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SYMMETRY AND PERIODIC-CHAOS IN 3-D SINUSOID

DISCRETE MAPS

MOHAMMED MAMMERI

Abstract. In this paper, we investigate the effectiveness of the sinusoid map
in a new simple 3-D discrete map, that realizes a new physical phenomenon,
called symmetry and periodic-chaos. This phenomenon is justified by numeri-
cal investigation, and the new simple 3-D discrete maps produce several chaotic
attractors obtained by the quasi-periodic route to chaos.

1. Introduction

It is well-known in the theoretical research the sinusoid map play an important
role in mathematics due to the properties of this map, sinusoid map or sinusoidal
map is generally the sine map which is related to the oscillations, can describe
many oscillating phenomena. This map is very commonly used in pure and applied
mathematics [1], [2], in addition to mathematics, sinusoid map occur in other fields
of study such as science, and physics and engineering [3], [5]. This map also occur in
nature, many processes in nature display repeating patterns described by sinusoid
map as seen in ocean waves, sound waves, light waves and many other fields. Some
authors have described chaotic map with sinusoid map [4], [6], [7],[8], [9]. In recent
years, many documents have described 3-D chaotic maps such as with quadratic
inverse [10], [11], [12], [13], [14]. Doubtless, the study of 3-D discrete map such
as with sinusoid map is interesting contribution to the development of the theory
of dynamical systems. This short paper investigate the effect of the sinusoid map
in a 3-D discrete maps, the proposed 3-D discrete map (1) is defined with two
sinusoid nonlinearities, topologically different from any other know 3-D maps, this
paper introduces and justifies numerically a new physical phenomenon, shown by
the new simple 3-D discrete map (1) which is the chaotic behavior in the map (1)
is periodic, i.e., that the chaos repeats itself regular after cycles are called periods.
Furthermore the chaotic attractors obtained for the map (1) are symmetric about
the origin.

Here we consider essentially the following modified 3-D map (1):
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 (1)

Where(a, b, c) ∈ R
3 are bifurcation parameters and (xt, yt, zt) ∈ R

3 are the state
variables. The choice of sinusoidal map has an important role, is to guarantee the
boundedness of the orbits of the map (1) for all values of a, b and c. Generally,
the map (1) is not symmetric and the associated map of the new 3-D map (1) is
continuous and differentiable on R

3. Furthermore the Jacobian matrix of the map
(1) is not constant and equal to b cos z (b 6= 0 and cos z 6= 0).

The map (1) can be transform into a third-order difference equation as follows:

zt+1 = a+ b sin zt−2 + c sin zt−1 − sin zt (2)

2. Analytical analysis of Parameters

In this section we will show that the all orbits of the map (1) are bounded and
are lies inside in a cuboid and we investigate domains for the bifurcation parameters
(a, b, c) ∈ R

3 in which the fixed points of the map (1) are asymptotically stable.

Theorem 1. The all orbits of the map (1) are bounded for every (a, b, c) ∈ R
3 and

t > 2, and for all finite initial conditions (x0, y0, z0).

Proof. We use the following standard results: The real sequence (zn)n is bounded
if there is one positive real k such that |zn| ≤ k for every n ∈ N. In our case the
sequence (zt)t given in (2) satisfies the following inequality: |zt| ≤ 1+ |a|+ |b|+ |c|
because |sin z| ≤ 1 for every z ∈ R. Since the real 1 + |a|+ |b|+ |c| is positive, thus
the sequence (zt)t is bounded for every (a, b, c) ∈ R

3 and t > 2. Thus implies the
all orbits of the map (1) are bounded for every (a, b, c) ∈ R

3 and t > 2, and for all
finite initial conditions (x0, y0, z0) ∈ R

3.

It was shown in [16] that the all bounded orbits of the Hénon map are lies inside
in a square, and it was shown in [15] that the all bounded orbits of the volume
preserving map are lies inside in a cube. Similarly, we will show that the all orbits
of the map (1) are lies inside in a cuboid.

Theorem 2. The all orbits of the map (1) are lies inside in the following cuboid:
{

(x, y, z) ∈ R
3 : |x| ≤ 1, |y| ≤ 1, |z| ≤ 1 + |a|+ |b|+ |c|

}

(3)

Proof. It’s very easy to prove this theorem, since the map (1) is equivalent to:




xt+1

yt+1

zt+1



 =





sin zt−1

sin zt
a+ b sin zt−2 + c sin zt−1 − sin zt



 (4)

Theorem 3. The fixed point A(x, y, z) of the map (1) is asymptotically stable for
all a ∈ R if and only if (b, c) ∈ ∪i=2

i=1Ωi, where:

Ω1 :

{

−1 < b < 1
b(b+1) cos2 z−1

cos z < c <
1−(1−b) cos z

cos z

(5)
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Ω2 :

