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A b s t r a c t. A graph is said to be exceptional if it is connected, has
least eigenvalue greater than or equal to −2, and is not a generalized line
graph. Such graphs are known to be representable in the root system E8.
The 473 maximal exceptional graphs were found initially by computer, and
the 467 with maximal degree 28 have subsequently been characterized. Here
we use constructions in E8 to prove directly that there are just six maximal
exceptional graphs with maximal degree less than 28.

AMS Mathematics Subject Classification (2000): 05C50
Key Words: Graph, eigenvalue, root system

1. Introduction

A graph is said to be exceptional if it is connected, has least eigenvalue
greater than or equal to −2, and is not a generalized line graph. Generalized
line graphs have been studied in [9, 14], while exceptional graphs first ap-
peared in the context of spectral characterizations of certain classes of line
graphs by A. J. Hoffman and others in the 1960s (see, for example, [12, pp.
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12-14]). The key paper [5] introduced root systems as a means of investi-
gating graphs with least eigenvalue −2; in particular it was shown by this
technique that an exceptional graph has at most 36 vertices and each vertex
has degree at most 28. The regular exceptional graphs, 187 in number, were
found in [2, 3], but the problem of finding a suitable description of all the
exceptional graphs remained open. Much information on these topics can
be found in the monographs [1, 6, 8] and in the expository paper [4]. We
described in [11] the results of an exhaustive computer search for the excep-
tional graphs which are maximal in the sense that every exceptional graph
is an induced subgraph of (at least) one such graph. These graphs, 473 in
all, were found as maximal extensions of appropriate star complements (cf.
[10, 13, 14, 17] and below). An independent means of constructing those
with maximal degree 28 was included in [11]: the crucial property is that the
neighbours of a vertex of degree 28 induce a subgraph which is switching-
equivalent to the line graph L(K8) and hence determined by a 2-colouring of
the edges of K8. In [15] we used a variant of this approach to obtain various
constructions for the maximal exceptional graphs with maximal degree less
than 28, but the number of isomorphism classes was not verified. Here we
determine these ‘exceptional maximal exceptional graphs’ directly from the
root system E8 and prove that there are precisely six of them. They are
necessarily the graphs labelled M001,M002, M417,M428,M437,M462 in
[11], and definitions of them appear below. The graph M001 was identified
in [16] as a non-regular graph with just three distinct eigenvalues.

It is well known that an exceptional graph G is representable in the root
system E8 (see [6, Chapter 3] or [1, Chapter 3]). This means that if G has
A as a (0, 1)-adjacency matrix then I + 1

2A is the Gram matrix of a set of
normalized vectors in E8; explicitly, if {e1, . . . , e8} is an orthonormal basis
for IR8 then 8I + 4A is the Gram matrix of a subset of the following set of
240 vectors (cf. [2, 11]):

type a: 28 vectors of the form aij = 2ei + 2ej ; i, j = 1, . . . , 8, i < j;
type a′: 28 vectors opposite to those of type a;
type b: 28 vectors of the form bij = −2ei − 2ej +

∑8
k=1 ek;

type b′: 28 vectors opposite to those of type b;
type c: 56 vectors of the form cij = 2ei − 2ej ; i, j = 1, . . . , 8, i 6= j;
type d: 70 vectors of the form dijkl = −2ei− 2ej − 2ek − 2el +

∑8
s=1 es

with distinct i, j, k, l ∈ {1, . . . , 8};
type e: 2 vectors e and −e, where e =

∑8
i=1 ei.

These 240 vectors determine 120 lines at 60◦ or 90◦. Let Γ denote the



Some maximal exceptional graphs 109

graph which has these lines as vertices, with two vertices adjacent if and
only if the corresponding lines are orthogonal. We recall from [7, p.85]
some properties of the automorphism group of Γ (communicated by P. J.
Cameron). This group has as a subgroup of index 2 the orthogonal group
O+(8, 2), which is transitive on the vertices of Γ. Moreover the stabilizer
of a vertex v acts as a rank 3 group on the subgraph Γ(v) induced by the
neighbours of v; in particular, the stabilizer of v is edge-transitive on Γ(v).

By a representation of the exceptional graph G we mean a subset R(G)
of E8 whose Gram matrix is a scalar multiple of 8I + 4A, where A is the
adjacency matrix of G. Note that if R(G) is a representation of G then so
is −R(G) = {−u : u ∈ R(G)}. In view of the transitivity of Aut(Γ), we
can therefore assume that e represents a vertex of maximal degree, and in
this case we call R(G) a standard representation. Note that then no vector
of type a′, b′ features in R(G); moreover a second standard representation
is given by φ(R(G)) where the involutory map φ is defined by: φ(e) =
e, φ(aij) = bij , φ(bij) = aij , φ(cij) = cji(−cij), φ(dijkl) = dijkl(= −dijkl).
We refer toR(G) and φ(R(G)) as dual representations. (Accordingly we may
assume if necessary that the number of vectors of type b in R(G) does not
exceed the number of vectors of type a.) We give standard representations
of the graphs M001,M002,M417,M428,M437 and M462:

• M001 (22 vertices, with degrees 1614, 78; the vertices of degree 16
induce the cocktail-party graph 7K2, while those of degree 7 form a
coclique)
aij(ij = 12, 13, 14, 15, 23, 24, 26, 34, 37, 48);
bij(ij = 56, 57, 58, 67, 68, 78);
cij(ij = 15, 26, 37, 48); d5678; e.

