Rings of continuous functions vanishing at infinity

A.R. Aliabad, F. Azarpanah, M. Namdari

Abstract. We prove that a Hausdorff space X is locally compact if and only if its topology coincides with the weak topology induced by $C_\infty(X)$. It is shown that for a Hausdorff space X, there exists a locally compact Hausdorff space Y such that $C_\infty(X) \cong C_\infty(Y)$. It is also shown that for locally compact spaces X and Y, $C_\infty(X) \cong C_\infty(Y)$ if and only if $X \cong Y$. Prime ideals in $C_\infty(X)$ are uniquely represented by a class of prime ideals in $C^*(X)$. ∞-compact spaces are introduced and it turns out that a locally compact space X is ∞-compact if and only if every prime ideal in $C_\infty(X)$ is fixed. The existence of the smallest ∞-compact space in βX containing a given space X is proved. Finally some relations between topological properties of the space X and algebraic properties of the ring $C_\infty(X)$ are investigated. For example we have shown that $C_\infty(X)$ is a regular ring if and only if X is an ∞-compact P_∞-space.

Keywords: σ-compact, pseudocompact, ∞-compact, ∞-compactification, P_∞-space, P-point, regular ring, fixed and free ideals

Classification: 54C40

1. Introduction

Throughout this article, the space X stands for a nonempty completely regular Hausdorff space. We denote by $C(X)$ ($C^*(X)$) the ring of all (bounded) real valued continuous functions on the space X, ideals are assumed to be proper ideals and the reader is referred to [7] for undefined terms and notations. Kohls in [9] has proved that the intersection of all free maximal ideals in $C^*(X)$ is precisely the set $C_\infty(X)$ consisting of all continuous functions f in $C(X)$ which vanish at infinity, in the sense that $\{ x \in X : |f(x)| \geq \frac{1}{n} \}$ is compact for each $n \in \mathbb{N}$. Kohls has also shown that the set $C_K(X)$ of all functions in $C(X)$ with compact support is the intersection of all the free ideals in $C(X)$ and of all the free ideals in $C^*(X)$. $C_K(X)$ is an ideal of $C(X)$ and it is easy to see that $C_\infty(X)$ is an ideal in $C^*(X)$ but not in $C(X)$, see also [4], [9] and 7D in [7]. In fact $C_\infty(X)$ is a subring of $C(X)$ and topological spaces X for which $C_\infty(X)$ is an ideal of $C(X)$ are characterized in [4]. Our main purpose in this article is the study of the ring structure of $C_\infty(X)$ and of the relations between topological properties of the space X and algebraic properties of the ring $C_\infty(X)$.
This article consists of four sections. In Section 2, we will characterize locally compact spaces \(X \) by the structure of the ring \(C_\infty(X) \). We will see that for studying the ring \(C_\infty(X) \), it suffices to consider the topological space \(X \) to be a locally compact space. It is shown that whenever \(X \) and \(Y \) are locally compact, then \(C_\infty(X) \cong C_\infty(Y) \) if and only if \(X \cong Y \). This part of article is also presented in ICM 2002, see [11]. Section 3 is devoted to the ideal structure of the ring \(C_\infty(X) \) and to a new compactness concept, namely the \(\infty \)-compactness. In this section prime ideals of \(C_\infty(X) \) are investigated and using a special class of prime ideals in \(C^*(X) \), a unique representation for prime ideals of \(C_\infty(X) \) is given. \(\infty \)-compact spaces are those spaces \(X \) for which \(C_K(X) = C_\infty(X) \). We show that for a locally compact space \(X \), every prime ideal in \(C_\infty(X) \) is fixed if and only if \(X \) is an \(\infty \)-compact space. The existence of the smallest \(\infty \)-compact space in \(\beta X \) containing \(X \) is also proved in this section. We denote this smallest \(\infty \)-compact space by \(\infty X \) and we call it the \(\infty \)-compactification of the space \(X \). In the last results of the Section 3, we have characterized the type of points in \(\infty X \setminus X \). We have shown that every point in \(\infty X \setminus X \) is a non-P-point in \(\beta X \). In Section 4, the relations between algebraic properties of \(C_\infty(X) \) and topological properties of the space \(X \) are studied. We have shown that the ring \(C_\infty(X) \) is regular if and only if \(X \) is an \(\infty \)-compact \(P_\infty \)-space (a space \(X \) for which \(Z(f) \) is open for every \(f \in C_\infty(X) \)). We will also observe that the ring \(C_\infty(X) \) has a finite Goldie dimension if an only if the only open locally compact subsets of \(X \) are finite sets. Finally, locally compact spaces \(X \) are characterized for which the ring \(C_\infty(X) \) is a Baer ring or a p.p. ring.

The following proposition and its corollary are proved in [4]. They will be used in the next sections.

Proposition 1.1. \(C_\infty(X) \) is an ideal in \(C(X) \) if and only if every open locally compact subset of \(X \) is relatively pseudocompact. (A subset \(U \) of \(X \) is called relatively pseudocompact if \(f(U) \) is bounded for all \(f \in C(X) \)).

Corollary 1.2. Let \(X \) be a locally compact Hausdorff space. Then \(C_\infty(X) \) is an ideal in \(C(X) \) if and only if \(X \) is a pseudocompact space.

We also need the following lemma.

Lemma 1.3. No point of \(A \subseteq X \) has a compact neighborhood in \(X \) if and only if \(f(A) = \{0\} \) for all \(f \in C_\infty(X) \).

Proof: If \(a \in A \) and \(f(a) \neq 0 \) for some \(f \in C_\infty(X) \), then there exists \(n \in \mathbb{N} \) such that \(\frac{1}{n} < |f(a)| \) and hence \(H = \{ x \in X : |f(x)| \geq \frac{1}{n+1} \} \) is a compact neighborhood of \(a \), a contradiction. Now suppose that the point \(a \) has a compact neighborhood \(H \). Then there exists \(f \in C(X) \) such that \(f(a) = 1 \) and \(f(X \setminus \text{int} H) = \{0\} \). Since for every \(n \in \mathbb{N} \) we have \(\{ x \in X : |f(x)| \geq \frac{1}{n} \} \subseteq H \), the closed set \(\{ x \in X : |f(x)| \geq \frac{1}{n} \} \) is compact and hence \(f \in C_\infty(X) \). This proves the converse. \(\square \)
For proof of the following proposition, see Corollary 3.6 in [12].

Proposition 1.4. Let A be a commutative algebra over the rationals with unity. Let I be an ideal of A. Then an ideal D of I is a maximal ideal of I if and only if $D = M \cap I$ for some maximal ideal M in A.

