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(Presented at the 8th Meeting, held on October 30, 2009)
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∫ +∞

−∞
log |P (ix)/Q(ix)| dx are developed,
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√
−1 . These integrals play a distinguished role in the-

oretical chemistry.
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1. Introduction

In this paper we are concerned with the Cauchy principal value integrals
of the form

v.p.

+∞∫
−∞

log

∣∣∣∣P (ix)

Q(ix)

∣∣∣∣ dx, (1)
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where

P (x) =
n∑

k=0

ak x
k and Q(x) =

n∑
k=0

bk x
k (2)

are polynomials of equal degree whose coefficients are integers, an = bn = 1 ,
and i =

√
−1 .

Integrals of this kind play a significant role in theoretical (quantum)
chemistry. It seems that such integrals were first considered by Coulson and
Jacobs [10], who showed that the difference between the total π-electron
energy of two conjugated hydrocarbons with equal number of carbon atoms
is given by

E(G2)− E(G1) =
1

π
v.p.

+∞∫
−∞

log

∣∣∣∣ϕ(G1, ix)

ϕ(G2, ix)

∣∣∣∣ dx (3)

where G1 and G2 are the corresponding molecular graphs [67], and ϕ stands
for their characteristic polynomial. This formula is an immediate conse-
quence of Coulson’s classic integral expression for the total π-electron energy
[9, 67]:

E(G) =
1

π
v.p.

+∞∫
−∞

[
n− ix ϕ′(G, ix)

ϕ(G, ix)

]
dx (4)

where ϕ′ denotes the first derivative of ϕ .
Several variants of Eq. (3), pertaining to energy differences, were con-

sidered in the chemical literature [18, 19, 28, 42]. Of these, the so-called
“topological resonance energy” should especially be mentioned [60, 60]:

TRE (G) =
1

π
v.p.

+∞∫
−∞

log

∣∣∣∣ϕ(G, ix)

α(G, ix)

∣∣∣∣ dx (5)

where α is the matching polynomial.
It should be noted that in actual chemical applications (which are very

numerous) both the total π-electron energy and the topological resonance
energy are not computed by means of the formulas (3)–(5), but by using
other computational techniques. However, there is another chemical theory
in which calculation of numerical values of integrals of the type (1) cannot
be avoided.

In 1977 one of the present authors [7, 17, 43] developed a novel theory of
cyclic conjugation which made it possible to assess the effect of an individual
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cycle on the thermodynamic stability of a polycyclic conjugated molecule.
Details of this theory can be found in several expository articles [27, 36, 37,
38], whereas its mathematical formalism is outlined in [66, 67]. Almost in
the same time Aihara [1] proposed a similar, yet not equivalent, theory, in
which no integrals of the type (1) were used. The advantage of our approach
over Aihara’s was recognized only many years later [2]

Within our theory of cyclic conjugation, the energy-effect of a cycle Z of
a polycyclic conjugated molecule whose molecular graph is G is computed
as:

ef (G,Z) =
1

π
v.p.

+∞∫
−∞

log

∣∣∣∣ ϕ(G, ix)

ϕ(G, ix) + 2ϕ(G− Z, ix)

∣∣∣∣ dx. (6)

Recently, analogous expressions for the effects of pairs, triplets, quartets,
etc. of cycles were deduced [74], as well as for the effect of conjugation in
one cycle on conjugation in another cycle [91, 68, 16, 92, 39].

The quantity ef was extensively studied and applied to a variety of chem-
ical problems. These researches were done either by finding some generally
valid mathematical properties of ef [20, 21, 22, 24, 30, 65] or by performing
numerical calculations [12, 25, 26, 29, 31, 32, 33, 34, 35, 41, 44, 45, 50, 51,
52, 53, 54, 56, 57, 61, 62, 63, 64, 69, 70, 71, 75, 72, 74, 76, 77, 78, 79, 5, 73,
81, 90, 4, 49, 48, 47, 3, 15, 55, 82, 46, 13, 14].

In the general case, the polynomials P (x) ≡ ϕ(G, x) andQ(x) ≡ ϕ(G, x)+
2ϕ(G−Z, x) , occurring in the expression on the right–hand side of Eq. (6)
are monic, of equal degree, and have integer coefficients. The zeros of Q(x)
may be complex-valued and in practical applications are not known.

