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1. Introduction

Equations with left and right fractional derivatives appear as mathemat-
ical models in different branches of physics and mechanics (see [12]). We
refer to monographs [10], [11], [13], [16], [18], [19], [24] and references therein
for equations with the left fractional derivatives. Equations with the both
types of fractional derivatives have appeared recently only in a few papers
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although the interest for models with both types of derivatives increases (cf.
[3]– [7], [9], [26]–[28]).

In year 2010 appeared the monograph [14] in which the author solve
equations with symetricDαsym = 1

2

(
Dα

0+ +Dα
b−

)
andDαanti = 1

2

(
Dα

0+ −Dα
b−

)
and with complex derivatives: cDα

b− Dα
0+ , D

α
b− Dα

0+ . This operators appear
when we apply the minimum action principle in constructing mathematical
models in fractional mechanics.

The aim of this paper is to reduce the problem of solving differen-
tial equations with fractional derivatives, within D′

L1((−∞, b))−generalized
functions with supports contained in [0, b), denoted by D′

L1([0, b)), to the
well-known problem of solving Fredholm’s type equations with bounded or
weakly bounded kernels (cf. [20], [21]).

We consider equation

p∑
i=1

Ai(D
αi

0+Y )(x) +
q∑

j=1

Bj(D
βj

b−Y )(x) + C(x)Y (x) = D(x) in D′
L1([0, b)),

(1.1)
where Ai and Bj are constants; αi = ki + γi, ki ∈ N0 = N ∪ {0}, γi ∈
[0, 1), , i = 1, ...p, αi+1 > αi, i = 1, ...p− 1 and βj = nj + νj , nj ∈ N0, νj ∈
[0, 1), βj+1 > βj , j = 1, ..., q − 1, νq < 1, C(x) ∈ Cm([0, b)) and D(x) ∈
D′m+kp

L∞ ([0, b)) (see, Section 2.2).

Now we can explain that the main contribution of our paper comes from

assumptions C(x) ∈ Cm([0, b)), D(x) ∈ D′m+kp
L∞ ([0, b)) as well as from a

simple procedure of solving (1.1) which will be realized in Sections 3 and 4.

We refer to [24] for explicit methods of solving (1.1) in various classes of
function spaces which depend on coefficients and the order of (1.1). Let us
mention some of these results

Let p = q = 1. With appropriate assumptions on D, the case α = β and
C = 0 can be reduced to the generalized Abel integral equation, which is
solvable within the space

H∗(0, b) = {f ; f =
fλ(x)

x1−ε1(b− x)1−ε2
, fλ ∈ Hλ(0, b), ε1, ε2 ∈ (0, 1)},

where Hλ(0, b) is the space of the Lipshitz functions of order λ in (0, b) (cf.
Theorem 30.7 in[24]). Note that this case is solved in [28] within a suitable
space of generalized functions.
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The case α = β and C ̸= 0 as well as the case k = n and γ > ν (with
appropriate assumptions on C and D) can be reduced to a Noether integral
equation of the first kind∫ b

0
T (x, t)f(t)dt = f(x), 0 < x < b.

Such an integral equation was solved in [24], Theorem 31.11.

In this paper we suppose that kp ≥ nq+1, Ap ̸= 0. We seek for solutions
belonging to the space D′

L1([0, b)). Reducing (1.1) to Fredcholm’s integral
equation of second kind with bounded or weakly bounded singular kernel,
we discuss the existance of solutions to (1.1) and note that the solutions are
the classical solutions as well, if appropriate conditions hold for C and D.
We give in Example 1 a unique solution to an equation of a given form over
the interval [0, b) for sufficiently small b. As an application of Proposition
3.2 we give a complete solution of the linear differential equation in which
right fractional derivative do not exist.

2. Preliminaries

We use the usual notation of distributions theory (see for example [25],
[30]): D′ = D′(R) and S ′ = S ′(R) are Schwartz’s spaces of distributions;
S ′
+ is the commutative and associative convolution algebra of tempered dis-

tributions supported by [0,∞). If T ∈ S ′ is a regular distribution defined
by a function f so that f(x)(1 + |x|)−k ∈ L1(R) for some k > 0, then we
write T = f.

