 845

√
78

3240
.

�
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[14] J. G. Krzyż, R. J. Libera, E. J. Z lotkiewicz, Coefficients of inverse of regular starlike func-

tions, Ann. Univ. Marie Curie-Sk lodowska Sect, A 33 (10) (1979) 103–109.

[15] S. K. Lee, V. Ravichandran, S. Subramaniam, Bounds for the second Hankel determinant of
certain univalent functions, J. Inequal. Appl. 2013 (2013) Article 281.

[16] R. J. Libera, E. J. Z lotkiewicz, Early coefficients of the inverse of a regular convex function,

Proc. Amer. Math. Soc. 85 (2) (1982) 225–230.
[17] R. J. Libera, E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with deriva-

tives in P, Proc. Amer. Math. Soc. 87 (2) (1983) 251–257.
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