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Totally convex algebras

Dieter Pumplün, Helmut Röhrl

Abstract. By definition a totally convex algebra A is a totally convex space |A| equipped
with an associative multiplication, i.e. a morphism µ : |A| ⊗ |A| −→ |A| of totally convex
spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product,
unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum
of an element and investigate them in detail. This leads to a considerable generalization
of the corresponding notions and results in the theory of Banach spaces.
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0. Banach algebras and totally convex algebras.

In [6] totally convex spaces over K, K = R or C, emerged as the Eilenberg-Moore
algebras of the unit ball functor O : Ban1 −→ Set, where Ban1 is the category of
Banach spaces over K and linear contractions. The step from totally convex spaces
to totally convex algebras in (0.2) is quite natural; it corresponds completely to the
step from abelian groups to rings. Moreover, totally convex algebras appear as the
Eilenberg-Moore algebras of the unit ball functor from the category Ban1-Alg of
Banach algebras over K and contractive homomorphisms to Set. We will prove this
in this section, because this result is important for the investigation of totally convex
algebras. Moreover, this result means that the theory of totally convex algebras is
the algebraic theory “generated” by the theory of Banach algebras. The unit ball
functor from Ban1-Alg to Set, assigning to each Banach algebra its closed unit
ball, will be denoted by Oa : Ban1-Alg −→ Set.

(0.1) Proposition. Oa : Ban1-Alg −→ Set is pre-monadic but not monadic.

Proof: First, we will show the existence of a left adjoint la1 : Set −→ Ban1-Alg.
If Semi-Grp is the category of semigroups, the unit ball Oa(A) := {a | a ∈ A,
‖a‖ ≤ 1} of a Banach algebra carries a canonical semigroup structure and hence
induces a canonical functor Os : Ban1-Alg −→ Semi-Grp. Let Vs : Semi-
Grp −→ Set denote the usual forgetful functor, s. th. Oa = Vs ◦ Os holds. For
a semigroup S define ls1(S) :=l1(V

s(S)), where, for a set X , l1(X) is the usual
l1-space generated by X . l

s
1(S) carries a canonical algebra structure, which makes

it a Banach algebra. The multiplication is defined by putting

δs ∗ δs′ := δss′ ,
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where δs, s ∈ S , are the Dirac symbols, which form a basis of l1(V
s(S)). Using

the well known fact that l1 : Set −→ Ban1 is left adjoint to O : Ban1 −→ Set
with unit ηX : X −→ O(l1(X)), ηX (x) = δx, x ∈ X , it is elementary to verify
that ls1 is left adjoint to O

s . For S ∈ Semi-Grp the unit is given by ηs
S : S −→

Os(ls1(S)), η
s
S(s) = δs, s ∈ S.

If Fs : Set −→ Semi-Grp is left adjoint to Vs with unit η̂X : X −→ Vs ◦Fs(X),
la1 := l

s
1 ◦ F

s is left adjoint to Oa with the unit ηa
X : X −→ Oa◦ la1(X), η

a
X =

Vs(ηs
Fs(X))η̂X . To show the premonadicity of O

a we use (10.1) in [15] and prove that

the counit εa : la1 ◦ O
a −→ Ban1-Alg is a coequalizer. Using (1.1) in [6], one sees

that εaA : l
a
1(O

a(A)) −→ A, A ∈Ban1-Alg, is given by ε
a
A(δ(a1,... ,an)) = a1a2 . . . an,

for a basis element δ(a1,... ,an) ∈ l
s
1(F

s(O(A))), ai ∈ O
a(A), 1≤ i ≤ n. The Ban1-

morphism

λ : la1(O
a(A))/kerεa

A
−→ A

in [6, (1.1)], is an isomorphism in Ban1. But it is also a multiplicative homo-
morphism, because εaA has this property. Hence, ε

a
A is a coequalizer and O

a is
pre-monadic. That Oa is not monadic will be established presently by using the
Linton space as in [6]. From now on, we will often write simply O(A) instead of
Oa(A), whenever the context is clear. �

As we know the Eilenberg-Moore algebras of O : Ban1 −→ Set, namely the
totally convex spaces (cp. [6]), and as Ban1-Alg lies over Ban1 with the usual
forgetful functor denoted by |�| : Ban1-Alg−→ Ban1, it is reasonable to expect to
get the Eilenberg-Moore algebras of Ban1-Alg out of the totally convex spaces by
adding a (compatible) multiplication. The Eilenberg-Moore algebras of the category
of C∗-algebras and the category of Jordan-Banach algebras, which are monadic over
Set with respect to appropriate modifications of the unit ball functor, were recently
investigated in [4] by J.W. Pelletier and J. Rosický.