For x → ±∞ the integrand in (6) tends to zero as x−|Z| , where |Z| ≥ 3
is the size of the cycle Z . At x = 0 the integrand may possess a singularity.

In standard chemical applications of the integrals of the form (1) it is
assumed that the coefficients a1 and b1 in the polynomials P (x) and Q(x)
are equal to zero. If this is not the case, then pertinent corrections need to
be made [58, 85].

The hitherto reported ef-values were computed by means of a Simpson–
type integration [40], in which the integrand is computed for x = 1

2 h + kh
for k = 0, 1, 2, . . . , up to the point at which the integrand is smaller than
a critical value C. By empirical testing it was found that h = 0.004 and
C = 0.00001 yield ef-values accurate to 3 or 4 decimal places. However, this
latter accuracy could be tested only for the few (simple) examples for which
the right–hand side of (6) can be solved analytically.



4 I. Gutman, G. V. Milovanović

In the subsequent sections we show how integrals of the type (1) can be
calculated in a much more efficient and much more accurate manner. Two
methods are presented. In both cases a previous reduction to an integral
with a rational function is provided (Section 2). In Section 3 we apply
the trapezoidal rule after the so-called double exponential ransformation
of the integrand. Such ideas have been appeared in papers of Japanese
mathematicians (cf. Takahasi and Mori [93, 94], Iri, Moriguti, and Takasawa
[80], Mori [89]). The second method, presented in Section 4, is based on a
transformation of the integral over the real line to an integral over the finite
interval (−1, 1), with respect to the Chebyshev weights. An application of
the corresponding quadratures of Gaussian type is also presented.

2. Reduction to integrals of rational functions

In this section we reduce the Cauchy principal value integral (1) to an
improper integral of a rational function over R.

Let Pn be a set of all real algebraic polynomials of degree at most n and
P̂n be its subset of monic polynomials of degree n. With R[m,n] we denote
the set of all rational functions of the form u(t)/v(t) such that u ∈ Pm,
v ∈ P̂n, and gcd(u(t), v(t)) = 1 (i.e., the polynomials u(t) and v(t) are
relatively prime).

According to (2) we have

P (ix)P (−ix) = (a0 − a2x
2 + a4x

4 − · · · )2 + x2(a1 − a3x
2 + a5x

4 − · · · )2,

i.e., |P (ix)|2 = P (ix)P (−ix) = p(x2) and similarly |Q(ix)|2 = Q(ix)Q(−ix) =
q(x2). Such polynomials

p(t) = tn + αtn−1 + · · · and q(t) = tn + βtn−1 + · · ·

are real monic polynomials of degree n and nonnegative for t ≥ 0. Without
loss of generality, we can suppose that they are relatively prime. In addition,
we suppose that they have not positive zeros, i.e., p(t), q(t) > 0 for t > 0.

Then

v.p.

+∞∫
−∞

log

∣∣∣∣P (ix)

Q(ix)

∣∣∣∣ dx =
1

2
v.p.

+∞∫
−∞

log

∣∣∣∣P (ix)

Q(ix)

∣∣∣∣2 dx =
1

2
v.p.

+∞∫
−∞

log
p(x2)

q(x2)
dx.

An integration by parts gives

1

2

∫
log

p(x2)

q(x2)
dx =

x

2
log

p(x2)

q(x2)
−
∫

x2
(
p′(x2)

p(x2)
− q′(x2)

q(x2)

)
dx. (7)
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Defining a rational function R(t) by

R(t) = t

(
q′(t)

q(t)
− p′(t)

p(t)

)
=

h(t)

p(t)q(t)
, (8)

where h(t) = t(p(t)q′(t)− q(t)p′(t)), we get

R(t) = t

{
ntn−1 + (n− 1)βtn−2 + · · ·

tn + βtn−1 + · · ·
− ntn−1 + (n− 1)αtn−2 + · · ·

tn + αtn−1 + · · ·

}

= t
(α− β)t2n−2 + · · ·

p(t)q(t)
∈ R[2n− 1, 2n].

Precisely, R(t) ∈ R[m, 2n] for some m between 0 and 2n− 1.
Thus, R(x2) = o(x−2r) as x → +∞, where r ≥ 1. For t > 0 the

denominator of the rational function R(t) is strictly positive, except t = 0,
but this function R(t) cannot have a pole at the origin. Namely, if p(t) or
q(t) (not both) has a zero at the origin, then such a pole is eliminated by
the factor t in h(t). Regarding these facts, we have the existence of the
improper integral

+∞∫
−∞

R(x2) dx.