2. Characterization of locally compact spaces X by the ring $C_\infty(X)$

We recall that for any topological space X, the set of all continuous real valued functions which vanish at infinity is a ring, which is denoted by $C_\infty(X)$. In fact for every $f, g \in C_\infty(X)$, we have \(\{ x \in X : |f(x) + g(x)| \geq \frac{1}{n} \} \subseteq \{ x \in X : |f(x)| \geq \frac{1}{2n} \} \cup \{ x \in X : |g(x)| \geq \frac{1}{2n} \} \) and \(\{ x \in X : |f(x)g(x)| \geq \frac{1}{n} \} \subseteq \{ x \in X : |f(x)| \geq \frac{1}{\sqrt{n}} \} \cup \{ x \in X : |g(x)| \geq \frac{1}{\sqrt{n}} \} \). By the following propositions and corollaries, for studying the ring $C_\infty(X)$, we may consider the space X to be a locally compact space.

Proposition 2.1. For a Hausdorff space X, the following statements are equivalent:

1. X is locally compact;
2. $\mathfrak{B} = \{ X \setminus Z(f) : f \in C_\infty(X) \}$ is a base for open sets in X;
3. the collection $C_\infty(X)$ separates points from closed sets (i.e., whenever F is a closed set in X and $x_0 \notin F$, then there exists $f \in C_\infty(X)$ such that $f(x_0) = 1$ and $f(F) = \{0\}$).

Proof: (1)\rightarrow(2). Let G be an open set in X and $x_0 \in G$. Then there exists a compact set H such that $x_0 \in \text{int} \, H \subseteq H \subseteq G$. Now define $f \in C(X)$ with $f(x_0) = 1$ and $f(X \setminus \text{int} \, H) = \{0\}$. Since $\{ x \in X : |f(x)| \geq \frac{1}{n} \} \subseteq X \setminus Z(f) \subseteq H$, $\{ x \in X : |f(x)| \geq \frac{1}{n} \}$ is compact, $\forall n \in \mathbb{N}$, i.e., $f \in C_\infty(X)$ and clearly $x_0 \in X \setminus Z(f) \subseteq G$, i.e., \mathfrak{B} is a base for open sets in X.

(2)\rightarrow(3). Is clear.

(3)\rightarrow(1). For every open set G and $x_0 \in G$, there exists $f \in C_\infty(X)$ such that $f(G) = \{0\}$ and $f(x_0) = 1$. Therefore $x_0 \in \{ x \in X : |f(x)| \geq \frac{1}{n} \} \subseteq G$ and by letting $H = \{ x \in X : |f(x)| \geq \frac{1}{2} \}$, H is compact and $x_0 \in \text{int} \, H \subseteq H \subseteq G$ which means that X is locally compact.

Corollary 2.2. If X is a Hausdorff space, then X is locally compact if and only if its topology coincides with the weak topology induced by $C_\infty(X)$.

Proposition 2.3. For every Hausdorff space X, whenever $C_\infty(X) \neq \{0\}$, then there exists a locally compact space Y such that $C_\infty(X) \cong C_\infty(Y)$. In fact the space Y may be considered as a nonempty open locally compact subspace of X.

Proof: Let Y be the set of all points in X which have a compact neighborhood. Clearly Y is a locally compact open subspace of X and since $C_\infty(X) \neq \{0\}$,
We may also assume that $Y \neq \emptyset$. Then, for otherwise X itself would be a locally compact space. Define $\sigma : C_\infty(X) \to C_\infty(Y)$ by $\sigma(f) = f|_Y$, $\forall f \in C_\infty(X)$. Since by Lemma 1.3, $f(X \setminus Y) = 0$, evidently σ is a one to one function. σ is also onto, for if $g \in C_\infty(Y)$, then we define $g^* : X \to \mathbb{R}$ such that $g^*(x) = g(x)$, $\forall x \in Y$ and $g^*(x) = 0$, $\forall x \in X \setminus Y$. To see the continuity of g^*, it is enough to show that g^* is continuous on the nonempty set $X \setminus Y$. Given $x \in X \setminus Y$ and $\epsilon > 0$, the set $\{x \in Y : |g(x)| \geq \epsilon\}$ is compact in Y and hence in X. Therefore $G = X \setminus \{x \in Y : |g(x)| \geq \epsilon\} = \{x \in X : |g^*(x)| < \epsilon\}$ is an open set in X and $g^*(G) \subseteq (-\epsilon, \epsilon)$, i.e., g^* is continuous at $x \in X \setminus Y$. On the other hand, $\{x \in X : |g^*(x)| \geq \frac{1}{n}\} = \{x \in Y : |g(x)| \geq \frac{1}{n}\}$ implies that $g^* \in C_\infty(X)$. Now $\sigma(g^*) = g$, i.e., σ is onto. Finally, for every $f, g \in C_\infty(X)$ it is easy to see that $\sigma(f + g) = \sigma(f) + \sigma(g)$ and $\sigma(fg) = \sigma(f)\sigma(g)$, i.e., $C_\infty(X) \cong C_\infty(Y)$.

Proposition 2.4. If X is a completely regular Hausdorff space, then every maximal ideal of $C_\infty(X)$ is fixed. In fact every maximal ideal of $C_\infty(X)$ is of the form $M_x \cap C_\infty(X)$, where M_x is a fixed maximal ideal in $C(X)$ and the point x has a compact neighborhood.

Proof: Since $C_\infty(X)$ is the intersection of all free maximal ideals in $C^*(X)$, by Proposition 1.4, every maximal ideal in $C_\infty(X)$ is of the form $M^*_p \cap C_\infty(X)$, where $p \in X$ and $C_\infty(X) \nsubseteq M^*_p$. But if $C_\infty(X) \subseteq M^*_p$ for some $p \in X$, then $f(p) = 0$ for all $f \in C_\infty(X)$ and by Lemma 1.3, the point p has no compact neighborhood. Hence if we consider A to be the set of all points of X which have no any compact neighborhood, then the collection of all maximal ideals of $C_\infty(X)$ is $\{M^*_x \cap C_\infty(X) : x \in X \setminus A\}$. On the other hand, $M^*_x = C^*(X) \cap M_x$, for all $x \in X$, see 4.7 in [7]. This implies that every maximal ideal of $C_\infty(X)$ is of the form $M_x \cap C_\infty(X)$, where $x \in X \setminus A$.

By the above proposition, whenever X is locally compact, the only maximal ideals of $C_\infty(X)$ are of the form $M_p \cap C_\infty(X)$, where $p \in X$, i.e., we have a one-to-one correspondence between X and the set \mathcal{M} of all maximal ideals of $C_\infty(X)$. If \mathcal{M} is equipped with the hull-kernel topology, then using this topological space, as in [7, Theorem 4.9], we have the following theorem.

Theorem 2.5. Two locally compact spaces X and Y are homeomorphic if and only if $C_\infty(X)$ and $C_\infty(Y)$ are isomorphic.

We conclude this section by the following proposition which is evident by Corollary 2.2 and the fact that every idempotent of $C_\infty(X)$ is in $C_K(X)$. We recall that a topological space X is said to be zero-dimensional if it has a base consisting of open-closed sets. We refer the reader to [6] for more facts about the zero-dimensional spaces.

