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ANALYTIC STUDY OF ALLEN-CAHN EQUATION OF

FRACTIONAL ORDER

DEVENDRA KUMAR, JAGDEV SINGH, DUMITRU BALEANU

Abstract. The key purpose of the present article is to analyze the Allen-
Cahn equation of fractional order. The fractional Allen-Cahn equation models
the process of phase separation in iron alloys, along with order-disorder transi-

tions. The analytical technique is employed to investigate the fractional model
of Allen-Cahn equation. The numerical results are shown graphically. The out-
comes show that the analytical technique is very efficient and user friendly for
handling nonlinear fractional differential equations describing the real world

problems.

1. Introduction

The Allen–Cahn (A-C) equation finds its applications in science and engineering
[1-3]. The A-C equations is a nonlinear PDE expressed in the following manner

ρη(ζ, η)− ρζζ + ρ3 − ρ = 0, (1.1)

with the initial condition

ρ(ζ, 0) = f(ζ), (1.2)

occurs as a model to investigate the process of phase separation in iron alloys,
along with order-disorder transitions. Fractional ordered derivatives supply an ex-
cellent instrument for the interpretation of long memory and hereditary properties
of various materials, systems and processes. It is in this sense that the key char-
acteristic of positive real-order derivative, is the well known memory effect. Many
real word problems demonstrate long memory properties. It has been shown by
many researchers that fractional generalizations of integer order models describe
the natural phenomena in a very efficient manner such as Caputo [4], Podlubny
[19], Miller and Ross [16], Kilbas et al. [9], Srivastava [21], Yang et al. [23-26], Ku-
mar et al. [10], Cattani et al. [5], Zhukovsky and Srivastava [27,28], Mokhtary [17]
and others. Due to this reason in this work, we analyze the fractional generalization
of A–C equation (1.1) presented as
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Dβ
ηρ(ζ, η)− ρζζ + ρ3 − ρ = 0, (1.3)

with the initial condition

ρ(ζ, 0) = f(ζ), (1.4)

In Eq. (1.3) Dβ
ηρ(ζ, η) represents the fractional order differential coefficient of the

function ρ(ζ, η) in terms of Caputo. If we take β = 1, the fractional A-C equation
(1.3) becomes the standard A-C equation. The nonlinear differential equations
associated with fractional derivative are very hard to solve and and take a lot of
time. The fractional A-C equation was studied by using homotopy analysis scheme
[6]. The Chinese researcher Liao [13-15] has discovered an analytical approach
named homotopy analysis method (HAM) for solving nonlinear models of physical
problems. In recent times, analytical approaches have also been combined with
well known Laplace transform scheme to investigate nonlinear equations by many
authors such as Khuri [8], Kumar et al. [11,12], Khan [7], Swroop et al. [22], Singh
et al. [20], and many others.
In the present investigation, we analyze the nonlinear fractional A-C equation with
the aid of homotopy analysis transform method (HATM). The HATM is a novel and
efficient amalgamation of the HAM, homotopy polynomials and standard Laplace
transform scheme. It is very interesting to notice that the technique is a combi-
nation of two robust computational techniques for handling nonlinear fractional
problems.

2. Basic Definitions of fractional calculus and Laplace transform

Here we mention some important definitions and formulas of theory of fractional
derivatives and integrals which shall be employed in this article:
Definition 1. The fractional integral operator of order β > 0, of a function
ρ(ζ, η) ∈ Cµ, µ ≥ −1 in terms of Riemann-Liouville is expressed as [19]:

Jβρ(ζ, η) =
1

Γ(β)

∫ η

0

(η − τ)β−1ρ(ζ, τ)dτ, (β > 0), (2.1)

J0ρ(ζ, η) = ρ(ζ, η). (2.2)

The following result holds for the Riemann-Liouville fractional integral:

Jβηγ =
Γ(γ + 1)

Γ(γ + β + 1)
ηβ+γ . (2.3)

Definition 2. The fractional derivative of ρ(ζ, η) in terms of Caputo is presented
as [4]:

Dβρ(ζ, η) = Jn−βDnρ(ζ, η)

=
1

Γ(n− β)