• M002 (28 vertices, with degrees 227, 1614, 107; the vertices of degree
10 form a coclique)
aij(ij = 12, 13, 14, 17, 18, 23, 25, 27, 28, 36, 37, 38, 78);
bij(ij = 45, 46, 47, 48, 56, 57, 58, 67, 68);
cij(ij = 14, 25, 36); d4567, d4568; e.

• M417 (29 vertices, with degrees 261, 242, 1816, 128, 102)
aij(ij = 12, 15, 16, 17, 18, 25, 26, 27, 28, 57, 68);
bij(ij = 13, 24, 34, 35, 36, 37, 38, 45, 46, 47, 48, 56, 58, 67, 78);
c13, c24; e.

• M428 (29 vertices, with degrees 262, 221, 1816, 146, 104)
aij(ij = 12, 15, 16, 17, 18, 25, 26, 27, 28);
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bij(ij = 13, 24, 34, 35, 36, 37, 38, 45, 46, 47, 48, 56, 57, 58, 67, 68, 78);
c13, c24; e.

• M437 (30 vertices, with degrees 262, 241, 208, 178, 161, 142, 134, 114)
aij(ij = 12, 15, 16, 17, 18, 25, 26, 27, 28, 56);
bij(ij = 13, 24, 34, 35, 36, 37, 38, 45, 46, 47, 48, 57, 58, 67, 68, 78);
c13, c24; d3478; e.

• M462 (31 vertices, with degrees 263, 224, 198, 164, 156, 126)
aij(ij = 12, 15, 16, 17, 18, 25, 26, 27, 28, 56, 67);
bij(ij = 13, 24, 34, 35, 36, 37, 38, 45, 46, 47, 48, 57, 58, 68, 78);
c13, c24; d3458, d3478; e.

These standard representations are not unique; indeed others arise in the
course of our constructions, and in such cases we specify an isomorphism
with one of the above graphs. The isomorphisms are found by means of star
complements, as we now explain. We write V (G) for the set of vertices of
the graph G, and ∆(v) for the set of neighbours of the vertex v. Further, if
H is a subgraph of G then ∆H(v) = ∆(v) ∩ V (H).

Recall that if µ is an eigenvalue of G with multiplicity k, then a star
complement for µ is an induced subgraph H = G − X(X ⊆ V (G)) such
that |X| = k and µ is not an eigenvalue of G − X. If µ 6∈ {−1, 0} then
the H-neigbourhoods ∆H(v)(v 6∈ V (H)) are distinct [12, Corollary 7.3.6].
Now let G,G′ be graphs with H, H ′ respectively as star complements for µ,
where µ 6= −1, 0. If ψ is an isomorphism H → H ′ such that ψ maps the neig-
bourhoods ∆H(v)(v 6∈ V (H)) onto the neighbourhoods ∆H′(v′)(v′ 6∈ V (H ′))
then by the Reconstruction Theorem [12, Theorem 7.4.1], ψ extends to an
isomorphism G → G′, defined outside H by ψ(∆H(v)) = ∆H′(ψ(v)). For
the six graphs above, the isomorphisms required in Section 4 are constructed
using star complements for −2 isomorphic to K1,2 ∪ 5K1, the graph labelled
E443 in [11].

In a standard representation R(G) of an exceptional graph G, the fol-
lowing are the pairs of vectors which are incompatible because they have
inner product −4.

(CC) cij and cjk,

(DD) dijkl and di′j′k′l′ whenever |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≤ 1,

(AB) aij and bij ,

(AC) aij and chj(h 6= i, j), aij and chi(h 6= i, j),
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(AD) auv and dijkl whenever {u, v} ⊆ {i, j, k, l},
(BC) bij and cik(k 6= i, j), bij and cjk(k 6= i, j),

(BD) buv and dijkl whenever {u, v} ∩ {i, j, k, l} = ∅,
(CD) cuv and dijkl whenever {u, v} ∩ {i, j, k, l} = {u}.

The following consequence is a reformulation of [11, Theorem 3.6].

Lemma 1.1. If for some pair i, j the vectors aij and bij are absent from
a standard representation R(G) of a maximal exceptional graph G then R(G)
includes vectors v and w such that e,v,w are pairwise orthogonal.