Proposition 2.6. A Hausdorff space X is a locally compact zero-dimensional space if and only if its topology coincides with the weak topology induced by the set of idempotents of $C_\infty(X)$.
3. Prime ideals of $C_\infty(X)$ and ∞-compact spaces

We devote this section to some important ideals related to $C_\infty(X)$. Prime ideals in $C_\infty(X)$, the z-ideal $C_\ell(X)$, the ideal $C_K(X)$ and the ideal $C_R(X) = \bigcap_{p \in C(X) \setminus \mathcal{X}} M_p$ are important ideals related to $C_\infty(X)$. First of all we show that $C_\ell(X)$ is the smallest z-ideal in $C(X)$ containing $C_\infty(X)$. Next we will characterize topological spaces X for which $C_\infty(X) = C_K(X)$ or $C_\infty(X) = C_R(X)$. Studying the prime ideals of $C_\infty(X)$ and characterization of the type of points in the remainder $\infty X \setminus X$ are the final parts of this section.

We need the following useful lemma which is also proved in [4].

Lemma 3.1. Let A be an open subset of X. Then $A = X \setminus Z(f)$ for some $f \in C_\infty(X)$ if and only if A is a σ-compact locally compact subset of X.

Proof: Let $A = X \setminus Z(f)$ for some $f \in C_\infty(X)$. Then $A = \bigcup_{n=1}^\infty A_n$, where $A_n = \{x \in X : |f(x)| \geq \frac{1}{n}\}$. Since each A_n is compact, A is σ-compact. If $x \in A$, there exists $n_0 \in \mathbb{N}$ such that $x \in \{y \in X : |f(y)| > \frac{1}{n_0}\} \subseteq A_{n_0}$. Thus we get A is a locally compact subset of X and this proves the necessity. For sufficiency, let A be a σ-compact locally compact subset of X. Then $A = \bigcup_{n=1}^\infty A_n$, where A_n is compact and $A_n \subseteq \text{int} \ A_{n+1}$ for all $n \in \mathbb{N}$, see [6, p.250]. Now for each $n \in \mathbb{N}$, there exists $f_n \in C(X)$ such that $f(X) \subseteq [0,1]$, $f_n(A_n) = \{1\}$ and $f_n(X \setminus \text{int} \ A_{n+1}) = \{0\}$. Then $f = \sum_{n=1}^\infty f_n/2^n$ is an element of $C(X)$ by the Weierstrass M-test. Clearly $A = X \setminus Z(f)$. We claim that $f \in C_\infty(X)$. Let $x_0 \notin A_{n+1}$. Then $f_1(x_0) = \cdots = f_n(x_0) = 0$ and so $f(x_0) \leq \frac{1}{2^{n+1}} + \cdots + \frac{1}{2^n} < \frac{1}{n}$. Therefore $x_0 \notin \{x \in X : |f(x)| \geq \frac{1}{n}\}$, and hence $\{x \in X : |f(x)| \geq \frac{1}{n}\} \subseteq A_{n+1}$ and so we get $f \in C_\infty(X)$. \qed

In fact the collection of all the complement of σ-compact locally compact subsets of X is a z-filter \mathcal{F} in X containing $Z[C_\infty(X)]$. By the next proposition, $Z^{-1}[\mathcal{F}]$ is the smallest z-ideal in $C(X)$ containing $C_\infty(X)$.

Proposition 3.2. Let

$$C_\ell(X) = \{f \in C(X) : X \setminus Z(f) \text{ is locally compact } \sigma\text{-compact}\}.$$

Then $C_\ell(X)$ is the smallest z-ideal in $C(X)$ containing $C_\infty(X)$ or $C_\ell(X)$ is all of $C(X)$.

Proof: If $g \in C(X)$ and $f \in C_\ell(X)$, then $X \setminus Z(fg) \subseteq X \setminus Z(f)$ and clearly $X \setminus Z(fg)$ is also locally compact σ-compact, i.e., $fg \in C_\ell(X)$. Since $X \setminus Z(f+g) \subseteq (X \setminus Z(f)) \cup (X \setminus Z(g))$, we have $f+g \in C_\ell(X)$ for every $f, g \in C_\ell(X)$. Hence $C_\ell(X)$ is an ideal in $C(X)$ and it is evident that $C_\ell(X)$ is a z-ideal containing $C_\infty(X)$. Now suppose that I is a z-ideal in $C(X)$ such that $C_\infty(X) \subseteq I$. If $f \in C_\ell(X)$, then $X \setminus Z(f)$ is locally compact σ-compact and hence by Lemma 3.1, there exists $g \in C_\infty(X)$ such that $Z(f) = Z(g)$. But
\(g \in C_\infty(X) \subseteq I \) and \(I \) is a \(z \)-ideal, hence \(f \in I \), i.e., \(C_{l\sigma}(X) \subseteq I \). We note that \(C_{l\sigma}(X) = C(X) \) if and only if \(X \) is a locally compact \(\sigma \)-compact space. \(\square \)

We recall that \(C_K(X) = \bigcap_{p \in \beta X \setminus X} O^{*p} = \bigcap_{p \in \beta X \setminus X} O^p \) and \(C_\infty(X) = \bigcap_{p \in \beta X \setminus X} M^{*p} \), see 7E and 7F in [7]. Obviously \(C_K(X) \subseteq C_\infty(X) \) and \(C_K(X) = C_{\infty}(X) \) if and only if every open locally compact \(\sigma \)-compact subset of \(X \) is contained in a compact set in \(X \), see [4, Proposition 2.1]. For convenience, whenever \(C_K(X) = C_\infty(X) \) we call \(X \) an \(\infty \)-compact space. For example, \(\mathbb{N} \) and \(\mathbb{Q} \) are \(\infty \)-compact spaces. Moreover, if we denote \(C_{R}(X) = \bigcap_{p \in \upsilon X \setminus X} M^p \), where \(\upsilon X \) is the realcompactification of \(X \), then \(C_\infty(X) \subseteq C_{l\sigma}(X) \subseteq C_R(X) \). To show the second inclusion, \(C_\infty(X) = \bigcap_{p \in \beta X \setminus X} M^{*p} \) implies that

\[
C_\infty(X)C(X) = \bigcap_{p \in \beta X \setminus X} M^{*p}C(X) \subseteq \bigcap_{p \in \beta X \setminus X} M^{*p}C(X).
\]

Now by parts b and c of 7.9 in [7], \(M^{*p}C(X) = C(X) \), \(\forall p \in \beta X \setminus \upsilon X \) and \(M^{*p}C(X) = M^p \), \(\forall p \in \upsilon X \); hence \(C_\infty(X)C(X) \subseteq \bigcap_{p \in \upsilon X \setminus X} M^p = C_R(X) \). Since \(C_{l\sigma}(X) \) is the smallest \(z \)-ideal containing \(C_\infty(X) \) and \(C_R(X) \) is also a \(z \)-ideal containing \(C_\infty(X) \), we have \(C_{l\sigma}(X) \subseteq C_R(X) \).