The family of distributions {fβ ;β ∈ R} :

fβ(t) =

{
H(t)tβ−1/Γ(β), β > 0,

f
(m)
β+m(t), β ≤ 0, β +m > 0,m ∈ N,

where (·)(m) is the distributional derivative and H is Heviside’s function,
is an Abelian group in S ′

+ under convolution: fβ1 ∗ fβ2 = fβ1+β2 , f0 = δ
and f−β = δ(β), β1, β2, β ∈ N0. If f ∈ S ′

+, and β < 0, then fβ ∗ f is −β
fractional derivative and if β ≥ 0, then fβ ∗ f is β fractional integral of f .

2.1. Spaces D′m
L1([0, b)) and D′

L1([0, b))

Let b > 0. We denote by L1
0((−∞, b)), resp., L∞

0 ((−∞, b)) the space
of integrable functions, resp., of bounded functions in (−∞, b) vanishing in
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(−∞, 0). Let m ∈ N0,

D′m
L1([0, b)) = {f (m) = δ(m) ∗ f, f ∈ L1

0((−∞, b))}, m ∈ N0

and
D′m

L∞([0, b)) = {f (m), f ∈ L∞
0 ((−∞, b))}, m ∈ N0.

Clearly, D′m
L∞([0, b)) ⊂ D′m

L1([0, b). Ifm ≤ m1, thenD′m
L1([0, b)) ⊂ D′m1

L1 ([0, b))
and the inclusion mapping is continuous. Then, define

D′
L1([0, b)) =

∞∪
m=0

D′m
L1([0, b)).

It is a closed subset of S ′((−∞, b)) (where the former space is the strong
dual of the test space with the sequence of seminorms defining the structure
of S). Since

D′m
L1([0, b)) ∋ v(·) = f (m)(·) = (H(·)f(·)H(b− ·))(m), f ∈ L1

0((−∞, b)),

we will also use the representation

v(·) = (H(·)f(·)H(b− ·))(m).

If v ∈ D′m
L1([0, b)) and a ∈ Cm([0, b)), then we define av in D′m

L1([a, b))
by av = af (m).

(We have to use the Leibnitz formula af (m) =
∑

j≤m(−1)j
(m
j

)
(a(j)f)(m−j)).

In the same way we define the product av if a ∈ C∞([0, b)) and v ∈
D′

L1([a, b)).

Let vi ∈ D′mi

L1 ([0, b)), i = 1, 2. Then the convolution v1 ∗ v2 belongs

to D′m1+m2

L1 ([0, b)) and it is defined by v1 ∗ v2 = (f1 ∗ f2)
(m1+m2), fi ∈

L1
0((−∞, b)), i = 1, 2.

2.2. Left and right fractional derivatives in D′
L1([a, b))

We introduce a mapping Q as follows. Let f ∈ L1
0((−∞, b)). Then Qf

is defined in R by

(Qf)(x) = f(b− x), 0 ≤ x < b, (Qf)(x) = 0, x < 0

and
if v = f (m) ∈ D′m

L1 ([0, b)), then Qv = (−1)m(Qf)(m).
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It follows thatQv ∈ D′m
L1([0, b)) and thatQmapsD′

L1([0, b)) ontoD′
L1([0, b)).

Moreover, QQ = I.

Let v1 and v2 be inD′
L1([0, b)), thenQ(Av1+Bv2) = AQv1+BQv2, A,B ∈

R. Let a ∈ C∞([0, b)), v ∈ D′
L1([0, b)). ThenQ(av) = Q(a)Q(v) andQ(v(m)) =

(−1)m(Qv)(m), m ∈ N.

