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NON-HOMOGENEOUS KIRCHHOFF EQUATION ON R3

LIN LI, JIJIANG SUN

Abstract. In this paper, we study the Kirchhoff equation(
1 + b

∫
R3

(|∇u|2 + V (x)u2)dx

)
[−∆u + V (x)u] = |u|p−2u + g(x) in R3.

We prove the existence of infinitely many solutions for the problem by the

Z2-equivariant Ljusternik-Schnirelman theory for non-even functional due to

Ekeland and Ghoussoub in 1998.

1. Introduction and Main Results

In this paper, we consider the following non-homogeneous Kirchhoff equation(
1 + b

∫
R3

(|∇u|2 + V (x)u2)dx

)
[−∆u+ V (x)u] = |u|p−2u+ g(x) in R3 (1.1)

Problems related to (1.1) model several physical and biological systems, where u
describes a process, which depends on the average of itself, such as the population
density, see e.g. [6] and the references therein.

Let us recall some recent results in the literature on the nonlinear Kirchhoff equa-
tion (1.1) with g(x) = 0. To our knowledge, Wu [16] is the first one who considering
problem (1.1). Four existence results for nontrivial solutions and a sequence of high
energy solutions for problem (1.1) are obtained by using a symmetric mountain pass
theorem. Liu and He [12] studied the existence of infinitely many high energy so-
lutions for problem (1.1) with the subcritical nonlinearity which does not need to
satisfy the usual Ambrosetti-Rabinowitz-type growth conditions. Ye and Tang [19]
obtained infinitely many large-energy and small-energy solutions for (1.1), which
unify and sharply improve the results of Wu [16]. Cheng [5] obtained the existence
of nontrivial solutions for problem (1.1) when the nonlinearity term is asymptoti-
cally linear or 4-superlinear at infinity. By some special techniques, Li and Wu [11]
proved the existence and multiplicity of nontrivial solutions of problem (1.1) with a
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widely class of superlinear nonlinearities, which improves and unites Theorems 1–4
in [16]. In [10], Huang and Liu obtained some existence and nonexistence results
by using variational methods and also discussed the ‘energy doubling’ property of
nodal solutions. Ye [18] proved problem (1.1) has a least energy nodal solution with
its energy exceeding twice the least energy by using constrained minimization on
the sign-changing Nehari manifold.

However, if g(x) 6= 0, there are few results about the existence of multiple so-
lutions of (1.1), because the forcing term g destroys the structure of Z2-symmetry
and one can not directly apply the classical symmetric mountain-pass theorem [2] to
prove the existence of infinitely many solutions. As far as we know, the only papers
dealing with the case g(x) 6= 0 are [4, 9]. In [4], Chen and Li proved the existence
of at least two solutions for (1.1). In [9], Fan and Liu obtained at least two positive
solutions for a degenerate nonlocal problem on unbounded domain by using the
Ekeland’s variational principle combined with the mountain pass theorem.

In the present paper, following the idea of [8, 17], we consider the nonlinear
Kirchhoff equation in the whole space R3 with g(x) 6≡ 0. To overcome the lack of
compactness, we assume that the nonconstant potential V (x) verifies the following
condition (see [14]){

V (x) ∈ L2
loc(R3) is such that infessV (x) > 0 and∫

B(x)
1

V (y)dy → 0 if |x| → ∞,
(V)

where B(x) is the unit ball in R3 centered at x. It is easy to see that condition (V)
holds in particular if V is a strictly positive continuous function on R3 which goes
to infinity at infinity.