∫ η

0

(η − τ)n−β−1ρ(n)(ζ, τ)dτ, (2.4)

for n− 1 < β ≤ n, n ∈ N, η > 0.
Definition 3. The Laplace transform formula for the fractional derivative in terms
of Caputo is presented as [4,9]
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L [D
β
ρ(ζ, η)] = pβ L[ρ(ζ, η)]−

n−1∑
r=0

pβ−r−1 ρ(r)(ζ, 0 + ), (n − 1 < β ≤ n) . (2.5)

3. Basic idea of HATM

The HATM is an innovative mixture of the Laplace transform algorithm, HAM and
homotopy polynomails. We take the following fractional nonlinear PDE:

Dβ
η ρ(ζ, η) +R ρ(ζ, η) +N ρ(ζ, η) = g(ζ, η), n− 1 < β ≤ n, (3.1)

here ρ(ζ, η) indicates an unknown function of two variables ζ and η, Dβ
η = ∂β

∂ηβ

represents the fractional operator of order β defined by Caputo, n ∈ N, R denotes
the linear operator, N stands for the nonlinear part which may consist of the space
derivatives of integer order or fractional order and the term g(ζ, η)denotes the source
function.
Firstly, we apply the Laplace transform on fractional equation (3.1), it gives the
result

L[ρ(ζ, η)]− 1

pβ

n−1∑
k=0

pβ−k−1ρ(k)(ζ, 0) +
1

pβ
L [R ρ(ζ, η) +N ρ(ζ, η)− g(ζ, η)] = 0.

(3.2)
We define the nonlinear operator in the following form

N [δ(ζ, η; q)] = L[δ(ζ, η; q)]− 1

pβ

n−1∑
k=0

pβ−k−1δ(ζ, η; q)(k)(0)

+
1

pβ
L [Rδ(ζ, η; q) +Nδ(ζ, η; q)− g(ζ, η)] . (3.3)

In the above expression q ∈ [0, 1] is representing the embedding parameter and
δ(ζ, η ; q) is indicating a function depends on ζ, η and q. By using the HAM [13-
15], we build up a homotopy in the following manner

(1− q)L [δ(ζ, η; q)− ρ0(ζ, η)] = ~ qW (ζ, η)N [δ(ζ, η; q)], (3.4)

In the above equation L stands for the standard Laplace transform operator,W (ζ, η)
represents a nonzero auxiliary function, ~ ̸= 0 indicates an auxiliary parameter,
ρ0(ζ, η) denotes an initial guess of ρ(ζ, η). On setting q = 0 and q = 1, it gives the
results:

δ(ζ, η ; 0) = ρ0(ζ, η), δ(ζ, η ; 1) = ρ(ζ, η), (3.5)

respectively. It is obvious that as the values of q increases from 0 to 1, the solution
δ(ζ, η ; q) changes from the initial guess ρ0(ζ, η) to the solution ρ(ζ, η). On express-
ing δ(ζ, η ; q) in series form with respect to q by using well known Taylor’s theorem,
we have

δ(ζ, η ; q) = ρ0(ζ, η) +
∞∑

m=1

ρm(ζ, η) qm, (3.6)

where
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ρm(ζ, η) =
1

m !

∂mδ(ζ, η ; q)

∂qm
|q=0. (3.7)

If ~ and W (ζ, η) are selected in proper way, the series (3.6) converges at q = 1,
then we have

ρ(ζ, η) = ρ0(ζ, η) +
∞∑

m=1

ρm(ζ, η). (3.8)

The Eq. (3.8) must be one of the solutions of the nonlinear fractional equation
(3.1). Now, we differentiate the Eq. (3.4) m-times with respect to q and then the
resulting expression is divided by m! and finally letting q = 0, we arrive at the
subsequent equation:

L [ρm(ζ, η)− χmρm−1(ζ, η)] = ~W (ζ, η)ℜm(ρ⃗m−1). (3.9)

Now using the inverse of Laplace transform operator on Eq. (3.9), we have

ρm(ζ, η) = χmρm−1(ζ, η) + ~L−1[W (ζ, η)ℜm(ρ⃗m−1)]. (3.10)

where

ℜm(ρ⃗m−1) = L[ρm−1(ζ, η)]− (1− χm)
1

pβ

n−1∑
k=0

pβ−k−1δ(ζ, η; q)(k)(0)

+
1

pβ
[Lρm−1 +Bm−1 − g(ζ, η)] , (3.11)

χm =

{
0, m ≤ 1,
1, m > 1

(3.12)

Bm(ρ0, ρ1, ..., ρm) are homotopy polynomials [18] given in the following form

Bm =
1

Γ(m)