Also, by definition of the Cauchy principal value integral, it is easy to con-
clude that the first term on the right hand side in (7) has no contribution
in the integral (1), so that the following result holds:

Lemma 1 For the integral (1) we have

v.p.

+∞∫
−∞

log

∣∣∣∣P (ix)

Q(ix)

∣∣∣∣ dx =

+∞∫
−∞

R(x2) dx, (9)

where the function R(t) ∈ R[m, 2n] (0 ≤ m ≤ 2n − 1) has the form (8),
where h ∈ Pm and p, q ∈ P̂n.

For example, for p(t) = t2 + 4t and q(t) = t2 + 4t + 2, according to (8)
and (9), we get

v.p.

+∞∫
−∞

log
x4 + 4x2

x4 + 4x2 + 2
dx =

+∞∫
−∞

−8(x2 + 2)

(x2 + 4)(x4 + 4x2 + 2)
dx.
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Thus, it is reduced to an improper integral, which value is

−2π
(√

4 + 2
√
2− 2

)
= −3.852383833273321 . . . .

Thus, our starting problem (1) is reduced to an integration of rational
functions over R. It is well known that in the eighteenth century Johan
Bernoulli solved the problem of indefinite integration of rational functions
by their partial decomposition. The main computational problem with this
method is computing the factorization of a polynomial. However, in the
middle of the nineteenth century the Russian mathematician Mikhail Vasi-
lyevich Ostrogradsky presented an algorithm for finding the rational part of
the integral without factoring. Some similar approaches were latter discov-
ered. The problem of computing the transcendental part of the primitive
was recently solved. The recent development of symbolic computations made
also a progress in this area (for details see a book of Bronstein [8], as well
as some papers dealing with Landen transformation for rational functions
[6] and [83]).

For our specific kind of integrals in the subsequent sections we give two
efficient methods for their numerical calculating.

3. Double exponential transformation and trapezoidal rule

We start this section with some classical rules for calculating the integral
I(f) :=

∫ b
a f(x) dx.

Taking h := (b − a)/n and equally spaced points xk := a + kh, k =
0, 1, . . . , n, we have the well-known composite trapezoidal rule

I(f) ≈ Tn(f ;h) := h

(
1

2
f0 + f1 + · · ·+ fn−1 +

1

2
fn

)
, (10)

where fk := f(xk), k = 0, 1, . . . , n. If f ∈ C2[a, b] it is easy to prove that

I(f)− Tn(f ;h) = −(b− a)h2

12
f ′′(ξ), a < ξ < b. (11)

As we can see this rule converges very slowly with respect to step refinement
as O(h2).

Another simple rule is the classical composite Simpson rule

I(f) ≈ Sn(f ;h) :=
h

3

[
f0 + 4(f1 + · · ·+ f2n−1) + 2(f2 + · · ·+ f2n−2) + f2n

]
,
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where h := (b − a)/2n, xk := a + kh, fk := f(xk), k = 0, 1, . . . , 2n, which
is slightly faster, but complicated than the previous one. Namely, if f ∈
C4[a, b],

I(f)− Sn(f ;h) = −(b− a)h4

180
f (4)(ξ), a < ξ < b.

For functions with continuous derivatives of order at least 2m − 1, a
generalization of (11) is the well-known Euler-Maclaurin summation formula

I(f)− Tn(f ;h) = −h2

12
(f ′(b)− f ′(a)) +

h4

720
(f ′′′(b)− f ′′′(a))

− · · · − h2mB2m

(2m)!

(
f (2m−1)(b)− f (2m−1)(a)

)
− Em(f),

where B2m is the Bernoulli number of order 2m and

Em(f) = (b− a)
B2m+2h

2m+2

(2m+ 2)!
f (2m+2)(ξ), a < ξ < b.

If we restrict our analysis to analytic functions with all derivatives of f which
vanish at x = a and x = b, then the discretization error is given only by
remainder Em(f) as m → +∞. Then the convergence with respect to step
refinement is faster than any finite order and the trapezoidal rule becomes a
method of choice. Such a convergence is known as exponential convergence.