P r o o f. By the maximality of G, aij and bij are excluded by the
presence of certain vectors, which in view of the complete list of incompat-
ibilities above, are of type c or d. Now the vectors of type c or d which
exclude aij are those in the set Aij comprising chi(h 6= i, j), chj(h 6= i, j)
and the vectors dpqrs for which {i, j} ⊆ {p, q, r, s}. Those which exclude
bij are those in the set Bij comprising cik(k 6= i, j), cjk(k 6= i, j) and the
vectors dpqrs for which {i, j} ∩ {p, q, r, s} = ∅. Note that the inner product
of any vector in Aij with any vector in Bij is non-positive; in particular,
two orthogonal vectors v and w, each of type c or d, must be present. Since
these vectors are orthogonal to e the Lemma is proved. 2

Henceforth we consider a standard representation R(G) of a maximal
exceptional graph G with maximal degree less than 28.

In Aut(Γ), the stabilizer of the line 〈e〉 is edge-transitive on the subgraph
induced by the neighbours of 〈e〉 and so in view of Lemma 1.1 we may assume
that R(G) contains two orthogonal vectors v,w of type c. (Alternative
representations, in which at least one of the vectors v,w is of type d, will be
described elsewhere.) Let θ be the maximum number of pairwise orthogonal
vectors of type c in R(G), and note that 2 ≤ θ ≤ 4. We analyze the cases
θ = 4, 3, 2 in Sections 2,3,4, respectively. When θ = 4 we find that G is
M001; when θ = 3 we find that G is M002; and when θ = 2 we find that G
is one of M001,M002, M417,M428,M437,M462. We may summarize the
results as follows.

Main Theorem. If G is a maximal exceptional graph in which every
vertex has degree less than 28 then G is isomorphic to one of M001,M002,
M417, M428,M437 and M462.

In the sequel we identify vertices of G with corresponding vectors in



112 D. Cvetković, P. Rowlinson, S.K. Simić

R(G).

2. The case θ = 4

Without loss of generality, R(G) contains the vectors c15, c26, c37, c48.
In view of the incompatibilities (AC), (BC), (CC) the further possible

vectors of types a, b, c in R(G) are

aij(ij = 12, 13, 14, 23, 24, 34, 15, 26, 37, 48);

bij(ij = 15, 26, 37, 48, 56, 57, 58, 67, 68, 78);

and
cij(ij = 16, 17, 18, 25, 27, 28, 35, 36, 38, 45, 46, 47).

Moreover, if dijkl is present then |{i, j, k, l} ∩ {5, 6, 7, 8}| ≥ 2. (For
example, neither d1234 nor d2345 is compatible with c26.) It follows that
d5678 is compatible with all possible vectors, hence is present by maximality.
Now d5678 is adjacent to each of c15, c26, c37, c48, and is adjacent to all
possible neighbours of e except aij and bij(ij = 15, 26, 37, 48).

Recall now that deg(e) ≥ deg(d5678), while for given ij at most one of
aij ,bij is present. It follows that (i) deg(e) = deg(d5678); (ii) one of aij ,bij

is present for each ij = 15, 26, 37, 48; (iii) no further vectors of type c are
present (for any such vector would be adjacent to d5678); (iv) similarly, if
another vector dijkl is present then |{i, j, k, l} ∩ {5, 6, 7, 8}| = 2.

It follows from (iv) by (CD) that the only possible vectors of type d are
dijkl for ijkl = 1256, 1357, 1458, 2367, 2468, 3478.

Next we show that either all aij(ij = 15, 26, 37, 48) are present or all
bij(ij = 15, 26, 37, 48) are present. Without loss of generality, suppose
by way of contradiction that a15 and b26 are present. Then the vectors
dijkl(ijkl = 1256, 1357, 1458, 3478) are excluded and d2678 is compatible
with all of the possible vectors remaining; but then by maximality d2678 is
present, a contradiction.

The presence of aij(ij = 15, 26, 37, 48) or bij(ij = 15, 26, 37, 48) now
excludes all possible vectors of type d other than d5678, and so there remain
just two possible maximal sets of 22 pairwise compatible vectors. By duality
we may assume that the number of vectors of type b does not exceed the
number of vectors of type a. Accordingly just one graph arises, namely the
graph M001 defined in Section 1.
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3. The case θ = 3

Without loss of generality suppose that {c14, c25, c36} is a largest set of
pairwise orthogonal vectors of type c. In view of the incompatibilities (AC),
(BC), (CC) the further possible vectors of types a, b, c in R(G) are

aij(ij = 12, 13, 17, 18, 23, 27, 28, 37, 38, 78, 14, 25, 36);

bij(ij = 45, 46, 47, 48, 56, 57, 58, 67, 68, 78, 14, 25, 36);

and

cij(ij = 15, 16, 17, 18, 24, 26, 27, 28, 34, 35, 37, 38, 74, 75, 76, 84, 85, 86).

Moreover, if dijkl is present then by (CD) either |{i, j, k, l}∩{4, 5, 6}| ≥ 2
or ijkl ∈ {1478, 2578, 3678}.

Now the compatible vectors d4567,d4568 are compatible with all possible
vectors, and are therefore present by maximality.