(0.2) Definition. A totally convex algebra is a totally convex space A together
with a morphism µ : A⊗A −→ A in TC (cp. [6, (5.3)]), s. th.

µ(x ⊗ µ(y ⊗ z)) = µ(µ(x⊗ y)⊗ z)

holds for all x, y, z ∈ A. If µ(x ⊗ y) = µ(y ⊗ x) for all x, y ∈ A, A is called
commutative. µ is called the multiplication in A and will be denoted by

xy := µ(x⊗ y)

throughout. A is called a unital totally convex algebra, if there is a (necessarily)
unique e ∈ A, s. th. for any x ∈ A ex = xe = x holds. e is called the unit element
of A.
Natural examples for totally convex algebras are given by the endomorphism sets

End(C) := Hom(C,C) for C ∈ TC (cp. [6, §5]). End(C) is even unital, i.e. it has
a unit element (see (0.7)).
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(0.3) Definition. A morphism ϕ : A −→ B of totally convex algebras is a mor-
phism of the underlying totally convex spaces preserving the product as well: ϕ(xy)
= ϕ(x)ϕ(y), x, y ∈ A. The totally convex algebras together with their morphisms
form a category TC-Alg. The canonical functor assigning to a totally convex alge-
bra its underlying totally convex space is denoted by |�| : TC-Alg −→ TC. There
will be no misunderstandings by using the same notation as for the forgetful functor
from Ban1-Alg to Ban1. This connection between TC-Alg and TC explains, why
we often will call a totally convex algebra a TC-algebra for short.
For A ∈Ban1-Alg, O(A) is in a canonical way a totally convex algebra, which we

denote by Ôa(A) or simply by Ô(A), if the context is clear. This induces a functor

Ôa : Ban1-Alg −→ TC-Alg and we have Oa = W◦Ôa for the canonical forgetful
functor W : TC-Alg −→ Set.
TC-Alg is a category of equationally defined universal algebras, hence the canon-

ical forgetful functor W : TC-Alg −→ Set has a left adjoint. An explicit construc-
tion of it is given in the

(0.4) Theorem. Ôa ◦ la1 : Set −→ TC-Alg is a left adjoint of W : TC-Alg −→
Set. TC-Alg is the (up to isomorphism unique) category of Eilenberg-Moore alge-

bras of Oa : Ban1-Alg −→ Set and Ôa : Ban1-Alg −→ TC-Alg is the canonical
comparison functor.

Proof: There is a canonical forgetful functor |�|s : TC-Alg−→ Semi-Grp with

Vs ◦ |�|s = U◦|�|. Moreover, we know that W◦Ôa = Oa, hence ηa
X : X −→

W◦Ôa◦la1(X). For any A ∈ TC-Alg and any f : X −→ U(|A|) we have, because
of U(|A|) =Vs(|A|s), a unique morphism fo: F

s(X) −→ |A|s in Semi-Grp with

f = Vs(fo)η̂X . V
s(fo) induces a unique morphism ϕ : Ô◦l1(V

s◦Fs(X)) −→ |A|
in TC with Vs(fo) = U(ϕ)ηVs◦Fs(X) because of [6, (3.1)]. It is obvious that ϕ

also preserves the multiplication, because fo does, s. th. ϕ : Ô
a◦la1(X) −→ A is in

TC-Alg and W(ϕ)ηa
X = f . This equation determines ϕ uniquely, because ηa

X(X)

is a set of generators of the TC-algebra Ôa◦la1(X).

One has W◦ Ôa◦la1 = O
a◦la1, the unit η

a
X is the same for both adjunctions and

it is elementary to verify by looking at the co-units that both adjunctions induce
the same monad (cp. [6, (3.5)]). As W : TC-Alg −→ Set is monadic, it may be
identified with its own category of Eilenberg-Moore algebras i.e. with the category of
Eilenberg-Moore algebras of Oa : Ban1-Alg −→ Set. [13, (2.9)], then immediately

shows that Ôa is the comparison functor.

