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AN APPROACH TO STABILIZATION FOR A CLASS OF

CONTROL SYSTEMS WITH MIXED TIME-VARYING DELAYS

NGUYEN S. BAY

Abstract. This paper studies the problem of stabilization for a class of con-
trol systems with discrete and distributed time-varying delays. The feedback

control functions are restricted in such a way that the ratio between total

cumulated output errors and total cumulated perturbations on whole time in-
terval is upper bounded. The main result on solving the problem is derived

from using a new approach, which is based on asymptotic behavior of evolution
operators generated by matrix functions of homogeneous linear parts.

1. Introduction

Analysis of stability and stabilization of dynamical control systems are impor-
tant both in theory and practice. The studies of this problem have been realized
not only for the models described by ordinary differential equations, but also for
the models described by delay differential equations. The presence of delayed de-
pendencies gives us ability to describe the dynamic relationships between several
variables in long term process. Each system may be affected by deterministic or
random perturbations from the environmental. Consequence of these perturbations
is uncertainty. The appearance of delays and uncertainties may be the source of
instability and serious deterioration in the performance of the closed-loop systems.
To deal with the trend away from the equilibrium position of systems, it is common
to use the appropriate impact through the control functions. Typically, control
functions are not arbitrary. Each of them must satisfy some certain restrictions.
The restriction in this paper is mentioned as following: the ratio between total
cumulated output errors and total cumulated perturbations on whole time interval
is upper bounded by some certain positive constant. The magnitude of this ratio
reflects the quality of the system. For linear systems, the observed value may be
considered as the output error. The restriction of this type is main condition in the
concept ”Robust H∞ control problem”. This restriction should be emphasized, be-
cause for almost of dynamical systems there are the differences between theoretical
behaviors and practical behaviors, between real states and observed states.

During the past decades, H∞ control problem has been interested by many
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researchers (see [1], [6], [7]). As for some references, using the linear matrix in-
equalities (LMIs) seems to be popular approach method (see [6], [8]). On the one
hand, this approach is very modern method, but on the other hand, this approach
requires many too complicated assumptions on corresponding parameters and un-
known variables ([1], [5]). Moreover, almost of these assumptions are given by the
certain LMIs, and these LMIs can be solved just by few special softwares, for ex-
ample by Matlab ([5], [8], [9]). Therefore, it is necessary to find some more simple
conditions. In this paper, all assumptions are explicit. The main assumption is
presented on the basic of the asymptotic behavior of evolution operator, generated
by the homogeneous linear part of corresponding differential equations. These con-
ditions involve the solving solutions of Riccati matrix equations ([2], [3]). Thus,
instead of the implicit conditions given in terms of LMIs, the explicit conditions on
coefficient matrices will be required.

Relating to the object under consideration, it is the need to recall, that there was
much knowledge about the dynamical systems, described by ordinary differential
equations:

ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t). (1.1)

Ordinary differential equation (1.1) shows certain relationships between some var-
ious objects happening at the same time t. However, almost all modern systems
operate with great speed. It is difficult to collect the instantaneous data about the
state and the noise for the formulation of control strategies. Thus, in practices, the
description by equation (1.1) may have too big approximation errors. In many situ-
ations, the states in the past of each system have often left their mark in the present:
Inertia of the materials, heredity of organisms, drug resistance in the treatment of
diseases, credibility with long term partners in the business,... are factors that
should not let pass when modeling the corresponding activities. In other words,
the rate of change of system at time t (which is characterized by ẋ(t)) depends not
only on the state x(t) at this time, but also on some or all previous states. But,
the events happened too long in the past may have some insignificant influences
on the present. So, the delays are often assumed not greater than a certain posi-
tive number, for example h. Thus, instead of equation (1.1), the object under the
consideration in this paper is a class of uncertain control systems, described by the
following differential equations with discrete and distributed time-varying delays:

ẋ(t) = A(t)x(t)+B(t)u(t)+E(t)x(t−h(t))+F (t)

∫ t

t−k(t)
x(s)ds+G(t)w(t). (1.2)

x(t) = φ(t),∀t ∈ [−h, 0]. (1.3)

