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A b s t r a c t. The ordinary energy of the graph is defined as the sum
of the absolute values of the eigenvalues of its adjacency matrix. In recent
times analogous “energies” are being considered, based on the eigenvalues
of a variety of other graph matrices. We briefly survey and comment this
“energy deluge”, and then show that some of the results obtained (one-by-
one) for different graph energies, are special cases of a single general result,
that is independent of any graph–theoretical interpretation.
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1. Introduction

The energy of a graph is equal to the sum of the absolute values of its
eigenvalues. This concept was proposed quite some time ago in the paper
[40] (and later on several other occasions). After a long latent period, it
now became a popular topic of research. Details of the theory of graph
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energy can be found in the reviews [43, 50, 45], as well as in the books
[69, 22, 23]. Recent monographs on linear algebra and spectral graph theory
[15, 114, 11, 25] contain sections devoted to graph energy.

The motivation for the study of the graph energy comes from chemistry,
where the research on the so-called total π-electron energy can be traced back
until the 1930s; for more details and bibliography see [35, 44, 52, 53, 42, 41].

Let G be a graph possessing n vertices and m edges. Let v1, v2, . . . , vn
be the vertices of G . Then the adjacency matrix A = A(G) of the graph
G is the square matrix of order n whose (i, j) entry is defined as [21, 25]

aij =


1 if i ̸= j , and vi and vj are adjacent

0 if i ̸= j , and vi and vj are not adjacent

0 if i = j .

Let λ1, λ2, . . . , λn be the eigenvalues of A(G). These eigenvalues are said to
be the eigenvalues of the graph G and to form its spectrum [21, 25]. Then
the energy of G is defined as

E = E(G) =
n∑

i=1

|λi| . (1)

In what follows, E(G) will be referred as the ordinary energy of the
graph G.

Since the graph energy showed to be a mathematically interesting con-
cept, and since hundreds of non-trivial results on it could be obtained [69],
the natural idea was to use eigenvalues of other graph matrices, and con-
sider other graph energies. Since 2006, when the first such extension was
put forward [54], an unexpectedly large number of graph energies appeared
in the mathematical and mathematico–chemical literature. The aim of the
present article is to survey and comment this “energy deluge” and to offer
some unifying ideas.

At this point it should be noted that in the mathematical and mathematico–
chemical literature there exist countless graph matrices (i. e., matrices de-
fined in terms of certain structural details of the underlying graph) [62], and
that the “invention” of more such matrices is easy and elementary.
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2. Some non-ordinary graph energies

In this section we outline the basic results on a few non-ordinary graph
energies, which – until now – have attracted the greatest attention and are
considered in the greatest number of published papers.

2.1. Laplacian and signless Laplacian energy

The Laplacian matrix L = L(G) of an (n,m)-graph G is defined via its
matrix elements as [25]:

ℓij =


−1 if i ̸= j , and vi and vj are adjacent

0 if i ̸= j , and vi and vj are not adjacent

di if i = j

(2)

where di is the degree of the i-th vertex of G. Its eigenvalues are denoted
by µ1, µ2, . . . , µn .

Because µi ≥ 0 and
n∑

i=1
µi = 2m, it would be trivial to define the

Laplacian–spectrum version of graph energy as
n∑

i=1
|µi|. Instead, the Lapla-

cian energy was conceived as [54]

LE = LE(G) :=
n∑

i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ . (3)

This definition is adjusted so that for regular graphs, LE(G) = E(G).
Various properties of the Laplacian energy were established in the papers

[6, 27, 31, 46, 54, 67, 73, 91, 95, 96, 97, 98, 102, 108, 115, 117, 118, 119, 121,
122, 124, 30, 18, 75, 113, 32, 79, 57]. Of these we mention the conjecture [46]
that for all graphs LE ≥ E. This conjecture was corroborated by numerous
examples [46, 91], but eventually, by means of counterexamples, was shown
to be false in the general case [73, 108]. Finally, it was proven [98, 96] that
LE(G) ≥ E(G) holds for all bipartite graphs. Du, Li and Li [29] proved
that the conjecture is true for almost all graphs (see also [28]).