{

−1 < b < 1
1+(1−b) cos z

cos z < c <
b(b+1) cos2 z−1

cos z

(6)

Proof. The characteristic polynomial of the Jacobian matrix of the map (1) calcu-
lated at the fixed point A(x, y, z), which takes the form: PA(λ) = λ3 + cos zλ2 −
c cos zλ − b cos z, according to the result available in [17], we conclude that the
fixed point A of the map (1) is asymptotically stable if and only if the follow-
ing conditions holds: (1) |b cos z| < 1, (2) 1 + cos z − c cos z − b cos z > 0, (3)
1− cos z− c cos z+ b cos z > 0 and (4) 1− b2 cos2 z > b cos2 z− c cos z. From (1) we
have (5) |b| < 1, and from (2), (3) and (5) we have (6) c cos z < 1 − (1 − b) |cos z| ,
and from (4) we have (7) c cos z > b(b+ 1) cos2 z − 1, and from (6) and (7) we get
(8) b(b+1) cos2 z−1 < c cos z < 1−(1−b) |cos z| . Finally, by the conditions (5) and
(8) we can obtain the conditions of asymptotic stability for the fixed point A.

For example, the fixed points of the map (1) are the real solutions of the system:

x = y, y = sin z, z = a+ b sin z + c sin z − sin z

Hence, one may easily obtain the equation:

z − (b+ c− 1) sin z − a = 0

Can’t be compute the fixed points of the map (1) analytically, we remark if a = 0,
the point (0, 0, 0) it is fixed point of the map (1) for all values of the bifurcation
parameters (b, c) ∈ R

2. Thus one has the following theorem:

Theorem 4. If a = 0, the fixed point (0, 0, 0) of the map (1) is asymptotically
stable if and only if the following condition is satisfied:

{

−1 < b < 1
b(b+ 1)− 1 < c < b

(7)

If we choose a = 0, b = 0.8 and c = 0.1. Then with this values the map (1) has
only one fixed point (0, 0, 0), the fixed point is asymptotically stable, since we have
the following three eigenvalues: λ1 = −0.8566 − 0.6229i, λ2 = −0.8566 + 0.6229i
and λ3 = −0.3380, thus |λ1,2,3| < 1.

3. Numerical Analysis of Parameters

In this section, we will illustrate some observed chaotic attractors, the dynamical
behaviors of the map (1) are investigated numerically. Figures 1 shows the bifurca-
tion diagram and the diagram of the variation of the largest Lyapunov exponent of
the map (1) that are obtained at different values of parameter a, a ∈ [−4, 4] . How-
ever, we deduce from the bifurcation diagram Fig.1(a), that the proposed map (1)
exhibit a quasi-periodic bifurcation scenario route to chaos for the selected values
of the bifurcation parameter a.

First, we fix the initial condition x0 = y0 = z0 = 0.01 and b = 0.8, c = 0.9 and
let the parameter a vary in the interval [−4, 4], the map (1) exhibits the following
dynamical behaviors as shown in Fig.1(a) and Fig.1(b): For the range −1.68 <

a ≤ 0 the dynamical behavior of the map (1) is periodic, which is verified by the
corresponding largest Lyapunov exponent is negative as shown in Fig.1(b), for the
range −2.32 < a ≤ −1.68 the dynamical behavior the map (1) is quasi-periodic
with periodic windows, at the point a = −2.24 the dynamical behavior the map (1)
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is in the quasi-periodic-19 attractor as shown in Fig.4(e), Fig.4(f) shows the quasi-
periodic attractor of the map (1) when a = 1.84, for the range −2.72 < a ≤ −2.32
the dynamical behavior of the map (1) is chaotic with periodic windows in the
chaotic band which is verified by the corresponding largest Lyapunov exponent is
positive. For the range −3.6 < a ≤ −2.72 the dynamical behavior of the map
(1) is quasi-periodic with periodic windows, at the point a = −2.72 the dynamical
behavior the map (1) is in the quasi-periodic-40 as shown in Fig.4(d), and at the
point a = −3.52 the behavior is quasi-periodic, as shown in Fig.4(c), for the range
−4 ≤ a ≤ −3.6 the behavior of the map (1) is chaotic with periodic windows in the
chaotic band which is verified by the corresponding largest Lyapunov exponent is
positive, Fig.4(a) and Fig.4(b) shows respectively the chaotic attractors of the map
(1) when a = −3.76 and a = −3.6.