In order to calculate the integral (9) with the trapezoidal rule with the
previous property we first apply the so-called double-exponential transfor-
mation x = u(t) = sinh((π/2) sinh t), reducing it to

I =

+∞∫
−∞

R(x2) dx =

+∞∫
−∞

R(u(t)2)u′(t) dt,

i.e.,

I =
π

2

+∞∫
−∞

R

(
sinh2

(
π

2
sinh t

))
cosh

(
π

2
sinh t

)
cosh t dt. (12)

The crucial point in this transformation is the decay of the integrand be
double exponential, i.e.,

|R(u(t)2)u′(t)| ≈ exp(−C exp |t|) as |t| → +∞,
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where C is some positive constant. For an integral of such form of an analytic
function on (−∞,+∞), it is known that the trapezoidal formula with an
equal mesh size gives an optimal formula (cf. [80, 87, 88, 89, 93, 94, 95]).

In our case we apply the trapezoidal formula with an equal mesh size h,
so that we obtain

Ih =
πh

2

+∞∑
k=−∞

R

(
sinh2

(
π

2
sinh kh

))
cosh

(
π

2
sinh kh

)
cosh kh.

Since the integrand decays double exponentially, in actual computation of
the previous sum we truncate the infinite summation at k = −M and k = M ,
so that we obtain the double-exponential (DE) formula for our integral

I ≈ I
(N)
h =

πh

2

M∑
k=−M

R

(
sinh2

(
π

2
sinh kh

))
cosh

(
π

2
sinh kh

)
cosh kh,

where N = 2M + 1.

Example 1 Let ϕ(G, x) = x10 − 11x8 + 41x6 − 65x4 + 43x2 − 9 and
ϕ(G − Z, x) = x4 − 3x2 + 1. Then we have P (x) = ϕ(G, x) and Q(x) =
ϕ(G, x) + 2ϕ(G− Z, x), so that

|P (ix)|2 = P (ix)P (−ix) = (9 + 43x2 + 65x4 + 41x6 + 11x8 + x10)2,

|Q(ix)|2 = Q(ix)Q(−ix) = (7 + 37x2 + 63x4 + 41x6 + 11x8 + x10)2,

i.e., ∣∣∣∣P (ix)

Q(ix)

∣∣∣∣2 =
(
9 + 16x2 + 8x4 + x6

7 + 16x2 + 8x4 + x6

)2

,

because of gcd(|P (ix)|2, |Q(ix)|2) = (1 + 3x2 + x4)2. The problem can be
additionally simplified by taking (see Lemma 1): p(t) = 9 + 16t + 8t2 + t3,
q(t) = 7+ 16t+8t2 + t3, h(t) = 2t(p(t)q′(t)− q(t)p′(t)) = 2t(16+ 16t+3t2),
and

R(t) = 2
h(t)

p(t)q(t)
=

4t(16 + 16t+ 3t2)

(7 + 16t+ 8t2 + t3)(9 + 16t+ 8t2 + t3)
.

Thus, R(t) ∈ R[3, 6]. The behavior of the function R(x2) is presented
in Fig. 1. Its values for x = ±5,±10,±15,±20 are 0.000518, 0.0000108,
1.005× 10−6, 1.826× 10−7, respectively.
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Fig. 1. The function R(x2)
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Fig. 2. The function R(u(t)2)u′(t)

However, after DE transformation x = u(t) = sinh((π/2) sinh t), the in-
tegrand R(u(t)2)u′(t) decays double exponentially (see Fig. 2). For example,
its values for t = ±1,±2,±3± 4 are 0.04298, 9.654× 10−10, 4.102× 10−31,
1.357× 10−89, respectively.

Taking the bounds in the integral as a = −3 and b = 3 (corresp. value of
integrand 4.102× 10−31), for N = 10(10)100 we get the trapezoidal approx-

imations I
(N+1)
h . Table 1 shows these approximations, together with the

relative errors. In each entry of the second column the first digit in error
is underlined. In the third column numbers in parentheses indicate decimal
exponents, for example 1.40(−2) = 1.40× 10−2.

The exact value (to 33 significant digits), as determined by the method
in the next section, is 0.380477864729266685437345222424304. The corre-
sponding exact value of (6) is ef (G,Z) = 0.121109865817424581769007 . . . .
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Table 1. Numerical approximations I
(N+1)
h and

the corresponding relative errors for N = 10(10)100

N I
(N+1)
h erel

10 0.385796 1.40(−2)
20 0.38049435 4.33(−5)
30 0.38047789486 7.92(−8)
40 0.38047786477677 1.25(−10)
50 0.3804778647293509 2.21(−13)
60 0.3804778647292668368 3.98(−16)
70 0.3804778647292666856998 6.90(−19)
80 0.3804778647292666854378032 1.20(−21)
90 0.380477864729266685437346027 2.11(−24)
100 0.3804778647292666854373452238 3.70(−27)

4. Transformation to the finite interval and Gaussian formulae

In this section we propose another transformation x = −t/
√
1− t2 (cf.

