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1. Introduction

Let G be a simple graph with n vertices. The characteristic polynomial
det(xI − A) of a (0,1)-adjacency matrix A of G is called the characteristic
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polynomial of G and denoted by PG(x). The eigenvalues of A (i.e. the zeros
of det(xI −A)) and the spectrum of A (which consists of the n eigenvalues)
are also called the eigenvalues of G and the spectrum of G, respectively. The
eigenvalues of G are real because A is symmetric, and the largest eigenvalue
is called the index of G.

Together with the spectrum of an adjacency matrix of a graph we shall
consider the spectrum of another matrix associated with the graph.

Let n,m, R be the number of vertices, the number of edges and the
vertex-edge incidence matrix of a graph G. The following relations are well-
known

RRT = D + A, RT R = A(L(G)) + 2I, (1)

where D is the diagonal matrix of vertex degrees and A(L(G)) is the adja-
cency matrix of the line graph L(G) of G.

Since the non-zero eigenvalues of RRT and RT R are the same, we deduce
from the relations (1) that

PL(G)(x) = (x + 2)m−nQG(x + 2), (2)

where QG(x) is the characteristic polynomial of the matrix Q = D + A.
The polynomial QG(x) will be called the Q-polynomial of the graph G.

The eigenvalues and the spectrum of Q will be called the Q-eigenvalues and
the Q-spectrum, respectively.

To avoid possible confusion, the eigenvalues and the spectrum of the
adjacency matrix will be sometimes called adjacency eigenvalues and the
spectrum.

Let A denote the adjacency matrix of a graph G and (λ1, λ2, . . . , λn) the
spectrum of A, where the eigenvalues are such that λ1 ≥ λ2 ≥ . . . ≥ λn.

Let (q1, q2, . . . , qn) be the spectrum of Q, where the eigenvalues are such
that q1 ≥ q2 ≥ . . . ≥ qn. The largest eigenvalue q1 is called the Q-index of
G.

The matrix L = D − A, known as the Laplacian of G, features promi-
nently in the literature (see, for example, [3]). The matrix D + A is called
the signless Laplacian and it appears very rarely in published papers before
2003 [8]. Only recently has the signless Laplacian attracted the attention of
researchers [2, 8, 9, 1, 11, 10, 14, 19].

The present paper extends the surveys [8, 9] by providing further results,
comments and numerical data. The new results include some equalities for
the eigenvalues of D + A, while [9] mainly contains inequalities.
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As usual, Kn, Cn and Pn denote respectively the complete graph, the
cycle and the path on n vertices. We write Km,n for the complete bipartite
graph with parts of size m and n. The graph Kn−1,1 is called a star and is
denoted by Sn.

A unicyclic graph containing an even (odd) cycle is called even-unicyclic
(odd-unicyclic). The union of disjoint graphs G and H is denoted by G ∪ H,
while mG denotes the union of m disjoint copies of G. The subdivision graph
S(G) of a graph G is obtained from G when each edge of G is subdivided
by a new vertex.

The paper [9] contains 30 conjectures related to the Q-eigenvalues of a
graph have been formulated after some computer experiments. Almost all
the conjectures are in the form of inequalities which provide upper or lower
bounds for spectrally based graph invariants.

For some conjectures we have indicated that they are, at least partially,
resolved (previously in the literature or in the paper, explicitly or implicitly).
The conjectures left unresolved appear to include some difficult research
problems.

A few of the conjectures are related to the least Q-eigenvalue, and among
them there is one according to which the minimal value of the least Q-
eigenvalue among connected non-bipartite graphs of prescribed order is at-
tained for the odd-unicyclic graph obtained from a triangle by appending
a path. By the Interlacing Theorem such an extremal graph is an odd-
unicyclic graph, and so we discuss the least eigenvalue in odd-unicyclic
graphs. Investigations in [9] provide supporting evidence for this conjec-
ture. The conjectire has been proved in [1].