We recall (cf. [24] and [11]) the definitions of the left and right Riemann-
Liouville fractional integrals Iα0+ , I

α
b− and fractional derivatives Dα

0+ , D
α
b− for

α = k + γ, γ ∈ (0, 1), k ∈ N0, of a function f , for x ∈ [0, b),

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, (Iαb−f)(x) =

1

Γ(α)

b∫
x

f(t)

(t− x)1−α
dt;

(2.1)

(Dα
0+f)(x) =

1

Γ(1− γ)

( d

dx

)k+1
x∫

0

f(t)

(x− t)γ
dt, (2.2)

(Dα
b−f)(x) =

(−1)k+1

Γ(1− γ)

( d

dx

)k+1
b∫

x

f(t)

(t− x)γ
dt. (2.3)

In order to make legitimate definitions (2.1)-(2.3) we assume that f be-
longs to ACk+1([0, T ]), k ∈ N0, for every T ∈ [0, b), which means that the
derivatives of f up to order k, are continuous and (k + 1)−th derivative is
integrable in [0, T ], for every T ∈ [0, b).

Using the left fractional integral, (2.2) can be written as

(Dα
0+f) =

( d

dx

)k+1(
I1−γ
0+ f

)
= f−k−1 ∗ f1−γ ∗ f. (2.7)

Thus, for v ∈ D′m
L1([0, b)) and α = k + γ, k ∈ N0, 0 ≤ γ < 1 we have

Dα
0+v = δ(k+1+m) ∗ f1−γ ∗ f,

Let us remark that Dk
0+v = δ(k+m) ∗ f = Dk+mf.

Dα
b−v = QDα

0+Qv.

The next lemma gives some properties of operators Dα
0+ and Dα

b− , which
we need in the sequel. Its proof is simple and thus, omitted.
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Lemma 2.1.

1) Dα
0+ and Dα

b− map D′m
L1([0, b)) into D′m+k+1

L1 ([0, b)), where α = k +
γ, k ∈ N0, γ ∈ [0, 1). In particular, these operators map D′

L1([0, b)) into
D′

L1([0, b)).

2) Dα
b−v = (−1)k+1δ(k+m+1) ∗ (I1−γ

b− f).

3. Solutions to linear equation with left and right fractional derivatives

We consider equation (1.1) with prescribed properties of coefficients.
Note that assumption on D implies that D ∗ fαp+m is a continuous function
in [0, b]. As regards the supposition kp ≥ nq + 1, let us remark that:

if nq ≥ kp+1, then we can transform equation (1.1) to the previous case
applying operator Q and obtain

p∑
i=0

AiD
αi

b−QY +
q∑

j=0

BjD
βj

0+QY + (QC)(x)(QY ) = QD. (3.1)

Equation (3.1) is also of the form (1.1) with the opposite role of βq and αp.

3.1. Case p = 1, q = 1

Equation (1.1) in this case becomes

(Dα
0+y)(x) +B(Dβ

b−y)(x) + C(x)y(x) = D(x), in D′
L1([0, b)) , (3.2)

where α = k+ γ, β = n+ ν; n ≤ k− 1, k, n ∈ N0, γ ∈ [0, 1), ν ∈ [0, 1), B ∈
R, C(x) ∈ Cm([0, b)) and D(x) ∈ D′m+k

L∞ ([0, b)).

Assuming that y is of the form y = δ(m) ∗ η, with

η(·) = H(·)H(b− ·)η̃(x), η̃ ∈ L1
0((−∞, b)),

we have

Dα
0+y = δ(m+k+1) ∗ I1−γ

0+ η,

for γ ∈ (0, 1) and Dα
0+y = δ(k+1) ∗ η = η(n+k) for γ = 0;

Dβ
b−y = (−1)n+1δ(m+n+1) ∗ I1−ν

b− η.
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We rewrite (3.2) (for ν ∈ (0, 1)) as

δ(m+k+1) ∗ I1−γ
0+ η +B(−1)n+1δ(m+n+1) ∗ I1−ν

b− η

+
m∑
r=0

arfr−m ∗ (C(r)η) = D
(3.3)

(ar = (−1)r
(m
r

)
). Applying (fα+m∗) to both sides of (3.3) we obtain

η + (−1)n+1Bfµ ∗ I1−ν
b− η +

m∑
r=0

arfα+r ∗ (C(r)η) = fα+m ∗D, (3.4)

where µ = k − n− 1 + γ ≥ γ (k ≥ n+ 1) and for x ∈ [0, b],

fµ ∗ I1−ν
b− η(x) =

1

Γ(µ)Γ(1− ν)

b∫
0

H(x− t)(x− t)µ−1dt

b∫
0

η(τ)H(τ − t)