[
∂m

∂qm
Nδ(ζ, η; q)

]
q=0

, (3.13)

and
δ(ζ, η; q) = δ0 + qδ1 + q2δ2 + · · · . (3.14)

4. HATM for nonlinear fractional Allen-Cahn equation

Firstly, we apply the Laplace transform on fractional A-C equation (1.3) and use
the initial condition (1.4), it gives the result

L[ρ(ζ, η)]− 1

p
f(ζ) +

1

pβ
L
[
−ρζζ + ρ3 − ρ

]
= 0. (4.1)

We define the nonlinear operator in the following form

N [δ(ζ, η; q)] = L[δ(ζ, η; q)]]− 1

p
f(ζ) +

1

pβ
L
[
−δζζ(ζ, η; q) + δ3(ζ, η; q)− δ(ζ, η; q)

]
.

(4.2)
The mth-order deformation equation is presented as:

L [ρm(ζ, η)− χmρm−1(ζ, η)] = ~W (ζ, η)ℜm(ρ⃗m−1). (4.3)

Now using the inverse of classical Laplace transform on Eq. (4.3), we have
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ρm(ζ, η) = χmρm−1(ζ, η) + ~L−1[W (ζ, η)ℜm(ρ⃗m−1)]. (4.4)

where

ℜm(ρ⃗m−1) = L[ρm−1(ζ, η)]− (1− χm)
f(ζ)

p
+

1

pβ

[
−∂2ρm−1

∂ζ2
+Bm−1 − ρm−1

]
,

(4.5)

χm =

{
0, m ≤ 1,
1, m > 1

(4.6)

Bm(ρ0, ρ1, ..., ρm) are homotopy polynomials [18] given in the following form

Bm =
1

Γ(m)

[
∂m

∂qm
δ3(ζ, η; q)

]
q=0

, (4.7)

and
δ(ζ, η; q) = δ0 + qδ1 + q2δ2 + · · · . (4.8)

Next, on taking the initial approximation ρ0(ζ, η) = f(ζ), W (ζ, η) = 1 and using
the recursive relation (4.4), we have the following iterates of the HATM solution:

ρ1(ζ, η) = ~
[
−f

′′
(ζ) + f3(ζ)− f(ζ)

] ηβ

Γ(β + 1)
, (4.9)

ρ2(ζ, η) = ~(1 + ~)
[
−f

′′
(ζ) + f3(ζ)− f(ζ)

] ηβ

Γ(β + 1)

+~2[f
′′′′
(ζ)− 6f(ζ)(f

′
)2(ζ)− 6f2(ζ)f

′
(ζ) + 3f2(ζ)− 4f3(ζ)

+ 2f
′′
(ζ) + f(ζ)]

η2β

Γ(2β + 1)
(4.10)

...

Making use of the same process, the components ρm,m ≥ 0 of the HATM solution
can be found and consequently the solution completely obtained.
Hence, we approximate the HATM solution by the truncated series

ρ(ζ, η) = lim
N→∞

N∑
m=0

ρm(ζ, η). (4.11)

5. Numerical results and discussions

We calculate the numerical results for different values of space variable ζ, time
variable η and time-fractional Brownian motions β = 0.75, 0.50, 0.25 and for the
standard motion β = 1. In order to compute numerical results, we take the initial
condition ρ(ζ, 0) = f(ζ) = 1

1+exp
(
−

√
2

2 ζ
) for nonlinear fractional AC equation (1.3).

The numerical results for the distance ρ(ζ, η) for different values of space variable
ζ, time variable η and β are depicted through Figs. 1-6. Fig. 1 represents the
~-curves. The horizontal line segment indicates the range of convergence of HATM
series solution. Figs. 2-5 depict the surface of the distance ρ(ζ, η) for different values
of β. It can be noticed form Figs. 2-5 that the order of time-derivative significantly
affects the distance and on changing the value of β, we get the very interesting
results. Fig. 6 shows the response of distance ρ(ζ, η) with respect to time for
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Figure 1. ~−curve of HATM solution for various responses of β
at ζ = 1 and η = 0.1.

Figure 2. The surface of the HATM solution ρ(ζ, η) w.r.t. ζ and
η are found, when β = 1 and h = −1.

different values of β. It can be noticed from Fig. 6 that initially on increasing the
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Figure 3. The response of the HATM solution ρ(ζ, η) w.r.t. ζ
and η are found, when β = 0.75 and h = −1.