The rest of this paper is organized as follows. Section 2 elaborates results
from the survey paper [8] which will be required later. Section 3 contains
several new results including those on trees, unicyclic graphs and subdsivi-
sion graphs. In Section 4 a theorem on spectral characterization of graphs
with Q-index not exceeding 4 is given. Q-eigenvalues of connected graphs
on six vertices are given in Appendix.

2. Preliminaries

In virtue of (1), the signless Laplacian is a positive semi-definite matrix,
i.e. all its eigenvalues are non-negative. Concerning the least eigenvalue we
have the following proposition (see [8, Proposition 2.1] or [13, Proposition



134 D. Cvetković

2.1]).

Proposition 2.1. The least eigenvalue of the signless Laplacian of a
connected graph is equal to 0 if and only if the graph is bipartite. In this
case 0 is a simple eigenvalue.

Corollary 2.2. For any graph, the multiplicity of 0 as an eigenvalue of
the signless Laplacian is equal to the number of bipartite components.

The following proposition can be found in many places in the literature
(see, for example, [15]), usually without a proof.

Proposition 2.3. The Q-polynomial of a graph is equal to the charac-
teristic polynomial of the Laplacian if and only if the graph is bipartite.

P r o o f. Suppose that the graph G is bipartite, with parts U and
V . Consider the determinant defining QG(x). Multiply by −1 all rows
corresponding to vertices in U and then do the same with the correspond-
ing columns. The transformed determinant now defines the characteristic
polynomial of the Laplacian of G.

The multiplicity of the eigenvalue 0 in the Laplacian spectrum is equal to
the number of components, while for the signless Laplacian, the multiplicity
of 0 is equal to the number of bipartite components. Therefore in non-
bipartite graphs the two polynomials cannot coincide. ¤

Let G be a connected graph with n vertices, and let

QG(x) =
n∑

j=0

pj(G)xn−j = p0(G)xn + p1(G)xn−1 + · · ·+ pn(G).

A spanning subgraph of G whose components are trees or odd-unicyclic
graphs is called a TU-subgraph of G. Suppose that a TU -subgraph H of G
contain c unicyclic graphs and trees T1, T2, . . . , Ts. Then the weight W (H)
of H is defined by W (H) = 4c ∏s

i=1(1+ |E(Ti)|). Note that isolated vertices
in H do not contribute to W (H) and may be ignored.

We shall express coefficients of QG(x) in terms of the weights of TU -
subgraphs of G (cf. [12], [8]).

Theorem 2.4. We have p0(G) = 1 and

pj(G) =
∑

Hj

(−1)jW (Hj), j = 1, 2, . . . , n,
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where the summation runs over all TU -subgraphs of G with j edges.

Definition 2.5. A semi-edge walk (of length k) in an (undirected)
graph G is an alternating sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices
v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek such that for any i = 1, 2, . . . , k the
vertices vi and vi+1 are end-vertices (not necessarily distinct) of the edge ei.

We shall say that the walk starts at the vertex v1 and terminates at the
vertex vk+1.

The well known theorem concerning the powers of the adjacency matrix
[3, p.44] has the following counterpart for the signless Laplacian [8].

Theorem 2.6. Let Q be the signless Laplacian of a graph G. The (i, j)-
entry of the matrix Qk is equal to the number of semi-edge walks of length
k starting at vertex i and terminating at vertex j.

Let Tk =
∑n

i=1 qk
i (k = 0, 1, 2, . . .) be the k-th spectral moment for the

Q-spectrum. Since Tk = tr Qk, we have the following corollaries [8].

Corollary 2.7. The spectral moment Tk is equal to the number of closed
semi-edge walks of length k.

Corollary 2.8. Let G be a graph with n vertices, m edges, t triangles
and vertex degrees d1, d2, . . . , dn. We have

T0 = n, T1 =
n∑

i=1

di = 2m, T2 = 2m +
n∑

i=1

d2
i , T3 = 6t + 3

n∑

i=1

d2
i +

n∑

i=1

d3
i .