The following proposition shows that for a locally compact space \(X \), the equality \(C_\infty(X) = C_R(X) \) is equivalent to pseudocompactness of the space \(X \).

Proposition 3.3. For a locally compact space \(X \), \(C_\infty(X) = C_R(X) \) if and only if \(X \) is a pseudocompact space.

Proof: If \(X \) is pseudocompact, then \(\upsilon X = \beta X \), see 8A in [7]. Hence

\[
C_\infty(X) = \bigcap_{p \in \beta X \setminus X} M^{*p} = \bigcap_{p \in \upsilon X \setminus X} M^p = \bigcap_{p \in \upsilon X \setminus X} M^p = C_K(X).
\]

Conversely, suppose that \(C_\infty(X) = \bigcap_{p \in \upsilon X \setminus X} M^p \); then \(C_\infty(X) \) is an ideal in \(C(X) \) and hence \(X \) should be a pseudocompact space by Corollary 1.2. \(\square \)

Proposition 3.4. Every locally compact \(\infty \)-compact space is a pseudocompact space.

Proof: Let \(X \) be a locally compact \(\infty \)-compact space. Then \(C_\infty(X) = C_K(X) \), i.e., \(C_\infty(X) \) is an ideal in \(C(X) \). Now by Corollary 1.2, \(X \) is a pseudocompact space. \(\square \)

Corollary 3.5. Every locally compact \(\infty \)-compact and realcompact space is compact.

The converse of the Proposition 3.4 is not true, i.e., not every locally compact pseudocompact space has to be an \(\infty \)-compact space.
Example 3.6. Consider the Tychonoff plank space T. T is a locally compact pseudocompact space and the ring $C(T)$ has only one free maximal ideal M^t, where $t = (\omega_1, \omega)$ and $M^t \neq O^t$, see 8.20 in [7]. Now since T is pseudocompact, $M^{*t} = M^t$ and $C_\infty(X) = M^{*t} \neq O^t = C_K(X)$, i.e., T is not ∞-compact.

Next we are going to characterize prime ideals of the subring $C_\infty(X)$ via prime ideals of $C^*(X)$. By Spec$(C_\infty(X))$, we mean the set of all prime ideals of the ring $C_\infty(X)$. For details of spectrum for general rings, see [8]. The spectrum of $C_\infty(X)$ might be empty only whenever $C_\infty(X) = (0)$.

Proposition 3.7. For every completely regular Hausdorff space X, we have

$$\text{Spec}(C_\infty(X)) = \{ P^* \cap C_\infty(X) : P^* \text{ is a prime ideal in } C^*(X) \}
\text{ and } C_\infty(X) \notin P^* \}.$$

We have $C_\infty(X) \neq (0)$ if and only if Spec$(C_\infty(X)) \neq \emptyset$.

Proof: For every prime ideal P^* in $C^*(X)$ with $C_\infty(X) \notin P^*$, clearly $P^* \cap C_\infty(X)$ is a prime ideal in $C_\infty(X)$. Conversely, let P_∞ be a prime ideal in $C_\infty(X)$. Then P_∞ is an ideal in $C^*(X)$, for if $f \in P_\infty$ and $g \in C^*(X)$, then $fg = f^{1/3}f^{2/3}g$ and $f^{2/3}g \in C_\infty(X)$, $f^{1/3} \in P_\infty$ imply that $fg \in P_\infty$. Now suppose that P^* is a prime ideal in $C^*(X)$ minimal over P_∞ and disjoint from the multiplicatively closed set $C_\infty(X) - P_\infty$. It goes without saying that $P_\infty = P^* \cap C_\infty(X)$. To prove the second part of the proposition, suppose that $C_\infty(X) \neq (0)$. Then by Proposition 2.3, there exists a nonempty locally compact space Y such that $C_\infty(X) \cong C_\infty(Y)$. Hence it is enough to show that Spec$(C_\infty(Y)) \neq \emptyset$. If Y is compact, then $C_\infty(X) = C^*(X)$ and clearly Spec$(C_\infty(X)) \neq \emptyset$. Thus suppose that Y is not compact. Since Y is locally compact and noncompact, then by 4D in [7], $C_K(Y)$ is free and hence no fixed prime ideal of $C^*(Y)$ contains $C_\infty(Y)$. On the other hand, since $C_\infty(Y)$ is a free ideal of $C^*(X)$, by Theorem 3.1 in [2], $C_\infty(Y)$ intersects every nonzero ideal in $C^*(X)$ nontrivially. Therefore if P^* is a fixed prime ideal in $C^*(Y)$, we have $C_\infty(Y) \notin P^*$ and $P^* \cap C_\infty(Y) \neq (0)$ which means that Spec$(C_\infty(Y))$ contains at least a nonzero prime ideal. The converse is evident, for $C_\infty(X) = (0)$ implies that Spec$(C_\infty(X)) = \emptyset$.

To establish a one-to-one correspondence between prime ideals of $C_\infty(X)$ and a subclass of prime ideals of $C^*(X)$, we need the following lemma which will also be used in Section 4.

Lemma 3.8. Let I be an ideal in a commutative ring R. Suppose that Q and P are ideals in R and P is prime. If P does not contain I and $Q \cap I \subseteq P \cap I$, then $Q \subseteq P$. In particular, if Q is also a prime ideal and $Q \cap I = P \cap I$, then $P = Q$.

Proof: $Q \cap I \subseteq P \cap I$ implies that $Q \cap I \subseteq P$. Since P is prime and $I \notin P$, we have $Q \subseteq P$. □
The following proposition shows that every prime ideal P_∞ of $C_\infty(X)$ has a unique representation of the form $P_\infty = P^* \cap C_\infty(X)$, where P^* is a prime ideal in $C^*(X)$.

Proposition 3.9. Let D be the collection of all prime ideals of $C^*(X)$ which do not contain $C_\infty(X)$. Then $\Phi : D \rightarrow \text{Spec}(C_\infty(X))$ defined by $\Phi(P^*) = P^* \cap C_\infty(X)$ is a one-to-one correspondence.

Proof: Using Proposition 3.7 and Lemma 3.8 the proof is evident. \qed

If X has no point with compact neighborhood, then $C_\infty(X) = \{0\}$ is contained in every ideal of $C^*(X)$. Even if the space X is locally compact, many prime ideals of $C^*(X)$ may contain $C_\infty(X)$. In the following proposition, we show that whenever X is a locally compact ∞-compact space, then all free prime ideals of $C^*(X)$ contain $C_\infty(X)$.

Proposition 3.10. A locally compact Hausdorff space X is ∞-compact if and only if every prime ideal in $C_\infty(X)$ is fixed.