To explain the elements in this relation, some notations have been mentioned as
following: R+ is the set of all non-negative real numbers. For each t ∈ R+: x(t) is
the vector of the real n - dimensional linear space Rn; x(t) is state of considered
system and ẋ(t) is rate of the state change of this system at present time t. By the
similar way: u(t) is control function, u(t) ∈ Rm ; w(t)(w(t) ∈ Rl) is uncertainty;
z(t)(z(t) ∈ Rr) is observation; h(t) and k(t) are delay functions satisfying the as-
sumption 0 ≤ h(t), k(t) ≤ h,∀t ≥ 0. Denoting M(m × n) the set of all matrices
having the size m×n, we note that A(t), E(t), F (t) ∈M(n×n); B(t) ∈M(m×n);
G(t) ∈ M(l × n). The uncertainty w(t) is said to be admissible if w(.) ∈ L2,
where L2 := L2([0,∞),Rn) denotes the Banach space of all functions, mapping
from [0,+∞) into Rn and being square integrable on [0,+∞). The norm of w ∈ L2
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is defined by ‖w‖|L2
:=
( +∞∫

0

‖w(t)‖2dt
) 1

2

. For each u and w, the solution of (1.2),

satisfying initial condition x(t) = φ(t), t ∈ [−h, 0] is denoted by x(0, φ, t) and in
the sequel, shortly by x(φ, t) or x(t). To move into infinite dimensional spaces,
for the state function x(t) we need the following notation xt, which is defined by
xt(s) := x(t + s), s ∈ [−h, 0]. It means that xt is the curve of x = x(t) on interval
[t− h; t]. By other word, xt is an element of C, where C := C([−h, 0],Rn)(h > 0)
is the Banach space of all continuous functions on [−h, 0] with values belong to Rn.
The norm of φ ∈ C is defined by ‖φ‖|C := sup

t∈[−h,0]
‖φ(t)‖. However, for the aim of

simplicity, through this paper the same symbol ‖.‖ is used to denote the norm and
the same symbol I is used to denote the identity operator for all different spaces.

Relating to the instruments of this study, there is a notice that: (1.1) is an
ordinary differential equation, which may be effectively studied in the same finite
dimensional spaces, while (1.2) is a functional differential equation, which may be
effectively studied just in the infinite dimensional spaces (see [4], Krasovskii re-
mark). Therefore, in the later stability study, instead of the Lyapunov functions
operating in finite dimensional spaces the Lyapunov-Krasovskii functionals operat-
ing in infinite dimensional spaces will be used. These functionals are strong tools,
by which the more general results may be obtained.

As a result, in this paper, the H∞ control problem for a class of non-autonomous
control systems is developed. The significant feature of this paper lies in three as-
pects. (i) The system is subjected the mixed discrete and distributed time-varying
delays; (ii) More free-weighting matrices C(t), D(t) in the formula of observation
variant z(t) are adopted; (iii) Instead of using LMIs technique, the properties of
evolution operators are used. As for the contents, this paper is constructed as fol-
lows: Beside the introduction part, the Section 2 presents some basic definitions
and some technical propositions, which are needed for the proof of main result. The
main result is proved in Section 3. The paper is ended by a numerical example and
the conclusion.

2. Preliminaries

Usually, in addition to the control units, each control system also contains ob-
server parts. In this paper, the observation variable is constructed on the basic of
information about the states and about the control actions. For the convenience,
it is given in the linear form:

z(t) = C(t)x(t) +D(t)u(t). (2.1)

The feedback control function is assumed having linear form and being constructed
just by the information of present state:

u(t) = K(t)x(t). (2.2)

In these relations, it is worth to note that: C(t) ∈ M(r × n); K(t) ∈ M(m × n)
and D(t) ∈M(r ×m).

In some papers (see, for example [1], [6]), for the sake of technical simplifications,
the existence of matrix functions C(t), D(t) satisfying the following relation often
has been assumed

DT (t)D(t) = I and CT (t)D(t) = 0, ∀t ≥ 0. (2.3)
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In [1], it was shown that in some particular cases this assuming is correct. In gen-
eral, the matrix functions satisfying relation (2.3) may be not exist. In this paper,
for the observation variable z matrix functions C(t), D(t) would be given in the
general form, where relation (2.3) may be not fulfilled. To continue, we recall a
definition, which is presented in [1]:

Definition 1. System (1.2), (1.3), (2.1), (2.2) is said to be robustly L2-
stabilizable if there exists a matrix-valued function K(t), such that the solution of
the closed-loop system

ẋ(t) = [A(t)+B(t)K(t)]x(t)+E(t)x(t−h(t))+F (t)

∫ t

t−k(t)
x(s)ds+G(t)w(t), (2.4)

x(t) = φ(t),∀t ∈ [−h, 0], φ ∈ C
belongs to L2([0,∞),Rn) for any admissible uncertainties w ∈ L2([0,∞),Rl).