(τ − t)ν
dτ, µ ̸= 0. (3.5)

and

f0 ∗ I1−ν
b− η(x) = I1−ν

b− η(x)

fα+r ∗ (C(r)η)(x) =
1

Γ(α+ r)

x∫
0

C(r)(τ)η(τ)(x− τ)α+r−1dt (3.6)

(α+ r − 1 ≥ 0).
Here and below we consider L1−functions, so a function can take value ∞
or −∞ at some points of [0, b].

Since µ− 1 ≥ γ − 1, (for ν ∈ (0, 1)), it follows that for every x ∈ [0, b]

(t, τ) 7→ η(τ)H(x− t)H(τ − t)

(x− t)1−µ(τ − t)ν
, t ∈ [0, b], τ ∈ [0, b],

is an integrable function. Thus, we can change the order of integration in
(3.5) and with (3.6), equation (3.4) becomes
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η(x) =
(−1)nB

Γ(µ)Γ(1− ν)

b∫
0

H(x− t)(x− t)µ−1(

b∫
0

η(τ)H(τ − t)

(τ − t)ν
dτ)dt

−
m∑
r=0

ar
Γ(α+ r)

b∫
0

H(x− τ)C(r)(τ)η(τ)(x− τ)α+r−1dτ

+fα+m ∗D(x)

=
b∫
0
dτ

( (−1)nB

Γ(µ)Γ(1− ν)

x∫
0

(x− t)µ−1H(τ − t)

(τ − t)ν
dt

−
m∑
r=0

ar
Γ(α+ r)

H(x− τ)C(r)(τ)(x− τ)α+r−1
)
η(τ)

+fα+m ∗D(x), x ∈ [0, b], µ ̸= 0;

η(x) =

b∫
0

( (−1)nB

Γ(1− ν)
H(τ − x)

1

(τ − x)ν

−
m∑
r=0

ar
Γ(α+ r)

H(x− τ)C(r)(τ)(x+ τ)α+r−1
)
, η(τ)dτ, µ = 0.

We consider

η(x) +

b∫
0

K(x, τ)η(τ)dτ = M(x), 0 ≤ x ≤ b, (3.7)

where M(x) = fα+m ∗D(x), x ∈ [0, b]

K(x, τ)

=
(−1)n+1B

Γ(µ)Γ(1− ν)

x∫
0

H(τ − t)dt

(t− τ)ν(x− t)1−µ
(3.8)

+
m∑
r=0

ar
Γ(α+ r)

H(x− τ)C(r)(τ)(x− τ)α+r−1, (x, τ) ∈ [0, b]× [0, b], µ ̸= 0
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and

K(x, τ) =
(−1)nB

Γ(1− ν)
H(τ − x)

1

(τ − x)ν
+ (3.9)

+
m∑
r=0

ar
Γ(α+ r)

H(x− τ)C(r)(τ)(x− τ)α+r−1, µ = 0.

Note that M is a continuous function in [0, b].

Let us analyze the kernel K. Suppose that µ ̸= 0. The first addend of
K contains the integral

J(x, τ) =

x∫
0

H(τ − t)

(τ − t)ν(x− t)1−µ
dt, (x, τ) ∈ [0, b]× [0, b], µ ̸= 0

which determines the structure of K, µ ̸= 0, because the second addend in
K is a bounded function on [0, b]× [0, b].

We will consider separately cases

I: µ < ν, II: ν < µ and III: ν = µ. (Recall, µ = k − n− 1 + γ).

Case I.

Let (x, τ) ∈ [0, b] × [0, b], x < τ. Then, with the change of variable t =
x− (τ − x)p, we have (with suitable C)

J(x, τ) =

x∫
0

dt

(τ − t)ν(x− t)1−µ
= (τ − x)µ−ν

x/(τ−x)∫
0

dp

(1 + p)νp1−µ

≤ (τ − x)µ−ν(

1∫
0

dp

p1−µ
+

∞∫
1

dp

p1+ν−µ
) ≤ C(τ − x)µ−ν . (3.10)

Let (x, τ) ∈ [0, b] × [0, b], x > τ. Then, with the change of variable t =
τ − (x− τ)p, we have

J(x, τ) ≤ C(x− τ)µ−ν .