3. Some new results

We shall prove a number of propositions on several, not quite related,
topics.

* * *

1. The sum of graphs. There are very few formulas for Q-spectra of graphs
obtained by some operations on other graphs. This happens in the case of
the sum of graphs (for the definition and the corresponding result for the
adjacency spectra see, for example, [3], pp. 65-72).

Let G1, G2 be graphs with adjacency matrices A1, A2, degree matrices
D1, D2 and signless Laplacans Q1, Q2, respectively. We have Q1 = A1 +
D1, Q2 = A2 + D2.
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It is known that A1 ⊗ I2 + I1 ⊗ A2 is the adjacency matrix of the sum
G1 + G2 of graphs G1 and G2. Here I1, I2 are identity matrices with the
same order as G1, G2 respectively. If λ

(1)
i , λ

(2)
j are eigenvalues of G1, G2,

then the eigenvalues of G1 + G2 are all possible sums λ
(1)
i + λ

(2)
j .

In a quite analogous manner, (A1 + D1) ⊗ I2 + I1 ⊗ (A2 + D2) = Q1 ⊗
I2 + I1⊗Q2 is the signless Laplacian of the sum G1 +G2 and if q

(1)
i , q

(2)
j are

Q-eigenvalues of G1, G2, then the Q-eigenvalues of G1 + G2 are all possible
sums q

(1)
i + q

(2)
j .

* * *

2. The girth. The following proposition is easily obtained from Theorem
2.4, as noted in [9]. Let ti be the number of vertices of the tree obtained by
deleting an edge i outside the cycle in a unicyclic graph.

Proposition 3.1. For a graph G on n vertices, with girth g, we have:

pn(G) = 0, (−1)n−1pn−1(G) = ng

if G is an even-unicyclic graph, and

(−1)npn(G) = 4, (−1)n−1pn−1(G) = ng + 4
∑

ti

if G is an odd-unicyclic graph, where the summation goes over all edges i
outside the cycle.

Hence the girth can be determined from the Q-eigenvalues in the case
of even-unicyclic graphs but not in the case of odd-unicyclic graphs. For
(adjacency) eigenvalues we have exactly the opposite situation (cf. [7]).
However, Laplacian eigenvalues perform best: the girth of a unicyclic graph
can be determined in all cases.

In fact, we can formulate the following proposition.

Proposition 3.2. Given the Laplacian spectrum of a graph, we can
establish whether or not the graph is unicyclic and, if the answer is positive,
determine its girth.

P r o o f. From the Laplacian spectrum of a graph we can determine
the number of vertices, the number of edges and the number of connected
components. Suppose we have established that the graph is unicyclic. Then
the coefficient of the linear term in the characteristic polynomial is equal to
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−n times the number N of spanning trees, and for unicyclic graphs, N is
equal to the girth. ¤

Note that results concerning coefficients pn(G) and pn−1(G) for some
other classes of graphs, in particular for trees, have been obtained in [16].
Extremal results concerning the coefficients pi(T ) for a tree T have been
obtained in [19]. In particular, it is proved that for i = 3, 4, . . . , n − 1 the
coefficient (−1)ipi is minimal in paths and maximal in stars.

* * *

3. Subdivision graphs. As pointed out in [9], the following formula appears
implicitly in the literature (see e.g., [3, p. 63] and [18]):

PS(G)(x) = xm−nQG(x2), (3)

where G is a graph with n vertices and m edges, and S(G) is the subdivision
graph of G. Together with (2), this formula provides a link to the theory
of the adjacency spectra. While formula (2) has been used to some effect in
this context (cf. [8]), the connection with subdivision graphs remains to be
exploited. Here we present some examples in this direction.

Let η(G) be the multiplicity of the eigenvalue 0 in the spectrum of a
graph G.