We recall also the following definition, which is given in [7]:

Definition 2. The robust H∞ control problem for system (1.2), (1.3), (2.1),
(2.2) is said to have a solution if for any given number γ > 0 there exist a matrix-
valued function K(t) and a number C0 > 0 such that for any initial function φ ∈ C,
the corresponding solution of the closed-loop system (2.4) belongs to L2([0,∞),Rn),
and the following inequality is satisfied:

sup
φ∈C

+∞∫
0

‖z(t)‖2dt

C0 +
+∞∫
0

‖w(t)‖2dt
≤ γ. (2.5)

The main result will be established on the basic of the following conditions,
which are named by (A1), (A2) and (A3):

(A1) The delay functions h(t), k(t) are differentiable on R+ and there are pos-
itive numbers µ and λ such that

ḣ(t) ≤ µ ≤ 1,∀t ≥ 0; k̇(t) ≤ λ ≤ 1,∀t ≥ 0. (2.6)

(A2) All coefficient matrix functions are bounded on R+, for example:

ā := sup
t≥0
‖A(t)‖ < +∞; b̄ := sup

t≥0
‖B(t)‖ < +∞;

ē := sup
t≥0
‖E(t)‖ < +∞; f̄ := sup

t≥0
‖F (t)‖ < +∞; ḡ := sup

t≥0
‖G(t)‖ < +∞. (2.7)

As in the above, we assume that all uncertainties w(t) are square integrable on
[0,+∞) i.e. w ∈ L2([0,+∞),Rl), or

‖w‖ :=
( ∞∫

0

‖w(t)‖2dt
) 1

2

< +∞. (2.8)

Next, U(t, s) denotes the evolution operator of the homogeneous equation

ẋ(t) = A(t)x(t), (t ∈ R+).
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The property of this operator plays central role in our checking the solutions of the
following time-varying Riccati matrix equation

Ṗ (t) +AT (t)P (t) + P (t)A(t) +Q(t) = 0. (2.9)

In this equation: A(t) is a given n×n matrix function, bounded and continuous on
R+, AT (t) is transposition matrix of A(t), Q(t) is some given symmetric positive
definite n×n matrix function and P (t) is the unknown symmetric positive definite
n× n matrix function.

(A3) For evolution operator U(t, s), generated by A(t) there are positive con-
stants N and δ, such that

‖U(t, s)‖ ≤ Ne−δ(t−s),∀t ≥ s ≥ 0. (2.10)

The following proposition is proved in [2].

Proposition 2.1. Suppose that the bounded on R+ n × n matrix function A(t)
generates an evolution operator U(t, s), for which the relation (2.10) is satisfied.
Then for any bounded on R+ symmetric positive definite n × n matrix function
Q(t) the matrix equation (2.9) has a solution P (t), which is a symmetric positive
definite matrix function bounded on R+. Moreover, P (t) is found as follow

P (t) =

∞∫
t

UT (τ, t)Q(τ)U(τ, t)dτ. (2.11)

We will need also the following proposition, its proof is simple.

Proposition 2.2. For any bounded on R+ symmetric n×n matrix function Q(t),
there exists a positive number ε > 0 being big enough, such that the matrix function
Q(t) + εI is symmetric positive definite.

3. Main result

Let us consider control system (1.2), (1.3), (2.1), (2.2) with the acceptable un-
certainty w(t). Our interest will deal with the assumptions, under which the H∞
control problem has a solution. These assumptions would be not presented through
the LMIs, but through the appropriate conditions on the coefficient matrix func-
tions and on the delay functions.

Theorem 3.1. Suppose that conditions (A1), (A2), (A3) are fulfilled. Then, there
exists a symmetric positive definite matrix function Q(t) such that the feedback
stabilizing control function for system (1.2), (1.3), (2.1), (2.2) may be chosen by
u(t) = −BT (t)P (t)x(t), where P (t) is a symmetric positive definite solution of
Riccati equation (2.9), corresponding with Q(t). Moreover, in this case, the robust
H∞ control problem has a solution.