The fact that for a (disconnected) graph G consisting of (disjoint) com-
ponents G1 and G2, the equality

LE(G) = LE(G1) + LE(G2) (4)

is not generally valid, may be considered as a serious drawback of the
Laplacian–energy concept [54].
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The Nordhaus–Gaddum–type bounds [8] for LE read [122]:

2(n− 1) ≤ LE(G) + LE(G) < n
√
n2 − 1

with equality on the left–hand side if and only if G ∼= Kn or G ∼= Kn.

The signless Laplacian matrix L+ = L+(G) is defined via

ℓ+ij =


+1 if i ̸= j , and vi and vj are adjacent

0 if i ̸= j , and vi and vj are not adjacent

di if i = j

which should be compared with Eq. (2). In [98, 1] the analogue of LE was
considered. Details of the theory of spectra of the signless Laplacian matrix
are found in the review [24]. Let µ+1 , µ

+
2 , . . . , µ

+
n be the eigenvalues of L+.

Then, in analogy to Eq. (3), we define

LE+ = LE+(G) :=
n∑

i=1

∣∣∣∣µ+i − 2m

n

∣∣∣∣ .
Also in this case, for regular graphs, LE+(G) = E(G).

For bipartite graph LE+ = LE. For non-bipartite graphs the relation
between LE+ and LE is not known, but seems to be not simple. More on
LE+ is found in Subsection 0.1.

2.2. Distance energy

LetG be a connected graph on n vertices, whose vertices are v1, v2, . . . , vn.
The distance matrix of G is the square matrix of order n whose (i, j)-entry
is the distance (= length of the shortest path) between the vertices vi and
vj .

Let ρ1, ρ2, . . . , ρn be the eigenvalues of the distance matrix of G. Since
the sum of these eigenvalues is zero, there is no obstacle to define the distance
energy as [60, 92]

DE = DE(G) :=
n∑

i=1

|ρi| .

Only some elementary (and not very exciting) properties of the distance
energy were established until now : bounds [14, 28, 59, 60, 93, 125, 37],
examples of distance–equienergetic graphs [61, 77, 92, 94, 57], and formulas
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for DE of special types of graphs [94, 107, 56, 16]. For a generalization of
the distance–energy concept see [68].

2.3. Energy of matrices

Nikiforov [84, 85, 86] proposed a significant extension and generalization
of the graph–energy concept. Let M be a p × q matrix with real–valued
elements, and let s1, s2, . . . , sp be its singular values. Then the energy of M
can be defined as [84]

E(M) :=
p∑

i=1

si . (5)

Recall that the singular values of the (real) matrix M are equal to the
(positive) square roots of the eigenvalues of MMt.

Formula (5) is in full harmony with the ordinary graph–energy concept.
As easily seen, E(G) = E(A(G)). Also,

LE(G) = E

(
L(G)− 2m

n
I

)
and LE+(G) = E

(
L+(G)− 2m

n
I

)
.

By means of formula (5) an infinite number of “energies” of non-square
matrices could be imagined, see Section ??. Until now only the energy of
the incidence matrix (see Subsection 0.1) was studied is some detail.

0.1 LEL and incidence energy

In order to find a Laplacian–eigenvalue based energy, in which a formula
of the type (4) would be generally valid, Liu and Liu [72] proposed a
“Laplacian–energy like” invariant, defined as

LEL = LEL(G) :=
n∑

i=1

√
µi . (6)

As a direct consequence of this definition, the relation

LEL(G) = LEL(G1) + LEL(G2)

is satisfied by any graph G whose components are G1 and G2. On the other
hand, if G is a regular graph, then LEL(G) = E(G) does not hold.

Formula (6) does not have the form of an “energy”, and therefore was
initially viewed as a dead–end of the research on graph energies. Only a few
results on LEL were reported [28, 58, 76, 78, 101, 105, 106, 70, 17, 128, 112,
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109]. It was pointed out [55] that in spite of its dependence on Laplacian
eigenvalues, LEL is more similar to E than to LE.