We show next that the vectors a12,a13,a23 and b45,b46,b56 are all
present. If a12 is absent it must be excluded by d1245, and if b45 is absent
it must be excluded by d3678. (The reasons are that a12,b45 are compat-
ible with all possible vectors of type c, while any vector of type d which
is present must be compatible with c14 and c25.) If d1245 is present then
d3678 is absent and so a45 is present; but then deg(b45) > deg(e) since
a14,a25,b67,b68,b78,b36 are excluded. Similarly, if d3678 is present then
b12 is present and deg(a12) > deg(e). In either case we have a contradiction
and so a12,b45 are present. Similarly, a13,b46 are present and a23,b56 are
present.

Let

S = {aij : ij = 37, 38, 78, 14, 25, 36} ∪ {bij : ij = 67, 68, 78, 14, 25, 36},

T = {aij : ij = 13, 17, 18, 23, 27, 28} ∪ {bij : ij = 46, 47, 48, 56, 57, 58},
and let α be the number of adjacencies between {a12,b45} and vectors of
type c or d.

Note that the elements of T ∩∆(e), together with e, c14, c25,d4567,d4568,
are adjacent to both a12 and b45; while those of S ∩ ∆(e), together with
{a12,b45}, are adjacent to just one of a12, b45. It follows that

deg(a12) + deg(b45) = |S ∩∆(e)|+ 2|T ∩∆(e)|+ 4 + α.
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Now

2deg(e) = 2|S ∩∆(e)|+ 2|T ∩∆(e)|+ 4 ≥ deg(a12) + deg(b45)

and so |S∩∆(e)| ≥ α. On the other hand, α ≥ 8 and |S∩∆(e)| ≤ 8, whence
|S ∩∆(e)| = α = 8.

It follows that (i) deg(e) = deg(a12) = deg(b45); (ii) a37,a38,b67,b68

are present, and either aij or bij is present for each ij = 14, 25, 36, 78.
If both a14 and a25 are present then so are a36 and a78, because deg(e) =

deg(a12) = deg(b45). Similarly, if both b14 and b25 are present then
so are b36 and b78. Identical arguments hold when we apply the per-
mutation (123)(456) to subscripts, and we conclude that either aij(ij =
14, 25, 36, 78) are present or bij(ij = 14, 25, 36, 78) are present. Moreover
all of a12,a13,a23,b45,b46,b56 have the same degree as e. It follows that
there are no further vectors of type c, and no vectors of type d other than
d4567,d4568. The 28 vectors which remain are a12,b45, c14, c25, c36,d4567,
d4568, e, the 8 vectors in S ∩ ∆(e) and the 12 vectors in T . By duality
we may assume that the number of vectors of type b does not exceed the
number of vectors of type a. Accordingly just one graph arises, namely the
graph M002 defined in Section 1.

4. The case θ = 2

Without loss of generality, suppose that {c13, c24} is a largest set of
pairwise orthogonal vectors of type c. In view of the incompatibilities (AC),
(BC), (CC) the further possible vectors of types a, b, c in R(G) are

aij(ij = 13, 24; 12; 15, 16, 17, 18, 25, 26, 27, 28; 56, 57, 58, 67, 68, 78);

bij(ij = 13, 24; 34; 35, 36, 37, 38, 45, 46, 47, 48; 56, 57, 58, 67, 68, 78);

and

cij(ij = 14, 15, 16, 17, 18, 23, 25, 26, 27, 28, 53, 54, 63, 64, 73, 74, 83, 84).

Lemma 4.1 The vectors a12 and b34 are present.

P r o o f. If a12 is absent then it is excluded by a vector of type d
compatible with c13 and c24, and this is necessarily d1234. Similarly, if b34

is absent then it is excluded by d5678. Since d1234 and d5678 are incompatible
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at least one of a12,b34 is present. If only a12 is present then d5678 is present
and so the further possible vectors of type a or b are:

aij(ij = 13, 24, 12, 15, 16, 17, 18, 26, 26, 27, 28)

and
bij(ij = 35, 36, 37, 38, 45, 46, 47, 48; 56, 57, 58, 67, 68, 78).

Thus a12 is adjacent to all other neighbours of e, as well as to d5678 and
c13. Then deg(a12) > deg(e), a contradiction. If only b34 is present then we
obtain similarly the contradiction deg(b34) > deg(e). Consequently both
a12 and b34 are present. 2

Let us now introduce some more notation: γ1 (resp. γ2) is the number of
vectors of type c adjacent to one (resp. both) of a12,b34, while δ1 (resp. δ2)
is the number of vectors of type d adjacent to one (resp. both) of a12,b34.
Note that γ2 ≥ 2. Let

S={aij: ij = 13, 24, 56, 57, 58, 67, 68, 78} ∪ {bij: ij = 13, 24, 56, 57, 58, 67, 68, 78},

T={aij : ij = 15, 16, 17, 18, 25, 26, 27, 28} ∪ {bij : ij = 35, 36, 37, 38, 45, 46, 47, 48}.