Proof. To prove the theorem, firstly we must show that for any initial function
φ ∈ C, the corresponding solution x(φ, t) of the closed-loop system belongs to L2.
Secondly, for each given positive number γ we can find a positive number C0 such
that the inequality (2.5) in Definition 2. is true. To continue the investigation,
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there is the need to use the auxiliary functionals. These auxiliary functionals are
constructed through the solution P (t) of the Riccati equation (2.9), corresponding
a symmetric positive definite matrix function Q(t), which will be chosen later. The
auxiliary functionals are constructed as in following:

V (t, xt) = V1(t, xt) + V2(t, xt) + V3(t, xt) + V4(t, xt),

where:

V1(t, xt) = xT (t)P (t)x(t).

V2(t, xt) =

t∫
t−h(t)

‖x(s)‖2ds.

V3(t, xt) =

t∫
t−k(t)

‖x(s)‖2ds.

V4(t, xt) =

0∫
−h

ds

t∫
t−k(t)

‖x(τ)‖2dτ.

It is clear that, for all t ≥ 0 every function Vi(t, xt), (i = 1, 2, 3, 4) is continuous,
nonnegative and Vi(t, 0) = 0. Taking the derivative among equation (2.4) with
K(t) = −BT (t)P (t), we have:

V̇1(t, xt) = xT (t)Ṗ (t)x(t) + 2xT (t)P (t)ẋ(t)

= xT (t)
[
Ṗ (t) + P (t)A(t) +AT (t)P (t)− 2P (t)B(t)BT (t)P (t)

]
x(t)

+ 2xT (t)P (t)E(t)x(t− h(t)) + 2xT (t)P (t)F (t)

t∫
t−k(t)

x(s)ds+ 2xT (t)P (t)G(t)w(t)

V̇2(t, xt) = ‖x(t)‖2 − (1− ḣ(t))‖x(t− h(t))‖2

≤ ‖x(t)‖2 − (1− µ)‖x(t− h(t))‖2

V̇3(t, xt) = ‖x(t)‖2 − (1− k̇(t))‖x(t− h(t))‖2

≤ ‖x(t)‖2 − (1− λ)‖x(t− h(t))‖2

V̇4(t, xt) =

∫ 0

−h

(
‖x(t)‖2 − (1− k̇(t))‖x(t+ s)‖2

)
ds

= h‖x(t)‖2 − (1− k̇(t))

0∫
−h

‖x(t+ s)‖2ds

≤ h‖x(t)‖2 − (1− λ)

0∫
−h

‖x(t+ s)‖2ds.
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Combining all these inequalities, we have

V̇ (t, xt) ≤ xT (t)
(
Ṗ (t) + P (t)A(t) +AT (t)P (t)− 2P (t)B(t)BT (t)P (t) + 2I + hI

)
x(t)

+ 2xT (t)P (t)E(t)x(t− h(t)) + 2xT (t)P (t)F (t)

t∫
t−k(t)

x(s)ds+ 2xT (t)P (t)G(t)w(t)

− (1− µ)‖x(t− h(t))‖2 − (1− λ)‖x(t− k(t))‖2 − (1− λ)

0∫
−h

‖x(t+ s)‖2ds

It is easy to see that for all t ≥ 0 the following inequalities are true

2xT (t)P (t)E(t)x(t− h(t))− (1− µ)‖x(t− h(t))‖2

≤ 1

1− µ
xT (t)P (t)E(t)ET (t)P (t)x(t).

2xT (t)P (t)F (t)

t∫
t−k(t)

x(s)ds− (1− λ)

0∫
−h

‖x(t+ s)‖2ds

= 2xT (t)P (t)F (t)

0∫
−k(t)

x(t+ s)ds− (1− λ)

0∫
−h

‖x(t+ s)‖2ds

≤ 2xT (t)P (t)F (t)

0∫
−k(t)

x(t+ s)ds− (1− λ)

0∫
−k(t)

‖x(t+ s)‖2ds

≤ 2xT (t)P (t)F (t)

0∫
−k(t)

x(t+ s)ds− 1− λ
h

( 0∫
−k(t)

x(t+ s)ds
)2

≤ h

1− λ
xT (t)P (t)F (t)FT (t)P (t)x(t).