Proof: Let X be an ∞-compact space and P_∞ be a prime ideal in $C_\infty(X)$. By Proposition 3.7, there exists a prime ideal P^* in $C^*(X)$ such that $P_\infty = P^* \cap C_\infty(X)$, where $C_\infty(X) \not\subseteq P^*$. P^* is not free, for otherwise $C_\infty(X) = C_K(X) \subseteq P^*$, by ∞-compactness of X and 4D in [7], a contradiction. Hence P^* is fixed and therefore P_∞ is fixed too. Conversely suppose that every prime ideal in $C_\infty(X)$ is fixed but X is not ∞-compact, i.e., $C_\infty(X) \not= C_K(X)$. Hence there exists $f \in C_\infty(X)$ such that $f \notin C_K(X)$. Now consider the prime ideal P^* in $C^*(X)$ containing $C_K(X)$ but not f. Since X is locally compact, then by 4D in [7], $C_K(X)$ is free, so P^* is free. Since $C_\infty(X) \not\subseteq P^*$, $P_\infty = P^* \cap C_\infty(X)$ is a prime ideal in $C_\infty(X)$ by Proposition 3.7. Now $C_K(X) \subseteq P^* \cap C_\infty(X) = P_\infty$ implies that P_∞ is also free which contradicts our hypothesis. \qed

Remark 3.11. $C_\infty(X)$ may be contained in no prime ideal of $C(X)$. In fact this happens if and only if X is a locally compact σ-compact space. To see this, let P be a prime ideal in $C(X)$ such that $C_\infty(X) \subseteq P$. Thus there exists a maximal ideal M in $C(X)$ such that $C_\infty(X) \subseteq M$. Since $C_\sigma(X)$ is the smallest z-ideal containing $C_\infty(X)$, $C_\sigma(X) \subseteq M$ by Proposition 3.2, which implies that $C_\sigma(X)$ is an ideal in $C(X)$. By definition of the ideal $C_\sigma(X)$, this shows that X is not locally compact or X is not σ-compact. Conversely, suppose that X is either not locally compact or not σ-compact. Then $C_\sigma(X)$ is an ideal of $C(X)$. Now $C_\sigma(X)$ is contained in a maximal ideal of $C(X)$. Clearly, that maximal ideal which is also a prime ideal in $C(X)$ contains $C_\infty(X)$.

$C_\infty(X)$ may contain a prime ideal of $C^*(X)$. If P^* is a prime ideal in $C^*(X)$ and $P^* \subseteq C_\infty(X)$, then $P^* \subseteq \bigcap_{x \in \beta X \setminus X} M^{*x}$ and since every prime ideal in $C^*(X)$ is contained in a unique maximal ideal in $C^*(X)$, $C_\infty(X) = M^{*x}$, where $\beta X \setminus X = \{x\}$. This shows that $C_\infty(X)$ contains a prime ideal of $C^*(X)$ if and
only if the cardinal number of the remainder $\beta X \setminus X$ is 1. In this case $C_\infty(X)$ itself is a maximal ideal in $C^*(X)$.

It is time to show the existence of the smallest ∞-compact space in βX containing the space X. To avoid the confusion, we denote the ideals M^p and O^p in $C(X)$ by $M^p(X)$ and $O^p(X)$, respectively. The corresponding ideals in $C^*(X)$ are also denoted by $M^{*p}(X)$ and $O^{*p}(X)$.

Theorem 3.12. Let $\{Y_\alpha\}_{\alpha \in S}$ be a collection of ∞-compact spaces such that $X \subseteq Y_\alpha \subseteq \beta X$, $\forall \alpha \in S$. Then $Y = \bigcap_{\alpha \in S} Y_\alpha$ is also an ∞-compact space.

Proof: First suppose that $X \subseteq T \subseteq \beta X$ and define the map $\varphi : C^*(X) \to C^*(T)$ by $\varphi(f) = f^\beta|_T$ (denote $f^\beta|_T$ by f^T). It is clear that φ is an isomorphism. Moreover, for every $p \in \beta X$, we have $\varphi(O^p(X)) = O^p(T)$ and $\varphi(M^{*p}(X)) = M^{*p}(T)$. To see this let $\varphi(f) \in \varphi(O^p(X))$, where $f \in O^p(X)$. Then $p \in \text{int}_{\beta X} Z(f^\beta) = \text{int}_{\beta X} Z(f^T)$ and hence $f^T \in O^p(T)$ implies that $\varphi(O^p(X)) \subseteq O^p(T)$. Since φ is an isomorphism, similarly $\varphi^{-1}(O^p(T)) \subseteq O^p(X)$ and hence $\varphi(O^p(X)) = O^p(T)$. The proof of $\varphi(M^{*p}(X)) = M^{*p}(T)$ is similar. More generally, whenever $A \subseteq \beta X$ we have also $\varphi(O^{*A}(X)) = O^{*A}(T)$ and $\varphi(M^{*A}(X)) = M^{*A}(T)$.

Now for every $\alpha \in S$, let $\varphi_\alpha : C^*(X) \to C^*(Y_\alpha)$ be an isomorphism defined by $\varphi_\alpha(f) = f^{Y_\alpha}$, $\forall f \in C^*(Y)$. By the above argument we have

$$C_K(Y) = O^{*\beta Y \setminus Y}(Y) = O^{*\beta Y \setminus Y_\alpha}(Y) = O^*\bigcup_{\alpha \in S} (\beta Y \setminus Y_\alpha)(Y) = \bigcap_{\alpha \in S} O^{*\beta Y \setminus Y_\alpha}(Y)$$

$$= \bigcap_{\alpha \in S} \varphi_\alpha^{-1}(O^{*\beta Y \setminus Y_\alpha}(Y_\alpha)) = \bigcap_{\alpha \in S} \varphi_\alpha^{-1}(C_K(Y_\alpha)) = \bigcap_{\alpha \in S} \varphi_\alpha^{-1}(C_\infty(Y_\alpha))$$

$$= \bigcap_{\alpha \in S} \varphi_\alpha^{-1}(M^{*\beta Y \setminus Y_\alpha}(Y_\alpha)) = \bigcap_{\alpha \in S} M^{*\beta Y \setminus Y_\alpha}(Y_\alpha) = M^{*\bigcup_{\beta Y \setminus Y_\alpha}(Y_\alpha)}(Y)$$

$$= M^{*\beta Y \setminus Y_\alpha}(Y) = C_\infty(Y).$$

Corollary 3.13. For every completely regular Hausdorff space X, there is an smallest ∞-compact space in βX containing X.

Proof: By Theorem 3.12, this smallest ∞-compact space is the intersection of all ∞-compact spaces in βX containing X.