Lemma 4.2 With the above notation, the following holds:

γ1 + 2γ2 + δ1 + 2δ2 ≤ |S ∩∆(e)|. (1)

Proof. We have

deg(a12) + deg(b45) = 4 + 2|S ∩∆(e)|+ |T ∩∆(e)|+ γ1 + 2γ2 + δ1 + 2δ2

and
deg(e) = 2 + |S ∩∆(e)|+ |T ∩∆(e)|.

The lemma follows because deg(a12) + deg(b45) ≤ 2deg(e). 2

Lemma 4.3 At most one of the vectors c14 and c23 is present.

P r o o f. If both c14 and c23 are present then δ2 ≥ 4 and so |S∩∆(e)| ≥ 8
by Lemma 4.2. On the other hand, a24 and b13 are excluded by c14, while
b24 and a13 are excluded by c23. Thus |S ∩∆(e)| ≤ 6, a contradiction. 2

The next three lemmas are symmetric in 5,6,7,8.

Lemma 4.4 If a78 and b56 are absent then either (a) d3478 is present
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or (b) b78 and a56 are absent. In particular, if b78 and a56 are present then
d3478 is present.

P r o o f. The vector d3478 is compatible with all remaining possible
vectors of type a, b or c. Accordingly if (a) does not hold then d3478 is
excluded by some vector dijkl. Since b34 is present (by Lemma 4.1), it
follows from (DD) and (BD) that {i, j, k, l} ∩ {3, 4, 7, 8} is {3} or {4}. In
the former case, ijkl = 1356 since c24 excludes d2356: and in the latter
case, ijkl = 2456 since c13 excludes d1456. In both cases, b78 and a56 are
excluded. 2

Note that the assertions of Lemmas 4.1 to 4.4 remain true of φ(R(G))
when we apply the permutation (13)(24) to subscripts, and this justifies the
duality arguments used in the sequel.

Lemma 4.5 If a56 and b56 are absent then there exist vectors dijkl and
di′j′k′l′ with {5, 6} ⊆ {i, j, k, l} and {5, 6} ∩ {i′, j′, k′, l′} = ∅.

P r o o f. The vector a56 can be excluded by c15, c16, c25, c26 or dijkl

where {5, 6} ⊆ {i, j, k, l}; and b56 can be excluded by c53, c54, c63, c64 or
di′j′k′l′ where {5, 6} ∩ {i′, j′, k′, l′} = ∅. By duality it suffices to exclude two
possibilities: (i) each of a56,b56 is excluded by a vector of type c, (ii) a56 is
excluded by a vector of type c and b56 is excluded by a vector of type d.

In case (i) we may assume without loss of generality first that a56 is
excluded by c15, and then that b56 is excluded by c63 (since c15 excludes
c53 and c54). In view of (AC) and (BC) the possible vectors in S ∩∆(e) are
aij(ij = 67, 68, 78; 13, 24) and bij(ij = 57, 58, 78; 13, 24). Note that by (AB),
|S ∩∆(e)| ≤ 7. Since γ1 ≥ 2 and γ2 ≥ 2 we have |S ∩∆(e)| ≥ 6 by Lemma
4.2. Hence at most one of the vectors b57,b58,a67,a68 is absent. Wihtout
loss of generality, a67 and b58 are present. By Lemma 4.4, d3467 is present,
and so δ2 ≥ 1. Now Lemma 4.2 yields the contradiction |S ∩∆(e)| ≥ 8.

In case (ii) we may suppose without loss of generality that a56 is excluded
by c15 and b56 is excluded by di′j′k′l′ . This last vector must be compatible
with c13, c24, c15, and hence is one of d3478,d2478,d2347,d2348.

Since a12 is adjacent to e,b34, c13, c24 and c15, we know that

deg(a12) ≥ 5 + |S ∩∆(a12)|+ |T ∩∆(e)|,
while

deg(e) = 2 + |S ∩∆(a12)|+ |S ∩∆(b34)|+ |T ∩∆(e)|.
Since deg(e) ≥ deg(a12), it follows that |S∩∆(b34)| ≥ 3. Since S∩∆(b34) ⊆
{b24,a67,a68,a78} we conclude that not both b67 and b68 are present. If
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say b67 is absent then we may apply Lemma 4.4 to a58,b67 to deduce that
either (a) d3458 is present or (b) b58,a67 are absent.

In subcase (a), |S ∩∆(e)| = 7 and either a58,b57 are present or a68,b57

are present. By Lemma 4.4 either d3467 or d3468 is present, and so δ2 ≥ 2. By
Lemma 4.2, |S ∩∆(e)| ≥ 8, a contradiction. In subcase (b), |S ∩∆(e)| = 5,
S ∩ ∆(b34) = {b24,a68,a78}, δ1 = 0 and δ2 = 0. Then di′j′k′l′ = d2478, a
contradiction because this vector is not compatible with a78. 2

Lemma 4.6 If a56 and b56 are absent then so are a78 and b78.