Therefore,

V̇ (t, xt) ≤ xT (t)
(
Ṗ (t) + P (t)A(t) +AT (t)P (t)− 2P (t)B(t)BT (t)P (t) + (2 + h+ ε)I

+ (CT (t)− P (t)B(t)DT (t))(C(t)−D(t)BT (t)P (t)) +
1

1− µ
P (t)E(t)ET (t)P (t)

+
h

1− λ
P (t)F (t)FT (t)P (t)

)
x(t) + 2xT (t)P (t)G(t)w(t)− (1− λ)‖x(t− k(t))‖2

− xT (t)
(
εI + (CT (t)− P (t)B(t)DT (t))(C(t)−D(t)BT (t)P (t))

)
x(t)

= ≤ xT (t)
(
Ṗ (t) + P (t)A(t) +AT (t)P (t) +Q(t)

)
x(t) + 2xT (t)P (t)G(t)w(t)− (1− λ)‖x(t− k(t))‖2

− xT (t)
(
εI + (C∗(t)− P (t)B(t)D∗(t))(C(t)−D(t)B∗(t)P (t))

)
x(t),

(3.1)
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where Q(t) = Q1(t) + εI, with

Q1(t) = −2P (t)B(t)BT (t)P (t) + (2 + h)I + (C∗(t)− P (t)B(tD∗(t))(C(t)−D(t)B∗(t)P (t))

+
1

1− µ
P (t)E(t)ET (t)P (t) +

h

1− λ
P (t)F (t)FT (t)P (t).

(3.2)

Since

−(1−λ)‖x(t−k(t))‖2−xT (t)(CT (t)−P (t)B(t)DT (t))(C(t)−D(t)BT (t)P (t))x(t) ≤ 0,

then from (3.1) and (3.2) we have

V̇ (t, xt) ≤ xT (t)
(
Ṗ (t) + P (t)A(t) +AT (t)P (t) +Q(t)

)
x(t)

+ 2xT (t)P (t)G(t)w(t)− ε‖x(t)‖2.
(3.3)

It is easy to check that Q1(t) is symmetric and bounded on R+. Thus, by Proposi-
tion 2. we can choose ε > 0 being big enough such that, for all t ≥ 0 matrix function
Q(t) = Q1(t) + εI is symmetric positive definite. In consequence, by Proposition
1., the corresponding Riccati equation

Ṗ (t) + P (t)A(t) +AT (t)P (t) +Q(t) = 0

has a symmetric positive definite solution P (t). It is not difficult to check that,
Q(t) is bounded on R+. By Proposition 1., P (t) is also bounded on R+. Denote

q̄ := sup
t≥0
‖Q(t)‖, p̄ := sup

t≥0
‖P (t)‖. Therefore, estimating V̇ (t, xt), we have

V̇ (t, xt) ≤ −ε‖x(t)‖2 + 2xT (t)P (t)G(t)w(t).

For any s > 0, taking integral from 0 to s both sides of last inequality, we have

s∫
0

V̇ (t, xt)dt ≤ −ε
s∫

0

‖x(t)‖2dt+ 2

s∫
0

xT (t)P (t)GT (t)w(t)dt,

or V (s, xs)− V (0, x0) ≤ −ε
s∫

0

‖x(t)‖2dt+ 2p̄ḡ
( s∫

0

‖w(t)‖2dt
) 1

2
( s∫

0

‖x(t)‖2dt
) 1

2

= −ε
s∫

0

‖x(t)‖2dt+ 2p̄ḡ‖w‖
( s∫

0

‖x(t)‖2dt
) 1

2

.

Since V (s, xs) ≥ 0,∀t ≥ 0 and ‖w‖ :=
( s∫

0

‖w(t)‖2dt
) 1

2

< +∞, then we have

−V (0, x0) ≤ −ε
s∫

0

‖x(t)‖2dt+ 2p̄ḡ‖w‖
( s∫

0

‖x(t)‖2dt
) 1

2

.

Last inequality implies that

s∫
0

‖x(t)‖2dt− 2
p̄ḡ‖w‖
ε

( s∫
0

‖x(t)‖2dt
) 1

2 − 1

ε
V (0, x0) ≤ 0.
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That is equivalent to( s∫
0

‖x(t)‖2dt
) 1

2 ≤ p̄ḡ‖w‖
ε

+

√
p̄2ḡ2‖w‖2

ε2
+

1

ε
V (0, x0) < +∞.