Figure 4. The response of the HATM solution ρ(ζ, η) w.r.t. ζ
and η are found, when β = 0.50 and h = −1.

value of β, the value of distance ρ(ζ, η) decreases but after some time on increasing
the value of β, the value of distance ρ(ζ, η) increases.
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Figure 5. The response of the HATM solution ρ(ζ, η) w.r.t. ζ
and η are found, when β = 0.25 and h = −1.

Figure 6. Plots of HATM solution ρ(ζ, η) vs. η for various values
of β at ζ = 0.5 and h = −1.
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6. Conclusions

In this study, the fractional A-C equation is successfully examined with the aid
of HATM. The HATM is a very innovative and strong computational approach to
solve nonlinear fractional equations. The HATM contains an auxiliary parameter
~ by which we can insure the convergence of the solutions. Thus, it to be worth
mentioning that the HATM is very simple, easy to use and more powerful com-
putational scheme for analyzing nonlinear problems. The most important part of
this investigation is to analyze the fractional A-C equation and related issues. The
numerical results for distance ρ(ζ, η) are presented graphically that reveals that the
order of derivative significantly affects the distance. Hence, it is to be concluded
that the proposed algorithm is very powerful and well organized to study analyt-
ically as well as numerically to fractional order mathematical models describe the
real world problems in a better and systematic manner.

Acknowledgments. The authors would like to thank the anonymous referees for
their comments and suggestions that helped us to improve this paper.

References

[1] S. M. Allen and J. W. Cahn, On tricritical points resulting from the intersection of lines of
higher-ordered transitions with spinodals, Scr. Metall. 10 (1976) 451-454.

[2] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a

vector valued Ginzburg-Landau equation, Arch. Rat. Mech. Anal. 124 (1993) 355-379.
[3] J. W. Cahn and S. M. Allen, A microscopic theory of domain wall motion and its experimental

verification in Fe-Al alloy domain growth kinetics, J. Phys. 38 (1977) 47-51.
[4] M. Caputo, Elasticita e Dissipazione, Zani-Chelli, Bologna, 1969.

[5] C. Cattani, H. M. Srivastava and X.-J. Yang (Editors), Fractional Dynamics, Emerging
Science Publishers (De Gruyter Open), Berlin and Warsaw, 2015.

[6] A. Esen, N. M. Yagmurlu and O. Tasbozan, Approximate Analytical Solution to Time-
Fractional Damped Burger and Cahn- Allen Equations, Appl. Math. Inf. Sci. 7 5 (2013)

1951-1956.
[7] M. Khan M. A. Gondal, I. Hussain and S. K. Vanani, A new comparative study between

homotopy analysis transform method and homotopy perturbation transform method on semi

infinite domain, Math. Comput. Model. 55 (2012) 1143-1150.
[8] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential

equations, J. Appl. Math. 1 (2001), 141-155.
[9] A. A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional

Differential Equations, North-Holland athematics Studies, vol. 204, Elsevier, Amsterdam,
2006.

[10] D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of
differential-difference equation J. Comput. Nonl. Dyn. 11 (2016), doi: 10.1115/1.4033899.

[11] D. Kumar, J. Singh and S. Kumar, A fractional model of Navier-Stokes equation arising in
unsteady flow of a viscous fluid Journal of the Association of Arab Universities for Basic and
Applied Sciences 17 (2015) 14-19

[12] D. Kumar, J. Singh and S. Kumar, Numerical computation of nonlinear fractional Zakharov-

Kuznetsov equation arising in ion-acoustic waves, J. Egyptian Math. Soc. 22 (2014) 373-378.
[13] S. J. Liao Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and

Hall / CRC Press, Boca Raton, 2003.
[14] S. J. Liao An approximate solution technique not depending on small parameters: a special

example, Int. J. Nonlinear Mech. 30 (1995) 371-380.
[15] S. J. Liao Homotopy analysis method in nonlinear differential equations, Springer and Higher

Education Press, Berlin and Beijing, 2012.

[16] K. S. Miller and B. Ross An Introduction to the fractional Calculus and Fractional Differential
Equations, Wiley, New York, 1993.



40 D. KUMAR, J. SINGH, D. BALEANU

[17] P. Mokhtary, F. Ghoreishi and H. M. Srivastava, The Müntz-Legendre Tau method for frac-
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