P r o o f. We suppose that the conclusion does not hold, and obtain
a contradiction. By Lemma 4.4, either a78 and d3456 are present or b78

and d3478 are present. By duality, we may assume that the former is the
case. By Lemma 4.5, a vector dijkl is present, with {5, 6} ∩ {i, j, k, l} =
∅. This vector must be compatible with a12 and a78, and so ijkl is one
of 1347,1348,2347,2348. Without loss of generality, suppose that d1347 is
present. Now

S ∩∆(e) ⊆ {b13,a24,b24,a57,b57,a58,a67,b67,a68,a78}
and so |S ∩∆(a12)| ≤ 3. Also, in view of (AB), we have |S ∩∆(e)| ≤ 7. On
the other hand, γ2 ≥ 2, δ1 ≥ 1 and δ2 ≥ 1, whence |S∩∆(e)| ≥ 7 by Lemma
4.2.

Next, b34 is adjacent to a12, c13, c24,d3456,d1347 and e and so

deg(b34) ≥ 6 + |S ∩∆(b34)|+ |T ∩∆(e)|.
Now, arguing as in Lemma 4.5, we obtain the contradiction |S∩∆(a12)| ≥ 4.
2

We are now in a position to determine the graphs which can arise. It
is convenient to discuss the various possibilites in terms of the graph Q on
{5, 6, 7, 8} in which i and j are joined by a red edge if aij is present, and
by a blue edge if bij is present. By duality we may assume that nb(Q), the
number of blue edges of Q, is not less than nr(Q), the number of red edges.
We distinguish five cases: (1) Q is incomplete, (2) (nb(Q), nr(Q)) = (6, 0),
(3) (nb(Q), nr(Q)) = (5, 1), (3) (nb(Q), nr(Q)) = (4, 2), (5) (nb(Q), nr(Q)) =
(3, 3).

Case 1: H is incomplete.

Without loss of generality, suppose that a56 and b56 are absent. By
Lemma 4.5, a vector dijkl is present, with {5, 6} ∩ {i, j, k, l} = ∅. If also
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{1, 2} ∩ {i, j, k, l} = ∅ then dijkl = d3478 and δ2 ≥ 2. Since also γ2 ≥ 2,
Lemma 4.2 yields |S ∩ ∆(e)| ≥ 8, a contradiction. Since dijkl must be
compatible with c13 and c24 the possibilities for ijkl are 1378, 2478.

By Lemma 4.6, a78 and b78 are absent, and so similarly either d1356 or
d2456 is present. Since d1356 and d2478 are incompatible, and d2456 and d1378

are incompatible, we may assume without loss of generality that d2456 and
d2478 are present. Then a24 and b13 are excluded and we note that c14 is
compatibIe with all possible vectors of type a, b or c. It follows that c14 is
present, for otherwise it is excluded by a vector of type d compatible with
a12 and b34: such a vector has the form d13uv where {u, v} ⊆ {5, 6, 7, 8},
and is therefore not compatible with both d2456 and d2478.

Now a24,b13 are excluded, and we have γ2 ≥ 3. Since |S ∩ ∆(e)| ≤ 6
it follows from Lemma 4.2 that |S ∩ ∆(e)| = 6, γ2 = 3, γ1 = δ1 = δ2 = 0
and deg(a12) = deg(b34) = deg(e). In view of Lemma 4.4 (applied to non-
adjacent edges of H), there are just two possibilities for S ∩∆(e), namely
{a13,a57,a68,b24,b67,b58} and {a13,b57,b68,b24,a67,a58}.

Since γ2 = 3 and γ1 = 0 there can be no vectors of type c other than
c13, c24, c14. Moreover there are no vectors of type d other than d2456,d2478:
the only possible vectors of type d compatible with a12,b34, c24, d2456,d2478

are di457,di458,di467,di468(i = 1, 2), but each of these is incompatible with
both candidates for S∩∆(e). (For example, di467 is incompatible with both
b58 and a67.)

Since d2456 excludes a25,a26,b37,b38 and d2478 excludes b35,b36,a27,
a28, we have

T ∩∆(e) = {a15,a16,a17,a18,b45,b46,b47,b48}.

By applying the permutation (56) if necessary we may assume that

S ∩∆(e) = {a13,a57,a68,b24,b58,b67}.

The vectors which remain are a12,b34, c13, c24, c14,d2456,d2478, e together
with those in S ∩ ∆(e) and T ∩ ∆(e); they are pairwise compatible and
determine a maximal graph with 22 vertices. An isomorphism ψ from the
resulting graph to M001 is given by:

u a13 c24 b34 a12 b46 b47 b45 b48

ψ(u) d5678a15 e a12 a13 a14 b67 b68

u a17 a16 b24 c13 a57 a68 e a18 a15 c14 b67 b58 d2456 d2478

ψ(u) a23 a24 a34 a26 a37 a48 b56 b57 b58 b78 c15 c26 c37 c48
.
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Here, and in isomorphisms exhibited subsequently, the first eight vec-
tors induce a subgraph H isomorphic to E443, with degrees in H equal to
5,6,6,7,7,7,7,7.