It means that x ∈  L2([0; +∞),Rn). The system is robustly L2-stable.
To continue the proof, we note that (3.1) and (3.3) lead to

V̇ (t, xt) ≤ 2xT (t)P (t)G(t)w(t)− (1− λ)‖x(t− k(t))‖2 − ε‖x(t)‖2. (3.4)

Therefore, we can made the estimation
s∫

0

(
‖z(t)‖2 − γ‖w(t)‖2

)
dt =

s∫
0

(
‖z(t)‖2 − γ‖w(t)‖2 + V̇ (t, xt)

)
dt−

s∫
0

V̇ (t, xt)dt

≤
s∫

0

(
− ε‖x(t)‖ − γ‖w(t)‖2 + 2xT (t)P (t)G(t)w(t)− (1− λ)‖x(t− k(t))‖2

)
dt

+ V (0, x0)− V (t, xt).

Since V (t, xt) ≥ 0 and (1− λ)‖x(t− k(t))‖2 ≥ 0, then we get

s∫
0

(
‖z(t)‖2 − γ‖w(t)‖2

)
dt

≤
s∫

0

(
− γ‖w(t)‖2 − ε‖x(t)‖2 + 2wT (t)GT (t)P (t)x(t)

)
dt+ V (0, x0).

Using inequality

−γ‖w(t)‖2 + 2wT (t)GT (t)P (t)x(t) ≤ 1

γ
xT (t)P (t)G(t)GT (t)P (t)x(t)

and

2xT (t)P (t)G(t)GT (t)P (t)x(t) ≤ 2p̄2ḡ2‖x(t)‖2,
we have

s∫
0

(
‖z(t)‖2 − γ‖w(t)‖2

)
dt ≤

s∫
0

(
− ε‖x(t)‖2 +

p̄2ḡ2

γ
‖x(t)‖2

)
dt+ V (0, x0).

As said above, ε is selected large enough such that matrix Q1(t) + εI is positive

definite. Extra choosing ε >
p̄2ḡ2

γ
, from the last inequality we have

s∫
0

(
‖z(t)‖2 − γ‖w(t)‖2

)
dt ≤ V (0, x0) ≤ (p̄+ 2h+ h2)‖φ‖2.

Denoting C0 :=
1

γ
(p̄+ 2h+ h2) and letting s→ +∞, we get

+∞∫
0

(
‖z(t)‖2 − γ‖w(t)‖2

)
dt ≤ γC0‖φ‖2.
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That is equivalent to
+∞∫
0

‖z(t)‖2dt

C0‖φ‖2 +
+∞∫
0

‖w(t)‖2dt
≤ γ.

Thus, the proof of theorem is completed. �

Example. Consider system (1.2) where:

A(t) =

(
−2 0
e−3t −4

)
;B(t) =

(
2e−t

1

)
;E(t) =

(
1 0

cos t −1

)
;F (t) =

(
2 sin t
0 1

)
;

G(t) =

(
1

e−2t

)
;C(t) =

(
2 1
0 2e−t

)
;D(t) =

(
cos t

1

)
;h(t) =

1

2
sin2 t; k(t) =

1

3
cos2 t.

It is not difficult to check that:

ā ≤ 5; b̄ ≤ 3; ē ≤ 2; f̄ ≤ 3; ḡ ≤ 2; ḣ(t) ≤ 1

2
; k̇(t) ≤ 1

3
; h =

1

2
;

‖U(t, s)‖ ≤ 9

2
e−6(t−s).

Thus, all assumptions of the main theorem are satisfied. The robust H∞ control
problem for this system has a solution. There is a notice that in this case, relation
(2.3) is not satisfied.

4. Conclusion

In this paper, a new sufficient condition on stabilization of non-autonomous
control systems with discrete and distributed time-varying delays is established.
The presence of these delays allows us access to the real models with dynamic
dependencies on the past as well as with diversity causal relationships. Using the
auxiliary functionals operating in infinite dimensional spaces as a powerful tool,
this research has received an extensive result on qualitative study for a class of
functional differential equations. In addition, since the observation matrices are
given freely, then the collected data is more adequate, and in consequence, the
process of formulating control strategies is more advantage. The restriction on
the upper boundedness of the ratio of the total cumulated errors and the total
cumulated uncertainties is an actual condition. Ignoring it, the formulated model
would be unrealistic. Finally, in the paper, the main assumptions are given directly
on the coefficient matrices without the need of using linear matrix inequalities. It
allows avoiding plenty of purely technical complicated calculations.
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