Proposition 3.3. For any tree T we have η(S(T )) = 1.

P r o o f. If T is a tree on n vertices formula (3) yields PS(T )(x) =
x−1QT (x2). Since T is a bipartite graph QT (x) has a simple root 0 by
Proposition 2.1 and this completes the proof. ¤

Proposition 3.3 has been proved in [17] in another way.
The quantity η(T ) is an important parameter of a tree T since it deter-

mines the size of the maximal matching. By theorem 8.1 of [3], the size of
the maximal matching of a tree T on n vertices is equal to 1

2(n− η(T )).

Corollary 3.4. The subdivision of a tree with m edges has a matching
of size m.

Two graphs are said to be Q-cospectral if they have the same polyno-
mial QG(λ). By analogy with the notions of PING and cospectral mate
we introduce the notions of Q-PING and Q-cospectral mate with obvious
meaning.



138 D. Cvetković

Two graphs are called S-cospectral (L-cospectral) if their subdivision
(line) graphs are cospectral.

Proposition 3.5. If two graphs are Q-cospectral, then they are S-
cospectral and L-cospectral.

P r o o f. Since Q-cospectral graphs have the same number of vertices and
the same number of edges, their S-cospectrality and L-cospectrality follow
from formulas (3) and (2), respectively. ¤

However, two L-cospectral graphs need not be Q-cospectral as noted in
[8].

Example. The smallest Q-PING, consisting of the graphs K1,3 and
C3 ∪K1 on 4 vertices, yields by Proposition 3.5 the PING consisting of the
graphs S(K1,3) and C6 ∪ K1. This PING provides the smallest example
when a line graph is cospectral with a graph which is not a generalized line
graph (cf. [5]) (while the Q-PING provides the smallest example when a
line graph is Q-cospectral with a graph which is not a line graph). ¤

Note that the smallest PINGs (consisting of the graphs K1,4 and C4∪K1

on 5 vertices and the well known PING of two connected graphs on 6 vertices
[3, p. 157]) are not Q-PINGs.

Proposition 3.5 explains partially the fact that PINGs are more frequent
than Q-PINGs. Namely, for any Q-PING Proposition 3.5 yields two PINGs
whose graphs belong to restricted classes of graphs (subdivision and line
graphs).

There are cospectral unicyclic graphs with different girths (which are
necessarily even in this case) [7]. By Proposition 3.1 these graphs are not
Q-cospectral.

* * *

4. The diameter. Let e(G) be the number of distinct Q-eigenvalues of a
graph G. As pointed out in [9], the diameter of G is bounded above by
e(G) − 1. This statement and its proof is analogous to an existing result
related to the adjacency spectrum [3, Theorem 3.13].

Theorem 3.6. Let G be a connected graph of diameter D and e(G)
distinct Q-eigenvalues. Then D ≤ e(G)− 1.

P r o o f. By Theorem 2.6 the (i, j)-entry q
(k)
i,j of Qk is the number of

semi-edge walks of length k from i to j. By the definition of the diameter,
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for some vertices i and j there is no semiedge walk of length k connecting
i and j for k < D, whereas there is at least one for k = D. Hence we have
q
(k)
i,j = 0 for k < D and q

(k)
i,j > 0 for k = D. The minimal polynomial of the

matrix Q is of degree e(G) = e and yields a recurence relation connecting e

consecutive members of the sequence q
(k)
i,j , k = 0, 1, 2, . . .. The assumption

D > e−1 would cause that all members of the sequence q
(k)
i,j , k = 0, 1, 2, . . .

are equal to 0 what is impossible. This contradiction proves the proposition.
¤

* * *

5. Eigenvectors. We shall also consider the eigenvectors.

Theorem 3.7. The eigenspace of the Q-eigenvalue 0 of a graph G
determines sets of vertices and bipartitions in bipartite components of G.