[88]) in order to reduce (9) to the following integral over the finite interval
(−1, 1),

+∞∫
−∞

R(x2) dx =

1∫
−1

R

(
t2

1− t2

)
dt

(1− t2)3/2
, (13)

where R(t) is defined in (8). This suggests us to apply some of Gaussian
formulas for numerical calculation of (13). Namely, the Gaussian quadrature
rule with respect to the Gegenbauer weight wλ(t) = (1−t2)λ−1/2, λ > −1/2,

1∫
−1

φ(t)wλ(t) dt =
N∑
k=1

Aλ
kφ(τ

λ
k ) +RN (φ), (14)

could be appropriate for this purpose. The nodes τλk , k = 1, . . . , N , are
zeros of the Gegenbauer polynomial Cλ

N (t) of degree N , and the weights Aλ
k ,

k = 1, . . . , N , are the corresponding Christoffel numbers (cf. [84, Chap. 5]).
They can be calculated in an efficient way by using the Mathematica
Package “OrthogonalPolynomials” [11].

Example 2 Consider again the integral from Example 1. In this case,
the integral (13), written as a weighted integral with respect to the Gegen-
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bauer weight wλ(t), becomes

1∫
−1

4t2
(
3t4 − 16t2 + 16

) (
1− t2

)2−λ

(3t4 − 11t2 + 9) (2t6 − 3t4 − 5t2 + 7)
wλ(t) dt.

The complete integrand R(t2/(1 − t2))(1 − t2)−3/2 is presented in Fig. ??.
Applying the corresponding Gaussian formula (14) for λ = 0, 1/2, 1, 3/2, 2
to the previous integral we obtain results with the relative errors presented
in Table 2. Note that this parameter λ must be such that −1/2 < λ ≤ 2.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

Fig. 3. The function R(t2/(1− t2))(1− t2)−3/2 in Example 2

Table 2. Relative errors in Gauss-Gegenbauer quadrature sums
for some selected values of λ

N λ = 0 λ = 1/2 λ = 1 λ = 3/2 λ = 2
10 9.99(−4) 1.18(−3) 4.28(−4) 1.24(−3) 2.75(−4)
20 1.64(−7) 2.77(−5) 6.72(−8) 3.75(−5) 3.42(−8)
30 2.06(−11) 3.39(−6) 8.34(−12) 5.16(−6) 3.90(−12)
40 2.33(−15) 7.95(−7) 9.35(−16) 1.27(−6) 4.20(−16)
50 2.48(−19) 2.60(−7) 9.91(−20) 4.27(−7) 4.33(−20)
60 2.54(−23) 1.04(−7) 1.01(−23) 1.75(−7) 4.35(−24)
70 2.54(−27) 4.84(−8) 1.01(−27) 8.19(−8) 4.28(−28)
80 2.49(−31) 2.48(−8) 9.89(−32) 4.25(−8) 4.16(−32)
90 2.41(−35) 1.38(−8) 9.56(−36) 2.38(−8) 3.99(−36)
100 2.31(−39) 8.16(−9) 9.14(−40) 1.41(−8) 3.79(−40)

As we can see, the convergence is slow only if the integrand has an
irrational factor. In these cases it is the factor “

√
1− t2 ” which appears

for λ = 1/2 (Gauss-Legendre quadrature) and λ = 3/2. In other cases this



12 I. Gutman, G. V. Milovanović

factor is included in the weight function and the corresponding function
φ(t) is a pure rational function. Regarding this fact we prefer to use Gauss-
Chebyshev quadrature formulas (for λ = 0 and λ = 1), because of their
simplicity.

In a general case, the rational function R(t) belongs to R[m, 2n], where
0 ≤ m ≤ 2n− 1 (see Lemma 1), and therefore it has the following form

R(t) =

m∑
k=0

rkt
k

2n∑
k=0

sktk
.