Throughout this paper, we denote the norm of H1(R3) by

‖u‖H1 =

(∫
R3

(
|∇u|2 + |u|2

)
dx

)1/2

and by | · |s we denote the usual Ls-norm, C stands for different positive constants.
We also introduce the space

H :=

{
u ∈ H1(R3) :

∫
R3

V (x)u2dx <∞
}
,

which is a Hilbert space equipped with the inner product

(u, v) :=

∫
R3

(∇u · ∇v + V (x)uv)dx

and the associated norm ‖u‖2 = (u, u).
The argument in this paper is variational, i.e. the solutions of (1.1) are obtained

as critical points of the action functional on H defined as follow:

I(u) =
1

2
‖u‖2 +

b

4
‖u‖4 − 1

p

∫
R3

|u|pdx−
∫
R3

g(x)udx. (1.2)

To state the main result of this paper, we will also consider the following constrained
problem which is related to (1.1):{(

1 + b
∫
R3(|∇u|2 + V (x)u2)dx

)
[−∆u+ V (x)u] = |u|p−2u+ µg(x), in R3,

−1 ≤ µ ≤ 1,
∫
R3 g(x)u = 0.

(1.3)
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Remark. As is pointed in [8], it seems difficult to solve (1.3) by looking for critical
points of I on the constrained manifold {u ∈ H :

∫
R3 g(x)u = 0} with the additional

restriction condition −1 ≤ µ ≤ 1, when one regards µ as a Lagrange multiplier.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that 4 < p < 6, then for any g(x) ∈ L2(R3), either (1.1)
or (1.3) has an unbounded sequence of solutions.

Remark. The nonlinearity |u|p−2u can be generalized to those satisfying the clas-
sical Ambrosetti–Rabinowitz condition and g(x) can also be replaced by a general
g(x, u).

Remark. One can easily obtain that problem (1.1) admits two solutions which one
has a positive energy and one has negative energy by using Ekeland’s variational
principle and mountain pass theorem. As mentioned above, when g(x) = 0, the
corresponding functional is even and it is easily to get infinitely many solutions
for (1.1) by using the symmetric mountain pass theorem. But if g(x) 6= 0, this
situation is more complicated. This phenomenon is general called perturbations
from symmetry. For the semilinear elliptic equation, the readers who are interested
in it can see the following references [13, 7, 1, 15, 3].

The paper is organized as follow. In section 2, we will recall a Z2-equivariant
Ljusternik-Schnirelman theory for noneven functionals. In section 3, we prove the
main result by using the critical point theory developed by Ekeland and Ghoussoub
[8].

2. Preliminaries and basic definitions

Under condition (V), we also have the following property.

Proposition 2.1 ([14]). Suppose that V (x) verify assumption (V). Then, the space
H is continuously embedded in Ls(R3) for any s ∈ [2, 6] and the embedding is
compact for any s ∈ [2, 6). Moreover, the spectrum of the self-adjoint operator
of −∆ + V in L2(R3) is discrete, i.e. it consists of an increasing sequence λn
of eigenvalues of finite multiplicity such that λn → ∞ as n → ∞ and L2(R3) =∑
nMn, Mn ⊥Mn′ for n 6= n′, where Mn is the eigenspace corresponding to λn.

Let us recall some definitions and the symmetric mountain-pass theorem for
non-even functional.

Definition 2.2. We say that a sequence (un) ⊂ E is a (PS) sequence at level c
((PS)c-sequence, for short) if I(un) → c and I ′(un) → 0. I is said to satisfy the
(PS)c condition if any (PS)c sequence contains a convergent subsequence.

Definition 2.3 ([8]). I is a C1 functional on a Hilbert space H satisfying the
symmetrized Palais–Smale condition at levels c ((sPS)c for short) if I satisfies the
standard (PS)c condition and if a sequence {un} in H is relatively compact in H
whenever it satisfies the following conditions:

lim
n→∞

I(un) = lim
n→∞

I(−un) = c

and limn→∞ ‖I ′(un)− λnI ′(−un)‖ = 0 for some positive sequence of reals λn.

As usual, we denote the set of critical points at level c by

Kc = {u ∈ H : I(u) = c, I ′(u) = 0}.
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Definition 2.4 ([8]). The Z2-resonant points at level c are

Kg
c = {u ∈ H : I(u) = I(−u) = c, I ′(u) = λI ′(−u), λ > 0}.

And the virtual critical points at level c is defined by

Ec = Kc ∪Kg
c ,

the corresponding value c is called virtual critical values.