P r o o f. Let xT = (x1, x2, . . . , xn). For a non-zero vector x we have
Qx = 0 if and only if RTx = 0. The later holds if and only if xi = −xj

for every edge. If the graph is connected (and then necessarily bipartite), x
is determined up to a scalar multiple by the value of its coordinate corre-
sponding to any fixed vertex i. If G is disconnected, at least one component
is bipartite. If a vertex i belongs to a non-bipartite component, then xi = 0.
Using Corollary 2.2 we determine the number of bipartite components as
the multiplicity of eigenvalue 0. For each bipartite component we have an
eigenvector with non-zero coordinates exactly for vertices in this component.
Now, vertex sets of bipartite components are determined by non-zero coor-
dinates in vectors of a suitably chosen ortogonal basis of the eigencpace of
0. The sign of these coordinates determines colour classes within bipartite
components. ¤

4. Vertex degrees and graphs with Q-index not exceeding 4

Expressions for the spectral moments from Corollary 2.8 can be used
to determine vertex degrees if we know that vertex degrees can take only a
limited number of values. In particular, suppose that a graph has ni vertices
of degree ei for i = 0, 1, 2, 3 and no other vertices. If we specify e0, e1, e2, e3,
the corresponding numbers of vertices n0, n1, n2, n3 can be determined from
the system of equations (provided the spectral moments T0, T1, T2, T3 are
known)

3∑

i=0

ni = T0 = n,
3∑

i=0

niei = T1 = 2m,
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3∑

i=0

nie
2
i = T2 − 2m,

3∑

i=0

nie
3
i = T3 − 6t− 3(T2 − 2m).

Interesting conclusions could be made in the case e0 = 0, e1 = 1, e2 =
2, e3 = 3.

Such a situation occurs in graphs with vertex degrees at most 3. These
graphs are of interest in chemical applications of graph theory. If such a
graph is bipartite, we have t = 0 and vertex degrees are determined in
terms of spectral moments by the above system. If the graph is connected,
we have n0 = 0 and we can treat non-bipartite case as well. (The first three
equations suffice to determine vertex degrees and, in addition, the fourth
equation yields the number of triangles t).

* * *

A similar situation occurs in graphs with the Q-index not exceeding 4.
By Proposition 6.1 of [8] components of such graphs are paths (including
isolated vertices), cycles and stars K1,3. In fact we have a subset of the set
of chemically interesting graphs but we shall try here to say a little more.

We shall assume that the whole Q-spectrum of such a graph is given.
Could we hope that the graph is determined up to isomorphism ?

The smallest Q-PING, consisting of the graphs K1,3 and C3 ∪K1 on 4
vertices yields a counter example.

We can then, according to the suggestion in [8], assume that together
with Q-spectrum also the number of components is given. This really dis-
tinguishes between the graphs in this Q-PING: if the number of components
is eqal to 1 we get K1,3 and if the number of components is equal to 2 we
get C3 ∪K1.

In order to treat the general case let us introduce the following notation:
kq multiplicity of the Q-eigenvalue q,
c the number of components,
b the number of bipartite components,
s the number of components isomorphic to the star K1,3,
e the number of even circuits,
u the number of of odd circuits of length greater or equal to 5,
p the number of (non-trivial) paths,
v the number of isolated vertices.
We have the following relations connecting these parameters with the

spectum:
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k0 = b, k4 = e + t + u + s.

Next, we have some relations connecting these parameters with quanti-
ties n0, n1, n2, n3:

v = n0, p =
n1 − 3n3

2
, s = n3,

Note also that b = v + p + e + s and c = b + t + u.
From all these relations it is easy to derive the following equation

2n0 + n1 − 3n3 = 2c− 2k4.

Previous equations for n0, n1, n2, n3 read now

n0 + n1 + n2 + n3 = T0 = n, n1 + 2n2 + 3n3 = T1 = 2m,

n1 + 4n2 + 9n3 = T2 − 2m, n1 + 8n2 + 27n3 = T3 − 6t− 3(T2 − 2m).