Case II.

Let (x, τ) ∈ [0, b]× [0, b], τ > x. Then

J(x, τ) ≤
x∫

0

dt

(τ − t)ν(x− t)1−µ
= (τ − x)µ−ν(

1∫
0

+

x/(τ−x)∫
1

dp

(1 + p)νp1−µ
)
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≤ (τ − x)µ−ν(

1∫
0

dp

p1−µ
+

x/(τ−x)∫
1

dp

p1−µ+ν
).

This implies

|J(x, τ)| ≤ C, (x, τ) ∈ [0, b]× [0, b], τ > x.

Similarly, we have

|J(x, τ)| ≤ C, (x, τ) ∈ [0, b]× [0, b], x > τ.

Case III.

Let (x, τ) ∈ [0, b]× [0, b], τ > x. We have

J(x, τ) =

1∫
0

dp

p1−µ
+

x/(τ−x)∫
1

dp

p
≤ C ln|τ − x|.

If (x, τ) ∈ [0, b]× [0, b], τ < x, then the same inequality holds, as well.

Since ν ∈ (0, 1), µ > 0, it follows that J is an integrable function.

Now one has to use the well-known Fredholm’s theory of integral equa-
tions of second type (see [20], Ch.II and Ch. III, and the Handbook of
integral equations [21], Chapter II, especially Section 11) in order to solve
equation (3.7). Here we will only present a result which is related to the
unique solvability in the case when λ = −1, respectively, λp = (−1)p is not
an eigenvalue of the kernel K, respectively, iterated kernel Kp. Actually,
the kernel considered in this work does not have any of properties which can
imply a simple analysis of eigenvalues (i.e of zeros of D(λ), where D(λ) is a
power series in λ with coefficients constructed by K, see II (42) in [20] and
[21]). So some of approximation procedures of numerical analysis can serve
as a method for explicite approximate solving of the equation. In the end of
the paper we will discuss a class of integral equations which can be solved by
simpler methods. Very special interesting cases of integral equations with
log-type kernel can be foud in [8].

So, we have the following procedure for solving (3.2) given in the form
of a theorem:
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Theorem 3.1.

a) If k > n + 1 or k = n + 1 and γ ≥ ν, the integral equation (3.7)
is of Fredholm’s type. Moreover, suppose that (−1) is not an eigenvalue of
the kernel K. Then the unique solution η to (3.7) defines distribution y =
Dm(Hη) ∈ D′m

L1 ([0, b)), the unique solution to equation (3.2) in D′m
L1([0, b)).

b) If k = n+ 1 and ν > γ > 0, then (3.7) is a weakly singular Fredholm
equation with the kernel given by (3.8). But if γ = 0, the kernel K(x, τ) is
given by (3.9) and is also weakly singular. Let Kp be p−times iterated kernel
of the singular kernel K, such that Kp(x, τ) is bounded on [a, b]× [a, b],

Kp(x, τ) =

b∫
0

Kp−1(x, s)K(s, τ)ds, K1(x, τ) = K(x, τ), (x, τ) ∈ [0, b]×[0, b].

If (−1)p is not an eigenvalue of Kp, then we have η to be the solution to the
(p− 1)-fold iterated equation (3.7) and y = Dm(Hη) ∈ D′m

L1 ([0, b)) to be the
unique solution to equation (3.2) in D′m

L1([0, b)).

P r o o f. If k > n + 1, then k ≥ n + 2 and µ ≥ 1 + γ ̸= 0. The
kernel K(x, τ) is of the form (3.8). Since µ > ν, the function J (x, τ) is
bounded and with this, K(x, τ) is bounded, as well. Fredholm’s theory can
be applied.