Theorem 2.5 ([8]). Let I be a C1 functional satisfying (sPS)c on a Hilbert space
H = X⊕Y with dim(X) <∞. Assume I(0) = 0 as well as the following conditions:

(i) There is ρ > 0 and α ≥ 0 such that inf I(Sρ(Y )) ≥ α, where Sρ(Y ) denote
the ball with radius ρ in Y .

(ii) There exists an increasing sequence {En}n of finite dimensional subspace
H, all containing X such that limn→∞ dim(En) = ∞ and for each n,
sup I(SRn(En)) ≤ 0 for some Rn > ρ.

Then I has an unbounded sequence of virtual critical values.

Now Theorem 1.1 can be restated as

Theorem 2.6. Assume that 4 < p < 6, then for any g(x) ∈ L2(R3), (1.1) has an
unbounded sequence of virtual critical values.

3. Proof of the main result

The proof of Theorem 2.6 is separated into three lemmas.

Lemma 3.1. The functional I satisfies the symmetrized Palais–Smale condition.

Proof. First, it is well known that I satisfies (PS)c for any c. Indeed, let {un} be
a (PS)c sequence, since 4 < p < 6,

I(un)− 1

p
I ′(un)un +

(
1− 1

p

)∫
R3

g(x)undx =

(
1

2
− 1

p

)
‖un‖2 +

(
b

4
− b

p

)
‖un‖4

≥
(

1

2
− 1

p

)
‖un‖2.

Hence there exists a constant C1 such that for n large,

c+ C1‖un‖ ≥
(

1

2
− 1

p

)
‖un‖2,

and so {un} is bounded. The compact embedding implies the convergence.
Now assume that {un} is a sequence satisfying:

lim
n→∞

I(un) = lim
n→∞

I(−un) = c (3.1)

and

lim
n→∞

‖I ′(un)− λnI ′(−un)‖ = 0 (3.2)

for some positive sequence of reals λn. (3.1) and (3.2) imply that∫
R3

gundx→ 0, I0(un)→ c,

and

〈I ′0(un), v〉 − 1− λn
1 + λn

∫
R3

g(x)vdx→ 0, (3.3)
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for any v ∈ H, where I0(u) = 1
2‖u‖

2 + b
4‖u‖

4 − 1
p

∫
R3 |u|pdx. From (3.3), we know

there exists c0 > 0 such that

‖I ′0(un)‖ ≤ c0.
Therefore

c+ c0‖un‖ ≥ I0(un)− 1

p
〈I ′0(un), un〉 =

(
1

2
− 1

p

)
‖un‖2 +

(
b

4
− b

p

)
‖un‖4

≥
(

1

2
− 1

p

)
‖un‖2,

which means {un} is bounded. Then, since the Sobolev embedding H ↪→ Lr(R3)
(r ∈ [2, 6)) is compact, we might assume that, up to subsequence, there exists
un ∈ H such that

un ⇀ u weakly in H1
r (R3), (3.4)

un → u strongly in Lr(R3), r ∈ [2, 6),

un → u a.e. in R3.

Note that

〈I ′0(un), un − u〉 =

∫
R3

(∇un · ∇(un − u) + V (x)un(un − u))dx

+ b

∫
R3

(
|∇un|2 + V (x)u2n

)
dx

(∫
R3

(∇un · ∇(un − u) + V (x)un(un − u))dx

)
−
∫
R3

|un|p−2un(un − u)dx→ 0.

By using (3.4), we see that ‖un‖ converges to ‖u‖, which implies the strong con-
vergence in H. �

Remark. Define µn = 1−λn

1+λn
and let µ be a limit for the sequence µn. It is clear

µ ∈ [−1, 1] and u solves (1.3).

In the following, let ek be the eigenfunction corresponding to the eigenvalue λk
defined in Proposition 2.1.

Lemma 3.2. For k0 sufficiently large, there exists ρ > 0 such that I(u) ≥ 1 for all
u ∈ Y := span{ek; k ≥ k0} with ‖u‖ = ρ.