Using the above equations we can determine vertex degrees and, in par-
ticular, numbers of components of each type, provided the Q-spectrum and
the number of components c are known. In fact, the first four out of these
five equations are independent and yield unique values for n0, n1, n2, n3 and
the fifth equation yields t. Then gradually all other parameters can be
calculated.

Hence, we have proved the following theorem.

Theorem 3.8. Let the Q-spectrum and the number c of components
of a graph be given. If the Q-index does not exceed 4, then the numbers
v, p, e, s, t, u, defined above, are uniquely determined.

However, all this is not sufficient to determine the graph up to isomor-
phism.

Example. Graphs C4 ∪ 2P3 and C6 ∪ 2K2 are Q-cospectral. This is
the smallest of the following family of Q-PINGs: C2k ∪ 2Pl and C2l ∪ 2Pk

for k, l ≥ 2, k 6= l, what can be verified since the Q-spectra of circuits and
paths are known [8]. ¤

This example shows that although the numbers of components of each
type are determined, the distribution of vertices between components (in
these cases between paths and even circuits) is not unique.

Remark. The paper [4] studies spectra of the adjacency matrix of



142 D. Cvetković

graphs in which the largest eigenvalue does not exceed 2. This problem is
analogous to the problem covered by Theorem 3.8, i.e., the problem of graphs
with the Q-index not exceeding 4. There are more graphs in the first case
and cospectral graphs appear more frequently. Once more we come across
facts supporting the idea that Q-eigenvalues contain more information on
graphs than the eigenvalues of the adjacency matrix.

Appendix

We have computed Q-spectra of graphs on 6 vertices. The graphs are
ordered and labeled in the same way as in the paper [6] and the reader
is referred to this paper for drawings of the graphs. (In fact, the graphs
are ordered lexicographically by spectral moments of the adjacency matrix.)
The number of edges m is given. The following 5 pairs of graphs form
Q-PINGs: 5 6, 14 16, 53 56, 65 71, 82 88.

Q-spectra of graphs on up to 5 vertices are given in the appendix of [8].

Q-SPECTRA OF CONNECTED GRAPHS WITH 6 VERTICES

m=15 001. 10.0000 4.0000 4.0000 4.0000 4.0000 4.0000

m=14 002. 9.4641 4.0000 4.0000 4.0000 4.0000 2.5359

m=13 003. 9.0000 4.0000 4.0000 4.0000 3.0000 2.0000

004. 8.8284 4.0000 4.0000 4.0000 3.1716 2.0000

m=12 005. 8.6056 4.0000 4.0000 3.0000 3.0000 1.3944

006. 8.6056 4.0000 4.0000 3.0000 3.0000 1.3944

007. 8.4495 4.0000 4.0000 3.5505 2.0000 2.0000

008. 8.2588 4.0000 4.0000 3.2518 3.0000 1.4894

009. 8.0000 4.0000 4.0000 4.0000 2.0000 2.0000

m=11 010. 8.2749 4.0000 3.0000 3.0000 3.0000 0.7251

011. 8.1355 4.0000 3.6532 3.0000 2.0000 1.2113

012. 7.9651 4.0000 3.7180 3.0000 2.0000 1.3169

013. 8.0000 4.0000 4.0000 2.0000 2.0000 2.0000

014. 7.7588 4.0000 3.3054 3.0000 3.0000 0.9358

015. 7.7913 4.0000 3.6180 3.2087 2.0000 1.3820

016. 7.7588 4.0000 3.3054 3.0000 3.0000 0.9358

017. 7.5616 4.0000 3.4384 3.0000 3.0000 1.0000

018. 7.5047 4.0000 4.0000 3.1354 2.0000 1.3600

m=10 019. 7.7264 3.8577 3.0000 3.0000 1.7093 0.7066
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020. 7.5446 3.8329 3.0000 3.0000 2.0000 0.6224