Independently of the research on LEL, Jooyandeh et al. [63] introduced
the “incidence energy” IE, as the energy of the incidence matrix of a graph,
cf. Eq. (5).

If G is a graph with vertices v1, v2, . . . , vn and edges e1, e2, . . . , em, then
its vertex–edge incidence matrix is an n × m matrix whose (i, j)-entry is
equal to 1 if vi is an end-vertex of the edge ej , and is zero otherwise.

It could be shown that [48]

IE(G) =
n∑

i=1

√
µ+i

which, in turn, implies that for bipartite graphs, the incidence energy is
same as LEL. This finding gave a new rationale to the study of both LEL
and IE.

Let ψ(G,λ) be the characteristic polynomial of the signless Laplacian
matrix of the graph G. It is known [24] that it has the form

ψ(G,λ) =
∑
k≥0

(−1)k ck(G)λ
n−k

where ck(G) ≥ 0.

Let Ψ(G,λ) = ψ(G,λ2). The zeros of Ψ(G,λ) are±
√
µ+1 ,±

√
µ+2 , . . . ,±

√
µ+n .

Consequently, the sum of the positive zeros of Ψ(G,λ) is just IE(G).
The Coulson integral formula (see [40, 51, 81]) makes it possible to com-

pute the sum of positive zeros of a polynomial. This yields [48]:

IE(G) =
1

π

+∞∫
0

ln

∑
k≥0

ck(G)x
2k

 dx
x2

.

It is seen that IE is a monotonically increasing function of each coeffi-
cient ck. Based on this observation, it is possible to compare the IE-values
of various graphs. For instance, from the fact that [123]

ck(Sn) ≤ ck(T ) ≤ ck(Pn)

which holds for all n-vertex trees T and for all k ≥ 0, it follows that the
star Sn is the n-vertex tree with minimal, and the path Pn the n-vertex tree
with maximal incidence energy.
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Other results obtained for incidence energy and LEL can be found in
the papers [49, 55, 120, 110, 5, 126, 109]. For a review on both LEL and
IE see [71]. For generalizations of incidence energy see [68, 104, 103].

3. The energy deluge

In the general case, the eigenvalues of a digraph are complex numbers.
In view of this, the definition of graph energy via Eq. (1) cannot be straight-
forwardly extended to digraphs. According to Rada [87, 88, 89, 36, 9, 90],
the energy of a digraph D with eigenvalues λ1, λ2, . . . , λn can be defined as

E(D) :=
n∑

i=1

|Re(λi)|

where Re(z) stands for the real part of the complex number z. If so, then
the Coulson integral formula (see [40, 51, 81]) is applicable to E(D).

Another approach to the energy of digraphs was followed by Kharaghani
and Tayfeh–Rezaie [64], utilizing the singular values of the adjacency matrix
of D. In fact, in [64] the energy of an arbitrary (square) (0, 1)-matrix was
considered. Klein and Rosenfeld [65, 66] considered the energy of graphs in
which an ordinary edge was replaced by two oppositely directed edges, one
with weight exp(i α), the other weighted exp(−i α).

A third approach to digraphs was put forward by Adiga, Balakrishnan
and So [2]. They and some other authors [111, 34] studied the skew energy
defined as the sum of the absolute values of the eigenvalues of the skew–
adjacency matrix. (Recall that the (i, j)-entry of the skew–adjacency matrix
is +1 if an edge is directed from the i-th vertex to the j-th vertex, in which
case the (j, i)-entry is −1. If there is no directed edge between the vertices
i and j, then the respective matrix element is zero.) The skew Laplacian
energy of a digraph was considered in [3].

When speaking of the energy of a digraph, one must not forget that the
existence of a directed cycle is a necessary condition for the existence of a
nonzero eigenvalue. In other words, the energy of a digraph without directed
cycles (e. g. of any directed tree) is equal to zero.