Proof. From Proposition 2.1, we know the Sobolev embedding H ↪→ L6(R3) is
continuous. Setting C1 = |g|2, since ‖u‖4 ≥ 0, by Hölder’s inequality, we obtain
that for u ∈ Y ,

I(u) =
1

2
‖u‖2 +

b

4
‖u‖4 − 1

p

∫
R3

|u|pdx−
∫
R3

g(x)udx

≥ 1

2
‖u‖2 − 1

p
|u|r2|u|

p−r
6 − C1|u|2

≥
(

1

2
− C0

p
λ
−r/2
k0
‖u‖p−2

)
‖u‖2 − C2‖u‖

where r = 3− p
2 > 0. Choose ρ > 0 be such that ρ2−4(C2ρ+1) = 0 and let k0 ∈ N

be such that C0

p λ
−r/2
k0

ρp−2 ≤ 1
4 , the conclusion follows. �



NON-HOMOGENEOUS KIRCHHOFF EQUATION ON R3 35

Lemma 3.3. Let now X = span{ej ; j < k0} be the orthogonal complement of Y .
For any finite dimensional subspace En ⊂ H containing X, there exists Rn > ρ
such that

sup I(SRn(En)) ≤ 0.

Proof. For any fixed u ∈ En and any R > 0, we have

I(Ru) ≤ R2

2
‖u‖2 +

bR4

4
‖u‖4 − CR

p

p
‖u‖pp + CR‖u‖,

since all norms on finite dimensional subspace are equivalent. This lemma is thus
proved. �

Proof of Theorem 1.1. From Lemmas 3.1–3.3, we know all the assumptions of The-
orem 2.5 are satisfied. Thus we obtain the existence of ubbounded sequence of
virtual critical values for equation (1.1) by Theorem 2.5. �
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[9] H. Fan and X. Liu. Multiple positive solutions of degenerate nonlocal problems on unbounded

domain. Math. Methods Appl. Sci., 38(7):1282–1291, 2015.

[10] Y. Huang and Z. Liu. On a class of Kirchhoff type problems. Arch. Math. (Basel), 102(2):127–
139, 2014.

[11] Q. Li and X. Wu. A new result on high energy solutions for Schrödinger–Kirchhoff type
equations in RN . Appl. Math. Lett., 30:24–27, 2014.

[12] W. Liu and X. He. Multiplicity of high energy solutions for superlinear Kirchhoff equations.

J. Appl. Math. Comput., 39(1-2):473–487, 2012.
[13] P. H. Rabinowitz. Multiple critical points of perturbed symmetric functionals. Trans. Amer.

Math. Soc., 272(2):753–769, 1982.
[14] A. Salvatore. Some multiplicity results for a superlinear elliptic problem in RN . Topol. Meth-

ods Nonlinear Anal., 21(1):29–39, 2003.
[15] M. Schechter and W. Zou. Infinitely many solutions to perturbed elliptic equations. J. Funct.

Anal., 228(1):1–38, 2005.
[16] X. Wu. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-

type equations in RN . Nonlinear Anal. Real World Appl., 12(2):1278–1287, 2011.

[17] M. Yang and B. Li. Solitary waves for non-homogeneous Schrödinger-Maxwell system. Appl.
Math. Comput., 215(1):66–70, 2009.



36 L. LI, J. SUN

[18] H. Ye. The existence of least energy nodal solutions for some class of Kirchhoff equations and

Choquard equations in RN . J. Math. Anal. Appl., 431(2):935–954, 2015.

[19] Y. Ye and C.-L. Tang. Multiple solutions for Kirchhoff-type equations in RN . J. Math. Phys.,
54(8):081508, 16, 2013.

Lin Li

School of Mathematics and Statistics, Chongqing Technology and Business University,

Chongqing 400067, P. R. China
E-mail address: lilin420@gmail.com

Jijiang Sun
Department of Mathematics, Nanchang University, Nanchang 330031, P. R. China

E-mail address: sunjijiang2005@163.com


	1. Introduction and Main Results
	2. Preliminaries and basic definitions
	3. Proof of the main result
	Acknowledgments

	References