We conclude this section by the following lemmas and proposition which characterize the type of points in $\infty X \setminus X$. First we note that, if $X \subseteq Y \subseteq \beta X$, then a point $p \in \beta X$ is said to be a P-point with respect to Y if $O^p(Y) = M^p(Y)$. In case $Y = X$, we apply $O^p = M^p$ instead of $O^p(X) = M^p(X)$ and briefly we say that p is a P-point.
Lemma 3.14. Suppose that $p \in \beta X$ and $X \subseteq Y \subseteq \beta X$. Then for every $f \in C^*(X)$, $f \in Op(X)$ if and only if $f^Y \in Op(Y)$.

PROOF: We consider $\varphi_Y : C^*(X) \rightarrow C^*(Y)$ defined by $\varphi_Y(f) = f^Y$, $\forall f \in C^*(X)$. As was pointed out in the proof of Theorem 3.12, $\varphi_Y(M^{*p}(X)) = M^{*p}(Y)$ and $\varphi_Y(O^{*p}(X)) = O^{*p}(Y)$. Hence for every $f \in C^*(X)$, $\varphi_Y(f) = f^Y \in Op(Y) \cap C^*(Y) = O^{*p}(Y)$ if and only if $f \in \varphi_Y^{-1}(O^{*p}(Y)) = O^{*p}(X)$ which is equivalent to $f \in Op(X)$. □

Lemma 3.15. Suppose that $p \in \beta X$ and $X \subseteq Y \subseteq \beta X$. If p is a P-point with respect to Y, then it is also a P-point with respect to X.

PROOF: We suppose that $f \in M^p(X)$ and consider $g = \frac{f^2}{1+f^2}$. Hence $Z(f) = Z(g)$ and therefore $g \in M^p(X) \cap C^*(X)$. Thus $p \in cl_{\beta X} Z(f) = cl_{\beta X} Z(g) \subseteq cl_{\beta X}(Z(g^Y))$ implies that $g^Y \in M^p(Y) = Op(Y)$ and by Lemma 3.14, $g \in Op(X)$. Hence $f \in Op(X)$, i.e., p is a P-point with respect to X. □

Proposition 3.16. If $p_0 \in \infty X \setminus X$, then p_0 is a non-P-point with respect to ∞X and hence it is a non-P-point with respect to βX.

PROOF: We put $Y = \infty X$ and $T = Y \setminus \{p_0\}$. Thus T is not ∞-compact and therefore there exists $f \in C_\infty(T) - C_K(T)$. For every $p \in \beta Y \setminus Y = \beta X \setminus \infty X \subseteq \beta X \setminus T = \beta T \setminus T$ we have $f^\beta(p) = 0$. However, if we let $g = f^Y$, then $g^\beta(p) = f^\beta(p) = 0$, $\forall p \in \beta Y \setminus Y$ and hence $g \in C_\infty(Y)$ implies that $g \in C_K(Y)$. Therefore $p \in int_{\beta X} Z(g^\beta) = int_{\beta X} Z(f^\beta)$, $\forall p \in \beta Y \setminus Y$ and hence $f \in O^{*p}(T)$, $\forall p \in (\beta T \setminus T) \setminus \{p_0\}$. Now $f \notin O^{*p_0}(T)$ since $f \notin C_K(T)$, and by Lemma 3.14, $g = f^Y \notin Op_0(Y)$. But $g(p_0) = f^\beta(p_0) = 0$ and hence $g \in M^{p_0}(Y)$, i.e., p_0 is not a P-point with respect to Y. Finally, by Lemma 3.15, p_0 is not also a P-point with respect to βX. □

Corollary 3.17. If for a topological space X, we put

$$\Pi = \{p \in \beta X \setminus X : p \; \text{is a P-point in} \; \beta X\}$$

then $\infty X \subseteq \beta X \setminus \Pi$. Moreover if $\beta X \setminus \Pi \subseteq Y \subseteq \beta X$, then Y is an ∞-compact space containing ∞X.

4. Relations between algebraic properties of $C_\infty(X)$ and topological properties of X

In this section we present topological characterizations of some algebraic properties of the ring $C_\infty(X)$. We will characterize topological spaces X for which the ring $C_\infty(X)$ is a regular ring, has a finite Goldie dimension, a p.p. ring and a Baer ring. First of all we consider $C_\infty(X)$ to be a regular ring. A ring R is called regular if for every $a \in R$, there exists $b \in R$ with $a = a^2b$. A completely
regular Hausdorff space X is said to be a P-space if every G_δ-set (zero-set) in X is an open set. It is well-known that $C(X)$ is a regular ring if and only if X is a P-space, see Theorem 14.29 and 4J in [7]. Whenever $Z(f)$ is open for every $f \in C_\infty(X)$, we call X a P$_\infty$-space. The following theorem shows that $C_\infty(X)$ is a regular ring if and only if X is an ∞-compact P$_\infty$-space.

Theorem 4.1. The following statements are equivalent:

1. $C_\infty(X)$ is a regular ring;
2. every open locally compact σ-compact set in X is compact;
3. $\forall f \in C_\infty(X), X \setminus Z(f)$ is compact;
4. X is an ∞-compact P$_\infty$-space;
5. $\forall p \in X, M_p \cap C_\infty(X) = O_p \cap C_K(X)$.

Proof: (1)→(2). By Lemma 3.1, every open locally compact σ-compact set is of the form $X \setminus Z(f)$ for some $f \in C_\infty(X)$. Since $C_\infty(X)$ is regular, there exists $g \in C_\infty(X)$ such that $f^2g = f$. Now $f(fg - 1) = 0$ implies that $\{x : (fg)(x) \neq 1\} = Z(f)$, i.e., $Z(f)$ is open. On the other hand, $g(x) = \frac{1}{f(x)}$ for every $x \in X \setminus Z(f)$ and hence $g(x) \geq \frac{1}{N}$, where N is an upper bound for $|f|$ (note that every member of $C_\infty(X)$ is bounded). Therefore

$$X \setminus Z(f) \subseteq \{x \in X : |g(x)| \geq \frac{1}{N}\} = A_N.$$

Since $X \setminus Z(f)$ is closed and A_N is compact, $X \setminus Z(f)$ is also compact.

(2)→(3)→(4)→(5). Evident.

(5)→(1). (5) implies that for every $f \in C_\infty(X)$, $Z(f)$ is open and $X \setminus Z(f)$ is compact. Now for every $f \in C_\infty(X)$, we define $g(x) = 0$ for $x \in Z(f)$ and $g(x) = \frac{1}{f(x)}$ for $x \in X \setminus Z(f)$. By pasting lemma, $g \in C(X)$ and $\{x \in X : |g(x)| \geq \frac{1}{N}\} \subseteq X \setminus Z(f)$ implies that $\{x \in X : |g(x)| \geq \frac{1}{N}\}$ is compact, i.e., $g \in C_\infty(X)$ and $f^2g = f$ means that $C_\infty(X)$ is regular. □

Remark 4.2. Clearly every P-space is a P$_\infty$-space but every P$_\infty$-space is not necessarily a P-space. For example let S be a P-space and consider the space X, the free union of spaces S and \mathbb{Q} (Q with usual topology). By Lemma 1.3, for every $f \in C_\infty(X)$, we have $f(\mathbb{Q}) = 0$ and since S is a P-space, $Z(f)$ is open $\forall f \in C_\infty(X)$, i.e., X is a P$_\infty$-space. But \mathbb{Q} is not a P-space and hence X is not a P-space either.