Secondly, for the range 0 ≤ a < 1.68 the dynamical behavior of the map (1)
is periodic, which is verified by the corresponding largest Lyapunov exponent is
negative as shown in Fig.1(b), for the range 1.68 ≤ a < 2.32 the dynamical behavior
of the map (1) is quasi-periodic orbits with periodic windows, at the point a = 2.24
the dynamical behavior of the map (1) is in the quasi-periodic-19 as shown in
Fig.5(e), Fig.5(f) shows the quasi-periodic attractor of the map (1) when a = 1.84,
for the range 2.32 ≤ a < 2.72 the dynamical behavior of the map (1) is chaotic
with periodic windows in the chaotic band which is verified by the corresponding
largest Lyapunov exponent is positive. For the range 2.72 ≤ a < 3.6 the dynamical
behavior of the map (1) is quasi-periodic with periodic windows, at the point a =
2.72 the dynamical behavior of the map (1) is in the quasi-periodic-40 as shown
in Fig.5(d), and at the point a = 3.52 the dynamical behavior is quasi-periodic as
shown in Fig.5(c), for the range 3.6 ≤ a ≤ 4 the dynamical behavior of the map
(1) is chaotic with periodic windows in the chaotic band which is verified by the
largest Lyapunov exponent is positive, Fig.5(a) and Fig.5(b) respectively show the
chaotic attractors of the map (1) when a = 3.76 and a = 3.6.

From the bifurcation diagrams in Fig.1(a), Fig.2(a), Fig.3(a) and Fig.4(a), we
deduce that the chaotic behavior in the map (1) is regular periodic and has a
horizontal stretch, i.e., that the chaos repeats itself as it moves along the a− axis

and the cycles of this regular repeating are called periods, and the amplitude of this
chaotic bands will be 1 (it ranges from −1 to +1) as shown in Fig.1(a), Fig.2(a),
Fig.3(a) and Fig.4(a). Furthermore, the attractors given in Figures 5 and Figures
6 are respectively symmetric about the origin and inside the two finite intervals
[−4, 0] and [0, 4] . This phenomenon called symmetry with regular periodic chaos.
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Figure 1. Fig.1(a): Bi-
furcation diagram, the
symmetry quasi-periodic
route to chaos for the
map (1) obtained for b =
0 : 8, c = 0 : 9 and
−4 ≤ a ≤ 4

Figure 2. Fig.1(b):
Variation symmetry of
the largest Lyapunov
exponent of the map (1)
for b = 0 : 8, c = 0 : 9
and −4 ≤ a ≤ 4.

Figure 3. Fig.2(a): Bi-
furcation diagram, the
symmetry quasi-periodic
route to chaos for the
map (1) obtained for b =
0 : 8, c = 0 : 9 and
−3 ≤ a ≤ 3

Figure 4. Fig.2(b):
Variation symmetry of
the largest Lyapunov
exponent of the map (1)
for b = 0 : 8, c = 0 : 9
and −3 ≤ a ≤ 3.

[6] E. Zeraoulia, J. C. Sprott, On some universal dynamics of a 2-D Hénon-like mapping with an
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Figure 5. Fig.3(a): Bi-
furcation diagram, the
symmetry quasi-periodic
route to chaos for the
map (1) obtained for b =
0 : 8, c = 0 : 9 and
−8 ≤ a ≤ 8

Figure 6. Fig.3(b):
Variation symmetry of
the largest Lyapunov
exponent of the map (1)
for b = 0 : 8, c = 0 : 9
and −8 ≤ a ≤ 8.

Figure 7. Fig.4(a): Bi-
furcation diagram, the
symmetry quasi-periodic
route to chaos for the
map (1) obtained for b =
0 : 8, c = 0 : 9 and
−12 ≤ a ≤ 12

Figure 8. Fig.4(b):
Variation symmetry of
the largest Lyapunov
exponent of the map (1)
for b = 0 : 8, c = 0 : 9
and −12 ≤ a ≤ 12.

Figure 9. Fig.5(a): a = −3.76 Figure 10. Fig.5(b): a = −3.6.
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Figure 11. Fig.5(c): a = −3.52 Figure 12. Fig.5(d):
a = −2.72.

Figure 13. Fig.5(e): a = −2.24 Figure 14. Fig.5(f):
a = −1.84.

Figure 15. Fig.6(a): a = 3.76 Figure 16. Fig.6(b): a = 3.6.
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Hénon Maps that Originate from a Homoclinic Bifurcation, Regular and Chaotic Dynamics,

11 (2), (2006), 191-212.
[12] S. V. Gonchenko, V. S, Gonchenko, and J. C. Tatjar, Bifurcation of Three-Dimensional Dif-

feomorphisms Non-Simple Quadratic Homoclinic Tangencies and Generalized Hénon Maps,
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Figure 17. Fig.6(c): a = 3.52 Figure 18. Fig.6(d): a = 2.72.

Figure 19. Fig.6(e): a = 2.24 Figure 20. Fig.6(f): a = 1.84.
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