Case 2: nb(Q) = 6, nr(Q) = 0.

Arguing as in Lemma 4.5, we find that |S ∩∆(b34)| ≥ 2. Since S ∩∆(e)
contains the six vectors bij({i, j} ⊆ {5, 6, 7, 8}) it follows that

S ∩∆(e) = {bij : ij = 13, 24, 56, 57, 58, 67, 68, 78}.
In view of (BC) the only vectors of type c which are present are c13c24;
and in view of (BD) there are no vectors of type d. The 29 vectors which
remain are a12,b34, c13, c24, e together with those in S ∩∆(e) and T . They
are pairwise compatible and determine a maximal graph which is the graph
M428 defined in Section 1.

Case 3: nb(Q) = 5, nr(Q) = 1.

We may suppose that the red edge of Q is 56. Thus a56 and b78 are
present, while b56 and a78 are absent. By Lemma 4.4, d3478 is present,
and so deg(a12) ≥ 5 + |S ∩∆(a12)| + |T ∩∆(e)|. Since deg(e) ≥ deg(a12),
it follows that |S ∩ ∆(b34)| ≥ 3, and hence that b13 and b24 are present.
Since also the vectors bij(ij = 57, 58, 67, 68, 78) are present, we conclude
from (BC) that c13, c24 are the only vectors of type c present. If another
vector of type d is present then it must have the form dij78(ij 6= 34) for
compatiblity with a56 and bij(ij = 56, 57, 67, 68, 78). However, no such
vector is compatible with a12, c13, c24,b13,b24. The 30 vectors which remain
are a12,b34, c13, c24,d3478, e together with those in S ∩∆(e) and T . They
are pairwise compatible and determine a maximal graph which is the graph
M437 defined in Section 1.

Case 4: nb(Q) = 4, nr(Q) = 2.

We distinguish two subcases depending on the factorization of Q induced
by the edge-colouring.

Subcase 4a: The two red edges are non-adjacent.

We assume, without loss of generality, that edges 57 and 68 are red, so
that S ∩∆(e) contains a57,a68,b56,b58,b67,b78. These vectors exclude all
vectors of type d, and all further vectors of type c other than c14, c23.

By Lemma 4.3, at most one of c14, c23 is present. If say c14 is present
then b13,a24 are excluded, and by maximality a13,b24 are present. In this
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case the vectors which remain are a12,b34, c13, c24, c14, e together with those
in S ∩∆(e) and T . They are pairwise compatible and determine a maximal
graph with 30 vertices. An isomorphism ψ from this graph to M437 is given
by:

u b35 b46 a15 a12 a18 b36 a17 e a16 b37 b48 a25 b38 b24 a57

ψ(u) a18 a25 b38 a12 a15 b36 b37 e a16 a17 a26 a27 a28 a56 b13

u a68 b34 a27 a26 a28 b45 b47 b58 b78 b56 b67 a13 c13 c24 c14

ψ(u) b24 b34 b35 b45 b46 b47 b48 b57 b58 b67 b68 b78 c13 c24 d3478
.

If c14 and c23 are absent then c14 is excluded by b13 or a24, while c23 is
exluded by a13 or b24. Thus either b13,b24 are present and we obtain the
graph M417 defined in Section 1; or a13,a24 are present and an isomorphism
ψ from the resulting graph to M428 is given by:

u a15 b35 b45 a12 a16 a17 a18 e b36 b37 b38 b46 b47 b48

ψ(u) b35 a15 a25 a12 b36 b37 b38 e a16 a17 a18 a26 a27 a28

u b34 a25 a26 a27 a28 b24 b13 b78 b68 b67 b58 b57 b56 c13 c24

ψ(u) b34 b45 b46 b47 b48 b13 b24 b56 b57 b58 b67 b68 b78 c13 c24
.

Subcase 4b: Two red edges are adjacent.

We assume, without loss of generality, that edges 56 and 67 are red,
so that S ∩ ∆(e) contains a56,a67,b57,b58,b68,b78. By Lemma 4.4 (ap-
plied to a78,b56 and to a58,b67), we know that d3478,d3458 are present. It
follows that δ2 ≥ 2. Since also γ2 ≥ 2, it follows from Lemma 4.2 that
γ1 = δ1 = 0, γ2 = δ2 = 2, |S ∩ ∆(e)| = 8 and deg(a12) = deg(b34) =
deg(e). Since deg(a12) = 6 + |S ∩ ∆(a12)| + |T ∩ ∆(e)|, it follows that
|S ∩∆(b34)| ≥ 4, and hence that b13 and b24 is present. In view of (BD)
there are no further vectors of type d. The 31 vectors which remain are
a12,b34, c13, c24,d3458,d3478, e together with those in S∩∆(e) and T . They
are pairwise compatible and determine a maximal graph which is the graph
M462 defined in Section 1.