021. 7.7588 4.0000 3.3054 2.0000 2.0000 0.9358

022. 7.5742 3.7337 3.6180 2.5076 1.3820 1.1845

023. 7.3723 4.0000 3.0000 3.0000 1.6277 1.0000

024. 7.4279 4.0000 3.3757 2.0000 2.0000 1.1965

025. 7.3919 3.7904 3.2106 3.0000 1.6815 0.9256

026. 7.1859 3.7200 3.3007 3.0000 2.0000 0.7933

027. 7.1190 4.0000 3.6180 2.5684 1.3820 1.3126

028. 7.2361 3.6180 3.6180 2.7639 1.3820 1.3820

029. 7.0839 4.0000 3.2132 3.0000 2.0000 0.7029

030. 6.8951 4.0000 3.3973 3.0000 1.7076 1.0000

031. 6.8284 4.0000 4.0000 2.0000 2.0000 1.1716

032. 6.9095 3.6093 3.0000 3.0000 3.0000 0.4812

m=9 033. 7.2724 3.7245 3.0000 2.0000 1.3437 0.6594

034. 7.0604 3.6395 3.0000 2.4522 1.2270 0.6208

035. 6.9095 3.6093 3.0000 2.0000 2.0000 0.4812

036. 7.0000 4.0000 2.0000 2.0000 2.0000 1.0000

037. 7.4641 4.0000 2.0000 2.0000 2.0000 0.5359

038. 7.0839 3.2132 3.0000 3.0000 1.0000 0.7029

039. 6.7982 3.7904 3.0000 2.5025 1.3626 0.5463

040. 7.1156 3.6701 3.0971 2.0000 1.2393 0.8780

041. 6.7321 3.4142 3.2679 2.0000 2.0000 0.5858

042. 6.8284 3.6180 3.6180 1.3820 1.3820 1.1716

043. 6.9576 3.6180 3.1215 2.0000 1.3820 0.9209

044. 6.6458 4.0000 3.0000 2.0000 1.3542 1.0000

045. 6.6648 3.3011 3.0000 3.0000 1.5713 0.4628

046. 6.6058 3.7197 3.1897 2.4767 1.3225 0.6856

047. 6.4081 3.6180 3.2934 2.5573 1.3820 0.7411

048. 6.3234 4.0000 3.3579 2.0000 1.3187 1.0000

049. 6.4940 4.0000 3.1099 2.0000 2.0000 0.3961

050. 6.3419 3.5959 3.0000 3.0000 1.6324 0.4298

051. 6.0000 4.0000 3.0000 3.0000 1.0000 1.0000

052. 6.0000 3.0000 3.0000 3.0000 3.0000 0.0000

m=8 053. 6.9095 3.6093 2.0000 2.0000 1.0000 0.4812

054. 6.6728 3.4142 2.6481 2.0000 0.6791 0.5858

055. 6.3923 3.3254 2.0000 2.0000 2.0000 0.2823

056. 6.9095 3.6093 2.0000 2.0000 1.0000 0.4812

057. 6.4940 3.1099 3.0000 2.0000 1.0000 0.3961

058. 6.7494 3.1469 3.0000 1.4577 1.0000 0.6460

059. 6.4317 3.6180 2.7995 1.3820 1.2245 0.5443

060. 6.2422 3.5496 2.6524 2.0000 1.0855 0.4703

061. 6.6262 3.5151 2.0000 2.0000 1.0000 0.8587

062. 6.0000 4.0000 2.0000 2.0000 1.0000 1.0000

063. 6.1779 3.1905 3.0000 2.4204 0.7828 0.4284

064. 6.1159 3.7195 2.7379 2.0000 1.0648 0.3619
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065. 5.8781 3.5834 3.0000 2.0000 1.2296 0.3089