Proposition 4.3. Let X be a locally compact Hausdorff space. If X is a P$_\infty$-space, then it is also a P-space.

Proof: If X is a P$_\infty$-space, then $M^*_x \cap C_\infty(X) = O^*_x \cap C_\infty(X)$, $\forall x \in X$. Since M^*_x is prime in $C^*(X)$, then by Lemma 3.8, either $M^*_x = O^*_x$ or $C_\infty(X) \subseteq O^*_x$. But $C_\infty(X) \subseteq O^*_x$ does not happen, for if K and H are compact neighborhoods of
A.R. Aliabad, F. Azarpanah, M. Namdari

Proof: If it is a P-space by Proposition 4.3. Now according to Proposition 3.4, \(X \) is a regular ring, then by Theorem 4.1, \(X \) is pseudocompact P-space which should be finite by 4K in [7]. □

Corollary 4.4. Let \(X \) be a locally compact Hausdorff space. Then \(C_\infty(X) \) is a regular ring if and only if \(X \) is finite.

Proof: If \(X \) is finite, then clearly \(C_\infty(X) \) is a regular ring. Conversely, if \(C_\infty(X) \) is a regular ring, then by Theorem 4.1, \(X \) is an \(\infty \)-compact \(P_\infty \)-space and hence it is a P-space by Proposition 4.3. Now according to Proposition 3.4, \(X \) is a pseudocompact P-space which should be finite by 4K in [7]. □

Next we characterize spaces \(X \) for which the ring \(C_\infty(X) \) has a finite Goldie dimension. Before doing this, we need to characterize uniform ideals and essential ideals in \(C_\infty(X) \). A nonzero ideal \(I \) in a commutative ring \(R \) is called essential if it intersects every nonzero ideal nontrivially, and it is called uniform if any two nonzero ideals contained in \(I \) intersect nontrivially. In [2, Proposition 1.1], it is shown that the ideal \(I \) in \(C(X) \) is uniform if and only if it is minimal, i.e., \(I \) is generated by an idempotent \(e \in C(X) \) such that \(X \setminus Z(e) \) is singleton. In [2, Proposition 3.1], it is also shown that an ideal \(E \) in \(C(X) \) is essential if and only if \(\text{int}_X \cap Z[E] = \emptyset \), i.e., \(\cap Z[E] \) is nowhere dense. By the following proposition, analogous criteria hold for essential ideals and uniform ideals in \(C_\infty(X) \). First we need the following lemma.

Lemma 4.5. Let \(f, g \in C_\infty(X) \).

(a) If there exists \(n_0 \in \mathbb{N} \) such that \(\{ x \in X : |g(x)| < \frac{1}{n_0} \} \subseteq Z(f) \), then \(f \) is a multiple of \(g \) in \(C_\infty(X) \).

(b) If \(|f| \leq |g|^r \) for some \(r > 1 \), then \(f \) is a multiple of \(g \) in \(C_\infty(X) \).

Proof: (a) We define \(h(x) = f(x)/g(x) \) for \(|g(x)| \geq \frac{1}{2n_0} \) and \(h(x) = 0 \) for \(|g(x)| \leq \frac{1}{2n_0} \). Clearly \(h \in C(X) \) and \(f \equiv gh \). But for every \(n \in \mathbb{N} \), we have

\[
\{ x \in X : |h(x)| \geq \frac{1}{n} \} \subseteq \{ x \in X : |f(x)| \geq \frac{1}{2n_0n} \}
\]

which implies that \(\{ x \in X : |h(x)| \geq \frac{1}{n} \} \) is compact for any \(n \in \mathbb{N} \), i.e., \(h \in C_\infty(X) \).

(b) By problem 1D in [7], there exists \(h \in C(X) \) such that \(f = gh \). Now \(|gh| \leq |g|^r \) implies that \(\{ x \in X : |h(x)| \geq \frac{1}{n} \} \subseteq \{ x \in X : |g(x)|^{r-1} \geq \frac{1}{n} \} \) and hence \(h \in C_\infty(X) \). □

Proposition 4.6. (a) An ideal \(E \) in \(C_\infty(X) \) is essential if and only if \(\cap Z[E] \) is nowhere compact (i.e., \(\cap Z[E] \) does not contain any nonempty compact neighborhood).

(b) An ideal \(I \) in \(C_\infty(X) \) is uniform if and only if \(I = (f) \) for some \(f \in C_\infty(X) \), where \(X \setminus Z(f) \) is a singleton.
Proof: (a) Suppose E is an essential ideal in $C_\infty(X)$ and $B = \bigcap Z[E]$ is not nowhere compact. Then there exists a compact set A with $A \subseteq B$ and $\text{int } A \neq \emptyset$. Let $a \in \text{int } A$ and define $f \in C(X)$ such that $f(X \setminus \text{int } A) = \{0\}$ and $f(a) = 1$. Hence $\{x \in X : |f(x)| \geq \frac{1}{n}\} \subseteq A$ implies that $\{x \in X : |f(x)| \geq \frac{1}{n}\}$ is compact, i.e., $f \in C_\infty(X)$. Now if there exists $g \in C_\infty(X)$ such that $g \in (f) \cap E$, then $Z(f) \subseteq Z(g)$ implies that $X \setminus Z(g) \subseteq X \setminus Z(f) \subseteq A \subseteq B \subseteq Z(g)$ and hence $g = 0$ which contradicts the essentiality of E in $C_\infty(X)$. Conversely, let $\bigcap Z[E]$ be nowhere compact, $0 \neq f \in C_\infty(X)$ and $a \in X \setminus Z(f)$. Then there exists $n \in \mathbb{N}$ such that $|f(a)| \geq \frac{1}{n}$ and hence a is in the compact set $\{x \in X : |f(x)| \geq \frac{1}{n}\}$. Since $\bigcap Z[E]$ is nowhere compact, there exists $b \in \{x \in X : |f(x)| \geq \frac{1}{n}\} \setminus \bigcap Z[E]$ which implies that there is $g \in E$, such that $g(b) \neq 0$ and hence $0 \neq fg \in (f) \cap E$, i.e., E is essential in $C_\infty(X)$.