The energy of signed graphs was also examined [33].
Without being aware of the Laplacian and distance energy, Consonni and

Todeschini [19] introduced a whole class of matrix–based quantities, defined
as

n∑
i=1

|xi − x| (7)
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where x1, x2, . . . , xn are the eigenvalues of the respective matrix, and x is
their arithmetic mean. Evidently, if the underlying matrix is the adjacency,
Laplacian, signless Laplacian, or distance matrix, then the quantity defined
via (7) is just the ordinary graph energy, Laplacian energy, signed Laplacian
energy, and distance energy, respectively. Consonni and Todeschini used the
invariants defined via (7) for constructing mathematical models capable to
predicting various physico–chemical properties of organic molecules. There-
fore their article [19] is valuable as documenting the applicability of various
“energies” in natural sciences (in particular, in chemistry).

We end this section by briefly listing other graph energies that appeared
in the literature.

• The energy of a general Hermitian matrix was examined in [74].

• Randić energy [13, 99] is the energy of the Randić matrix, whose
(i, j)-element is

Rij =

 1/
√
di dj if i ̸= j , and vi and vj are adjacent

0 otherwise

where di stands for the degree of the i-th vertex.

• Sum–connectivity energy [127, 116] is the energy of the matrix,
whose (i, j)-element is

SCij =

 1/
√
di + dj if i ̸= j , and vi and vj are adjacent

0 otherwise .

• Maximum–degree energy [4] is the energy of the matrix, whose
(i, j)-element is

MDij =

 max{di, dj} if i ̸= j , and vi and vj are adjacent

0 otherwise .

• Harary energy [38, 20] is the energy of the Harary matrix, whose
(i, j)-element is

Hij =

 1/d(vi, vj) if i ̸= j

0 if i = j

where d(vi, vi) stands for the distance between the vertices vi and vj .
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• PI and vertex-PI energy [83] are the energies of the matrices whose
(i, j)-entries are

PIij =

 mi +mj if i ̸= j , and vi and vj are adjacent

0 otherwise

and

vPIij =

 ni + nj if i ̸= j , and vi and vj are adjacent

0 otherwise

wheremi and ni are, respectively, the number of edges and the number
of vertices lying closer to the vertex vi than to the vertex vj , and where
mj and nj are defined analogously.

For reasons of brevity, the definitions of theHe energy [26, 12], second–
stage energy [10], and common–neighborhood energy [7] will be skipped.

The eigenvalues of a matrix are the zeros of the respective characteristic
polynomial. In particular, the graph eigenvalues are the zeros of the charac-
teristic polynomial of the adjacency matrix. Bearing this in mind, another
easily conceivable direction of extending the graph–energy concept is to use
the zeros of some graph polynomial and sum their absolute values. Research
along these lines could be found in [80, 100]. However, a still more extreme
generalization is outlines in the subsequent section.

4. The ultimate energy

Motivated by formula (7), we propose the “ultimate” extension of the
energy–concept.

Definition. Let X = (x1,x2, . . . ,xn) be an arbitrary n-tuple of real num-
bers, and let x be their arithmetic mean. Then the ultimate energy , associ-
ated with X is

UE = UE(X) =
n∑

i=1

|xi − x| .

We see that UE is defined without any relation to a graph, to a matrix, or
to a polynomial. Yet, even such a parsimonious definition makes it possible
to establish some properties of UE, which then hold for any other energy as
well. Emulating McClleland’s approach [82] (which, originally, was stated
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for Hückel molecular orbital energy levels) we obtain the following estimates
[47]: √

nV ar(x) + n(n− 1) |P (x)|2/n ≤ UE(X) ≤ n
√
Var(x)

where V ar(x) is the variance of the numbers x1, x2, . . . , xn and P (x) =
n∏

i=1
(x− xi). Emulating the considerations from the paper [39], we arrive at

an improved upper bound:

UE(X) ≤
√
n(n− 1)Var(x) + n |P(x)|2/n .

Earlier reported lower and upper bounds for energy, Laplacian energy,
distance energy, Randić energy, Harary energy, etc., happen to be special
cases of the above bounds for the “ultimate energy”.
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