066. 6.2491 3.4142 2.8536 2.0000 0.8972 0.5858

067. 6.0280 3.2953 3.0000 2.0000 1.2849 0.3918

068. 5.9452 3.6180 3.0856 1.3820 1.2963 0.6728

069. 5.7093 3.4142 3.1939 2.0000 1.0968 0.5858

070. 5.5616 4.0000 3.0000 1.4384 1.0000 1.0000

071. 5.8781 3.5834 3.0000 2.0000 1.2296 0.3089

072. 5.5887 3.5463 3.0000 2.4537 1.0000 0.4113

073. 6.0000 4.0000 2.0000 2.0000 2.0000 0.0000

074. 5.5616 3.0000 3.0000 3.0000 1.4384 0.0000

m=7 075. 6.4940 3.1099 2.0000 1.0000 1.0000 0.3961

076. 6.1563 3.4142 2.0000 1.3691 0.5858 0.4746

077. 5.9452 3.0856 2.6180 1.2963 0.6728 0.3820

078. 5.8781 3.5834 2.0000 1.2296 1.0000 0.3089

079. 6.3723 3.0000 2.0000 1.0000 1.0000 0.6277

080. 5.6458 3.4142 2.0000 2.0000 0.5858 0.3542

081. 5.8154 3.0607 2.0000 2.0000 0.8638 0.2602

082. 5.4893 3.2892 2.0000 2.0000 1.0000 0.2215

083. 5.7217 3.5127 2.0000 1.3098 1.0000 0.4558

084. 5.0000 4.0000 2.0000 1.0000 1.0000 1.0000

085. 5.6597 3.1461 2.7357 1.3736 0.7772 0.3077

086. 5.3615 3.1674 2.6180 2.0000 0.4711 0.3820

087. 5.2647 3.5378 2.6491 1.2987 1.0000 0.2497

088. 5.4893 3.2892 2.0000 2.0000 1.0000 0.2215

089. 5.0664 3.2222 3.0000 1.3478 1.0000 0.3636

090. 5.5141 3.5720 2.0000 2.0000 0.9139 0.0000

091. 5.2361 3.0000 3.0000 2.0000 0.7639 0.0000

092. 5.0000 3.0000 3.0000 2.0000 1.0000 0.0000

093. 4.9032 3.4142 2.8061 2.0000 0.5858 0.2907

m=6 094. 6.2015 2.5451 1.0000 1.0000 1.0000 0.2534

095. 5.5344 3.0827 1.5929 1.0000 0.4889 0.3010

096. 5.2361 2.6180 2.6180 0.7639 0.3820 0.3820

097. 5.3839 2.7424 2.0000 1.0000 0.6721 0.2015

098. 4.9809 3.0420 2.0000 1.2938 0.4629 0.2204

099. 4.8422 3.5069 1.4931 1.0000 1.0000 0.1578

100. 4.6554 3.2108 2.0000 1.0000 1.0000 0.1338

101. 5.2361 3.0000 2.0000 1.0000 0.7639 0.0000

102. 4.8136 3.0000 2.5293 1.0000 0.6571 0.0000

103. 4.7321 3.4142 2.0000 1.2679 0.5858 0.0000

104. 4.5616 3.0000 2.0000 2.0000 0.4384 0.0000

105. 4.4383 3.1386 2.6180 1.1798 0.3820 0.2434

106. 4.0000 3.0000 3.0000 1.0000 1.0000 0.0000

m=5 107. 6.0000 1.0000 1.0000 1.0000 1.0000 0.0000

108. 5.0861 2.4280 1.0000 1.0000 0.4859 0.0000
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109. 4.5616 3.0000 1.0000 1.0000 0.4384 0.0000

110. 4.3028 2.6180 2.0000 0.6972 0.3820 0.0000

111. 4.2143 3.0000 1.4608 1.0000 0.3249 0.0000

112. 3.7321 3.0000 2.0000 1.0000 0.2679 0.0000
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