If k = n + 1, then µ = γ; for γ ̸= 0 and γ > ν K(x, τ) is also given by
(3.8) and is bounded. But if γ ̸= 0 and γ ≤ ν, the kernel K(x, τ) is given
by (3.8) and is weakly singular. In case γ = 0, we have µ = 0 and K(x, τ) is
given by (3.9). This kernel is also weakly singular. The theory of Fredholm’s
equation with weakly singular kernel can be applied (cf. [20], Part III).

In this case there exists p0 ∈ N, which depends on γ and ν such that
for p ≥ p0 the iterated kernels Kp are bounded. Now, if (−1)p is not an
eigenvalue of Kp, then the (p− 1)-fold iterated equation to (3.7) is

φ(x) = Mp(x) + (−1)p
b∫
0
Kp(x, τ)φ(t)dt, 0 ≤ x ≤ b,

where, with M1 = M,

Mp(x) = M(x) +
p−1∑
j=1

(−1)j
b∫

0

Kν(x, t)M(t)dt, 0 ≤ x ≤ b,
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has a unique solution η, which is integrable function in [0, b].

(As we mentioned, the previous conclusions are consequences of results
exposed in [18], Chapters II, III. Se also [9] and [8].

Now it is clear that η is a solution to equation (3.7) and that Dm(Hη)
a unique solution to (3.2).

Remark 3.1 1) It is self-understandable that if we have a solution η(x)

to (3.7) with C ∈ C[(0, b)] and D ∈ L∞([0, b)) such that Dα
0+η and Dβ

b−η
belong to L1([0, b)), then η(x) is a classical solution to (3.2) in L1([0, b)).

2) To solve integral equation (3.7) one can use the following result (cf.
[23], Chapter IV,§1):

If α, β and b are such that the Kernel K(x, τ) satisfies one of the condi-
tions:

a)
b∫
0

b∫
0
|K(x, τ)|2dxdτ < 1, M ∈ L2([0, b));

b) max |K(x, τ)| < 1
b , (x, τ) ∈ [0, b]2, M ∈ C([0, b]),

then the solution to integral equation (3.7) can be expressed by Neumann’s
series

η = M(x) +
∞∑
n=1

b∫
0

Kn(x, τ)M(τ)dτ,

where Kn(x, τ) is the iterated kernel. In case a) the solution belongs to
L2([0, b)) and in case b) the solution belongs to C([0, b]).

3) The case when −1 is an eigenvalue has to be treated by the third
Fredholm theorem (Section II in [17]). In the case of a weak singular kernel
and (−1)p being an eigenvalue, one has to use results of Chapter III of [17].
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3.2. The general case of equation (3.1)

Let in (1.1), Y = δ(m) ∗ η ∈ D′m
L1([0, b)). Then we have

p∑
i=1

Aif−m−αi ∗ η +
q∑

j=1
Bj(−1)nj+1f−nj−m−1 ∗ I

1−νj
b− η

+
m∑
r=0

arfr−m ∗ (C(r)η) = D.

We apply to this equation (fαp+m∗) and obtain

η +
p−1∑
i=1

Aifαp−αi ∗ η +
q∑

j=1
(−1)nj+1Bj(fµp,j ∗ I

1−νj
b− η)+

+
m∑
r=0

arfαp+r ∗ C(r)η = fαp+m ∗D,

where µp,j = kp − nj − 1 + γp > 0, because we suppose that kp ≥ nq + 1.

We consider a singular integral equation

η(x) +

b∫
0

K(x, τ)η(τ)dτ = M(x), 0 ≤ x ≤ b (3.11)

where

K(x, τ) = H(x− τ)
p−1∑
i=1

Ai

Γ(αp − αi)

1

(x− τ)1−(αp−αi)

+
q∑

j=1

(−1)njBj

Γ(µp,j)Γ(1− νj)

x∫
0

H(t− τ)dτ

|t− τ |νj (x− t)1−µp,j
(3.12)

+
m∑
r=0

ar
Γ(αp + r)

H(x− τ)C(r)(τ)(x− τ)αp+r−1, x, τ ∈ [0, b], µ ̸= 0;

K(x, τ) = H(x− τ)
p−1∑
i=1

Ai

Γ(αp − αi)

1

(x− τ)1−(αp−αi)
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+
q∑

j=1

(−1)nBj

Γ(1− νj)
H(τ − x)

1

(τ − x)νj
(3.13)

+
m∑
r=0

ar
Γ(α+ r)

H(x− τ)C(r)(τ)(x− τ)α+r−1, µ = 0.

and
M(x) = (fαp+m ∗D)(x), 0 ≤ x ≤ b

is continuous.