Case 5: nb(Q) = 3, nr(Q) = 3.

We show first that the three red edges form a path. Otherwise thay
form a star, say with edges 56, 57 and 58. By Lemma 4.4, the vectors
d3478,d3468,d3467 are present. Now we have γ2 ≥ 2 and δ2 ≥ 3, contradicting
Lemma 4.2.
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Accordingly we assume, without loss of generality, that edges 56, 58 and
67 are red, so that S ∩∆(e) contains a56,a58,a67,b57,b68,b78. By Lemma
4.4 (applied to a78,b56), we know that d3478 is present, and so δ2 ≥ 1. The
vectors in S ∩∆(e) exclude all further possible vectors of type c other than
c14 and c23.

By Lemma 4.3, at most one of c14, c23 is present. If say c14 is present then
b13,a24 are excluded, and γ2 ≥ 3. By Lemma 4.2, we have γ1 = δ1 = 0,
γ2 = 3, δ2 = 1, |S ∩ ∆(e)| = 8 and deg(a12) = deg(b34) = deg(e). In
particular, a13 and b24 are present, but no further vectors of type c are
present.

Now the only further vector of type d compatible with S∩∆(e),a12, c13, c24

and c14 is d2478. If this vector is present then a27,a28,b35,b36 are excluded.
The 28 vectors which remain are a12,b34, c13, c24, c14,d2478,d3478, e together
with the 8 vectors in S ∩ ∆(e) and the 12 vectors in T ∩ ∆(e). They are
pairwise compatible and determine a maximal graph with 28 vertices. An
isomorphism ψ from this graph to M002 is given by

u d2478a12 e b48 a15 b78 a13 a16 b34 a67 a26 b45 c13 b37

ψ(u) a14 b45 b46 a12 a13 a17 a18 e a23 a25 a27 a28 a36 a37

u a18 b57 a17 b38 b47 c14 d3478 b24 a56 b68 c24 a58 b46 a25

ψ(u) a38 a78 b47 b48 b56 b57 b58 b67 b68 c14 c25 c36 d4567d4568
.

If d2478 is absent then we obtain a maximal graph with 31 vertices, and
an isomorphism ψ from this graph to M462 is given by

u b35 a15 b47 b34 a18 a16 b37 e b46 b48 a25 a27 a13 b78 b68

ψ(u) a18 b38 b48 a12 a15 a16 a17 e a25 a26 a27 a28 a56 a67 b13

u b57 a12 b38 b36 a17 a26 a28 b45 a67 a56 a58 b24 c13 c24 c14 d3478

ψ(u) b24 b34 b35 b36 b37 b45 b46 b47 b57 b58 b68 b78 c13 c24 d3478d3458.

If c14 and c23 are absent then (arguing as above) we find that the only
possible vectors of type d in addition to d3478 are d1378,d2478. If both
are present then the vectors aij(ij = 27, 28, 17, 18, 24, 13) and bij(ij =
35, 36, 45, 46, 24, 13) are excluded. The vectors which remain are a12,b34,
c13, c24, d1378d2478, d3478, e together with the 6 vectors in S ∩∆(e) and the
8 vectors in T ∩∆(e). They are pairwise compatible and determine a maxi-
mal graph with 22 vertices. An isomorphism ψ from this graph to M001 is
given by
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u d3478 e b57 a16 b78 b47 b37 a12

ψ(u) d5678 a15 e a12 a13 a14 b67 b68

u b38 b34 a67 a25 b68 a58 a15 a56 b48 a26 d2478c13 d1378 c24

ψ(u) a23 a24 a26 a34 a37 a48 b56 b57 b58 b78 c15 c26 c37 c48
.

If just one of d1378,d2478 is present we obtain a contradiction because
either c23 or c24 is then not excluded. If neither d1378 nor d2478 is present
then either a13,a24 or b13,b24 must be present to exclude c14 and c23. By
duality we may assume that b13,b24 are present. The vectors which remain
are a12,b34, c13, c24,d3478, e together with the 8 vectors in S ∩∆(e) and the
16 vectors in T . They are pairwise compatible and determine a maximal
graph with 30 vertices. An isomorphism ψ from this graph to M437 is given
by

u b35 a25 a15 b34 b37 b36 b38 e a16 a18 b48 b46 a27 b78 b68

ψ(u) a18 a25 b38 a12 a15 b36 b37 e a16 a17 a26 a27 a28 a56 b13

u b57 a12 a17 b45 a28 a26 b47 a67 b24 b13 a58 a56 c13 c24 d3478

ψ(u) b24 b34 b35 b45 b46 b47 b48 b57 b58 b67 b68 b78 c13 c24 d3478
.

This completes the proof of the Main Theorem formulated in Section 1.
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[10] D. C v e t k o v i ć, M. L e p o v i ć, P. R o w l i n s o n, S. S i m i ć, A database
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