(b) Let I be a uniform ideal in $C_\infty(X)$ and $f \in I$. First we show that $X \setminus Z(f)$ is a singleton. Suppose that $x_0, y_0 \in X \setminus Z(f)$ and $x_0 \neq y_0$. By Lemma 3.1, $X \setminus Z(f)$ is a locally compact subspace of X and hence there exist two disjoint compact neighborhoods G and H in $X \setminus Z(f)$ of points x_0 and y_0 respectively. Since $X \setminus Z(f)$ is open in X, G and H are also compact neighborhoods in X. Now we define two functions $g, h \in C(X)$ such that $g(x_0) = 1 = h(y_0)$ and $g(X \setminus \text{int } G) = \{0\} = h(X \setminus \text{int } H)$. Since $\{x \in X : |g(x)| \geq \frac{1}{n}\} \subseteq G$ and G is compact, $\{x \in X : |g(x)| \geq \frac{1}{n}\}$ is also compact, i.e., $g \in C_\infty(X)$. Similarly, $h \in C_\infty(X)$. Now consider the principal subideals (fg) and (fh) of I. Since I is a uniform ideal, there exists $0 \neq k \in (fg) \cap (fh)$ and hence there exists $z \in X \setminus Z(g)$ with $k(z) \neq 0$. Now $kg = 0$ contradicts $k(z)g(z) \neq 0$ and therefore $X \setminus Z(f)$ is a singleton, say $X \setminus Z(f) = \{x_0\}$. Next we show that for every $g \in I$, we have also $X \setminus Z(g) = \{x_0\}$. Let $X \setminus Z(g) = \{y_0\}$ and $y_0 \neq x_0$. For the principal subideals (f) and (g) of I, we have $(f) \cap (g) = \{0\}$, for if $h \in (f) \cap (g)$, then $Z(f) \cup Z(g) = X \setminus Z(h)$ implies that $h = 0$. This contradicts the uniformity of I and hence $X \setminus Z(g) = \{x_0\}$. Therefore we have shown that there exists an isolated point $x_0 \in X$ such that $X \setminus Z(f) = \{x_0\}$, $\forall f \in I$. Finally, suppose that $f, g \in I$ and $f'(0) = \alpha$. Then there exists $n \in \mathbb{N}$ such that $|\alpha| \geq \frac{1}{n}$ and hence $\{x \in X : |f(x)| < \frac{1}{n}\} \subseteq Z(g)$ which implies that g is a multiple of f by Lemma 4.5. This shows that $I = (f)$. The converse is evident. \qed

It is well-known that if a ring R has a finite Goldie dimension, then there exists an integer $n > 0$ such that any direct sum of nonzero ideals in R has always m terms, where $m \leq n$ and there is a direct sum of uniform ideals with n terms which is essential in R, see [8] and [10].

Proposition 4.7. $C_\infty(X)$ has a finite Goldie dimension if and only if every open locally compact set in X is finite.

Proof: If $C_\infty(X) = (0)$, then every locally compact set in X is empty. Now suppose that $C_\infty(X) \neq (0)$ has a finite Goldie dimension and let G be a locally
compact open set in X. Hence there exists $n > 0$ such that the direct sum of n uniform ideals I_1, I_2, \ldots, I_n in $C_\infty(X)$ is an essential ideal E in $C_\infty(X)$. By Proposition 4.6, there is an isolated point $x_i \in X$ and $f_i \in I_i$ such that $I_i = (f_i)$, where $X \setminus Z(f_i) = \{x_i\}$, for $i = 1, 2, \ldots, n$. This implies that $\bigcap Z[I] = X \setminus \{x_1, x_2, \ldots, x_n\}$ and again by Proposition 4.6, $X \setminus \{x_1, x_2, \ldots, x_n\}$ does not contain any nonempty compact neighborhood. Thus $G \cap (X \setminus \{x_1, x_2, \ldots, x_n\}) = \emptyset$ and hence $G \subseteq \{x_1, x_2, \ldots, x_n\}$, i.e., G is finite. The converse is obvious. □

Corollary 4.8. If X is a locally compact Hausdorff space, then $C_\infty(X)$ has a finite Goldie dimension if and only if X is finite.

Finally we characterize the locally compact spaces X for which $C_\infty(X)$ is a p.p. ring or a Baer ring. A topological space X is called **extremally (basically) disconnected** if each open (cozero) set in X has an open closure. A commutative ring R is a p.p. (Baer) ring if for any $a \in R \ (S \subseteq R)$, Ann$(a)$ (Ann(S)) is the principal ideal generated by an idempotent. In [1] and [3], it is shown that X is basically (extremally) disconnected if and only if $C(X)$ is a p.p. (Baer) ring.

Theorem 4.9. Let X be a locally compact space.

(a) $C_\infty(X)$ is a p.p. ring if and only if X is a basically disconnected compact space.

(b) $C_\infty(X)$ is a Baer ring if and only if X is an extremally disconnected compact space.

Proof: (a) Let $C_\infty(X)$ be a p.p. ring. Then for every $0 \neq f \in C_\infty(X)$, there exists an idempotent $e \in C_\infty(X)$ such that Ann$(f) = (e)$. Therefore $X \setminus Z(e) \subseteq \text{int } Z(f)$. We show that $X \setminus Z(e) = \text{int } Z(f)$. Let $x \in \text{int } Z(f)$ but $x \notin X \setminus Z(e)$ and define $g \in C(X)$ such that $g(X \setminus \text{int } K) = \{0\}$ and $g(x) = 1$, where K is a compact neighborhood of x contained in $\text{int } Z(f) \cap Z(e)$. Hence $g \in C_\infty(X)$ and $gf = 0$ but $g \notin (e)$, for $Z(e) \nsubseteq Z(g)$ (as $g(x) = 1$, $e(x) = 0$), a contradiction. This implies that $X \setminus Z(e) = \text{int } Z(f)$ and hence $Z(e) = \text{cl}_X (X \setminus Z(f))$. Now if we take $f \in C_K(X)$, then $Z(e)$ and $X \setminus Z(e)$ are compact, i.e., X is compact. We have also shown that for every $f \in C_\infty(X)$, $\text{int } Z(f)$ is closed. Since X is compact, $C_\infty(X) = C(X)$ and hence for every $f \in C(X)$, $\text{int } Z(f)$ is closed, i.e., X is basically disconnected. Conversely, if X is a compact space, then $C_\infty(X) = C(X)$ and since X is basically disconnected, $C_\infty(X)$ is a p.p. ring by [1, Lemma 3].

(b) If $C_\infty(X)$ is a Baer ring, then it is p.p. ring and hence by part (a), X is compact, i.e., $C_\infty(X) = C(X)$. Now part (b) is well-known for compact spaces, see [5]. □

Corollary 4.10. Let X be a locally compact non-compact space. Then $C_\infty(X)$ is never a p.p. (Baer) ring.
References

A.R. Aliabady:
DEPARTMENT OF MATHEMATICS, CHAMRAN UNIVERSITY, AHVAZ, IRAN

F. Azarpanah, M. Namdari:
INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS (IPM), TEHRAN, IRAN
E-mail: aliabady_r@cua.ac.ir
azarpanah@ipm.ir
namdari@ipm.ir

(Received July 23, 2003, revised January 15, 2004)