Now, with the arguments of previous section, we have the following the-
orem related to equation (3.1). Again by the use of results from [18], we
have the following theorem in which we assume that νj ∈ [0, 1), j = 1, ..., q.

Theorem 3.2.

a) Let αp−αp−1 ≥ 1 and: 1) kp−nq > 1 or 2) kp−nj = 1, j ∈ {1, ..., q}
and γp > νj.

Then the kernel of equation (3.11) given by (3.12) is a Fredholm kernel.
Moreover, assume that (−1) is not an eigenvalue of this kernel. Then the
unique solution η to (3.11) defines the distribution Y = Dm(Hη) which is a
unique solution to equation (1.1) in D′m

L1([0, b)).

b) If 0 < αp−αi0 < 1, 1 ≤ i0 < p or if kp−nj0 = 0, for a j0, 1 ≤ j0 ≤ q,
and νj0 > γp such that: 1) γp ̸= 0 or 2) γp = 0, then (3.11) with the kernel
K given in case 1) by (3.2) and in case 2) by (3.13) is a weakly singular
Fredholm equation. Let Kp, p ≥ p0 be a bounded iterated kernel of K. Then
η is the solution to the (p − 1) fold iterated equation (3.11). Moreover,
Y = Dm(Hη) is a unique solution to (1.1) in D′m

L1([0, , b]).

The procedure of the proof is the same as for the Theorem 3.1. 2

Remark 3.2 Consider equation (1.1) as the classical one in [0, b]

p∑
i=1

Ai(D
αi

0+)Y (x) +
q∑

j=1

Bj(D
βj

b−Y )(x) + C(x)Y (x) = D(x),

where Ai and Bj are constants; αi = ki + γi, ki ∈ N0, γi ∈ [0, 1), i =
1, ..., p, αi+1 > αi, i = 1, ..., p − 1, and βj = nj + νj , nj ∈ N0, νj ∈



Large linear equation with left and right fractional derivatives in a finite interval 75

[0, 1), βj+1 > βj , j = 1, ..., q − 1, C ∈ C([0, b)) and D ∈ L∞([0, b)). If the
solution to (3.11) (with m = 0), Y = η has fractional derivatives, appearing
in the equation, which belong to the space of integrable functions in [0, b],
then Y is a classical solution to (1.1) ∈ [0, b].

Example 1. Let us consider equation

D2y (t) +B[(Dα
0+y) (t)− (Dα

b−y) (t)] + ω2y (t) = f(t),

where 0 < α < 1. This equation is of the form (1.1) with: α2 = 2, A2 =
1;α1 = α,A1 = B;β1 = α,B1 = −B; c = ω2 and D (t) = f (t) .

We suppose that f ∈ D′
L1([0, b)) such that M = f2 ∗ f is continuous.

Now the kernel K, given by (3.12), reads:

K (x, τ) =
bH (x− τ)

Γ (2− α)
(x− t)1−α+

b

Γ (1− α)

∫ x

0

H (t− τ) dτ

|t− τ |α
+H (x− τ)ω2(x−τ),

(x, τ) ∈ [0, b]× [0, b].

We shall find the solution in [0, b) for sufficiently small b.Here we have con-
sidered the cas when f is a distribution. Since it is known the existence and
the unity of the solution of this equation on any interval where the Lipschitz
condition holds for f , we obtain that the solution obtained in this example
can be continued on any finite interval [0, T ], T > 0, if f is locally Lipschitz
in [0,∞).

We estimate K in [0, b]× [0, b],

|K (x, τ)| ≤ b2−α

Γ (2− α)
+

b2−α

Γ (1− α) (1− α)
+ ω2b = 2

b2−α

Γ (2− α)
+ ω2b ≡ N.