Regarding (13), we have

+∞∫
−∞

R(x2) dx =

1∫
−1

m∑
k=0

rkt
2k(1− t2)m−k

2n∑
k=0

skt2k(1− t2)2n−k

(1− t2)ℓ · dt√
1− t2

,

where ℓ = 2n −m − 1 ≥ 0. Thus, the Gauss-Chebyshev quadrature of the
first kind (λ = 0) can be always applied to the integral (13). However, the
corresponding Gauss-Chebyshev quadrature of the second kind (λ = 1) can
be applied if m ≤ 2n− 2.

Now, we derive explicit expressions for these Gaussian quadrature sums

+∞∫
−∞

R(x2) dx ≈ Sλ
N (R) (λ = 0, 1). (15)

Number of functional evaluations in these sums is reduced to N/2.

Theorem 1 Let N ∈ N, R(t) ∈ R[m, 2n], 0 ≤ m ≤ 2n − 1, and ξk =

cot2
(2k − 1)π

2N , k = 1, . . . , [N/2]. Then

S0
N (R) =

2π

N

[N/2]∑
k=1

(1 + ξk)R(ξk) + εN
π

N
R(0), (16)

where εN = 0 if N is even, and εN = 1 if N is odd.
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Proof: Let λ = 0 and φ(t) be defined as

φ(t) =
1

1− t2
R

(
t2

1− t2

)
.

Then for the N -point Gauss-Chebyshev quadrature sum of the first kind in

(14), with the nodes τk = τ0k = cos θk, where θk =
(2k − 1)π

2N , k = 1, . . . , N ,

all weight coefficients are equal, i.e., Ak = A0
k = π/N (cf. [86, p. 174]).

Therefore,

S0
N (R) =

π

N

N∑
k=1

1

1− cos2 θk
R

(
cos2 θk

1− cos2 θk

)
=

π

N

N∑
k=1

1

sin2 θk
R(cot2 θk),

i.e.,

S0
N (R) =

π

N

N∑
k=1

(1 + cot2 θk)R(cot2 θk),

which reduces to (16). 2

Theorem 2 Let N ∈ N, R(t) ∈ R[m, 2n], 0 ≤ m ≤ 2n − 2, and ηk =

cot2 kπ
N + 1 , k = 1, . . . , [N/2]. Then

S1
N (R) =

2π

N + 1

[N/2]∑
k=1

(1 + ηk)R(ηk) + εN
π

N + 1
R(0), (17)

where εN = 0 if N is even, and εN = 1 if N is odd.

Proof: In this case λ = 1 and

φ(t) =
1

(1− t2)2
R

(
t2

1− t2

)
.

Nodes of the corresponding N -point quadrature are zeros of the Chebyshev
polynomial of the second kind UN (t) = sin[(N + 1) arccos t]/

√
1− t2, i.e.,

τk = τ1k = cos θk, where θk = kπ
N + 1, k = 1, . . . , N , and the weight co-

efficients are Ak = A1
k = π

N + 1 sin2 θk, k = 1, . . . , N (cf. [86, p. 174]).

Therefore,

S1
N (R) =

π

N + 1

N∑
k=1

sin2 θk
(1− cos2 θk)2

R

(
cos2 θk

1− cos2 θk

)
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reduces to (17). 2

The obtained formulas (16) and (17) are very simple for implementing
and using in integration. For example, the function R(t) from Examples 1
and 2 belongs to R[3, 6] and Theorem 2 can be applied. The quadrature
sums S1

N (R) for N = 10(10)100 are presented in Table ??.

Table 3. Quadrature sums S1
N (R) for N = 10(10)100

N Quadrature sum S1
N (R)

10 0.3806407
20 0.38047789027
30 0.38047786473243
40 0.380477864729267041
50 0.38047786472926668547505
60 0.380477864729266685437349077
70 0.3804778647292666854373452228086
80 0.38047786472926668543734522242434194
90 0.380477864729266685437345222424304306513
100 0.3804778647292666854373452224243043028756715
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Chem. 140 (2009) 1305–1309.
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[60] I. Gutman, M. Milun, N. Trinajstić, Graph theory and molecular orbitals. 19. Non-
parametric resonance energies of arbitrary conjugated systems, J. Am. Chem. Soc.
99 (1977) 1692–1704.
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[62] I. Gutman, V. Petrović, Cyclic conjugation in linear polyacenes, J. Serb. Chem. Soc.
57 (1992) 495–501.
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