Let K1 (x, t) = K (x, t) and

Kn (x, t) =

∫ b

0
Kn−1 (x, τ)K (τ, t) dτ, (x, t) ∈ [0, b]× [0, b], n ≥ 2.

By the above estimate, we have

|Kn (x, t)| ≤ Nnbn−1, (x, t) ∈ [0, b]× [0, b].

Let ω, b and α be such that Nb < 1, then corresponding integral equation
has a unique solution

η (x) = M (x) +
∞∑
n=1

(−1)n
∫ b

0
Kn (x, t)M(t)dt, x ∈ [0, b].



76 B. Stanković

3.3. Equation (1.1) in which right fractional derivatives do not exist

Equation of the form (1.1) in which right fractional derivatives do not ex-
ist (Bj = 0, j = 1, ..., q) have been analysed in many papers and books. Also
many methods for explicitly solving such equations have been elaborated. In
[13] one can find collected such results and references on them. Also in [21],
p. 141-142 one can find explicitly solved generalized Abel integral equation
of the second kind.

As a consequence of Theorem 3.2 we have

Proposition 3.1 Integral equation (3.11) with the Kernel

K(x, τ) = H(x− τ)
p−1∑
i=1

Ai

Γ(αp − αi)

1

(x− τ)1−(αp−αi)
(3.14)

+
m∑
r=0

ar
Γ(αp + r)

H(x− τ)C(r)(τ)(x− τ)αp+r−1, (x, τ) ∈ [0, b]2

is: 1) if αp − αi ≥ 1, i = 1, ..., p − 1, a Voltera integral equation; 2) if
αp − αi0 < 1, 1 ≤ i0 ≤ αp− 1 or αp < 1 is a weakly singular Voltera
equation, integrable on 0 ≤ x ≤ b, 0 ≤ τ ≤ x.

Equation

p∑
j=0

Ai(D
αi

0+Y )(x) + C(x)Y (x) = D(x), (3.15)

where D ∈ D′m+k
L∞ , has one and only one solution in D′mL1([0, b)) of the form

Y = Dm(Hη), where

η(x) = M(x) + (−1)

x∫
0

N(x, τ,−1)M(τ)dτ, 0 ≤ x ≤ b, (3.16)

where

N(x, τ,−1) = (−1)K(x, τ) +
∞∑
n=1

(−1)nKn(x, τ),

Kn(x, τ) =

x∫
τ

K(x, t)Kn−1(t, τ)dτ, K0 = K.
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P r o o f. Equation (3.15) is a special case of equation (1.1) with
Bj = 0, j = 1, ..., q. The kernel K(x, τ) given by (3.14) is the kernel given
by (3.12) with Bj = 0, j = 1, ..., q.

To prove this proposition we have only to apply the theorem for Voltera
weakly singular integral equations with the kernels integrable on 0 ≤ x ≤
b, 0 ≤ τ ≤ x and M(x) ∈ L1([0, b)) (cf. [20], p.13).

Appendix

Theorem A Voltera equation of the second kind

φ(x) = f(x) + λ

x∫
0

N(x, y)φ(y)dy

has one and only one bounded solution, given by the formula

φ(x) = f(x) + λ

x∫
0

N (x, y, λ)f(y)dy,

where the resolvent kernel N is

N (x, y, λ) = N(x, y) +
∞∑
n=1

λnNn(x, y)

convergent for all values of λ. It is assumed that the function f(x) is in-
tegrable in the interval [0, b] and the function N(x, y) is integrable in the

triangle 0 ≤ x ≤ b, 0 ≤ y < x. (Nn(x, y) =
x∫
y
N(x, s)Nn−1(s, y)ds, integral

is a Rieman integral).

Generalized Abel equation of the second kind (cf [21], p.141-142),

y(x)− λ

x∫
0

y(t)

(x− t)α
= f(x), α = 1− m

n
, m ∈ N, n ∈ N+ 1, m > n

has the solution

y(x) = f(x) +

x∫
0

R(x− t)f(t)dt,

where

R(x) =
∞∑
n=1

(
λΓ(1− α)x1−α

)n
xΓ ((1− α))

.
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Novi Sad
Serbia
borasta@eunet.rs