(0.5) Remark. It is now easy to see that O : Ban1-Alg −→ Set is not monadic.
The Linton space L(K) := {z | z ∈ K and |z| = 1 } ∪{0} in[6, p. 985], does the job.
It has a canonical structure of a TC-algebra and quite obviously is not the unit ball
of a Banach algebra.

(0.6) Corollary. Ôa : Ban1-Alg −→ TC-Alg is full and faithful and has a left
adjoint Sa : TC-Alg −→ Ban1-Alg.

Proof: The first assertion follows from the fact that Ôa is the comparison func-
tor to the Eilenberg-Moore algebras of the pre-monadic functor Oa. The second
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assertion holds, because Ban1-Alg has coequalizers (cp. [13, (3.7)]).
It will turn out to be useful later on, to know Sa in a more explicit resp. construc-

tive form. This is not difficult, because Sa is a canonical lifting of the left adjoint
S : TC −→ Ban1 of Ô : Ban1 −→ TC (cp. [6, (7.7)]) along the forgetful functors
|�| : TC-Alg −→ TC and |�| : Ban1-Alg −→ Ban1.
For C ∈ TC-Alg, we define a K-algebra structure on S(|C|) by introducing

a multiplication (for notation see [6, §7]) by

(λo, co) (λ1, c1) := (λoλ1, coc1),

(λi, ci) ∈ S(|C|), i = 0, 1. This multiplication is well-defined and turns S(|C|) into
a K -algebra, which we denote by Sa(C). The norm on the Banach space S(|C|) is
given by

‖(λ, c)‖ = inf{ |µ| | (λ, c) = (µ, d)},

hence one gets

‖(1, co) (1, c1)‖ = ‖(1, coc1)‖ ≤ ‖(1, co)‖‖(1, c1)‖,

which shows that Sa(C) is even a Banach algebra over K.

The universal morphism σ|C| : |C| −→ Ô◦S(|C|) in [6, §7], preserves products,

because σ|C|(coc1) = (1, coc1) = (1, co) (1, c1) = σ|C|(co)σ|C|(c1), ci ∈ C, i = 0, 1.

It is easy to verify that the unique morphism ϕ : S(|C|) −→ |A| in TC, which exists

for a morphism f : C −→ Ôa(A) in TC-Alg, A ∈ Ban1-Alg, on the level TC, with

|f | = Ô(ϕ)σ|C|, also preserves products, i.e. can be lifted to TC-Alg. Denoting by

σa
C the TC-morphism σ|C| regarded as an element of TC-Alg, we have shown that

Sa is left adjoint to Ôa with unit σa
C : C −→ Ôa◦ Sa(C). This construction is the

reason why we will drop the superscript “a” in σa and Sa, whenever the context is
clear.

(0.7) Remark. Analogous results hold for subtypes of Banach algebras. If Banu
1 -

Alg denotes the category of unital Banach algebras and contractive algebra homo-
morphisms preserving the unit element, the unit ball functor (denoted for simplicity
by the same symbol) Oa : Banu

1 -Alg−→ Set is premonadic but not monadic and
its left adjoint la1 is constructed as in (0.1) substituting for Semi-Grp the category
Mon of monoids. The zero algebra {0} is a unital Banach algebra as well as a TC-
algebra. The Eilenberg-Moore algebras of Oa are given by the category TCu-Alg
of unital totally convex algebras and unit preserving TC-Alg morphisms. (0.4)
remains true.

(0.8) Remark. Considering the category Banc
1-Alg of commutative Banach al-

gebras over K, the unit ball functor Oa : Banc
1-Alg −→ Set is pre-monadic but

not monadic. Its left adjoint la1 is constructed as in (0.1) substituting the category
Ab-Semi-Grp of abelian semigroups for Semi-Grp. Its Eilenberg-Moore algebras
are given by the category TCc-Alg of commutative totally convex algebras, where
a totally convex algebra is called commutative, iff its multiplication is. (0.4) remains

valid for Ôa.
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(0.9) Remark. For the category Bancu
1 -Alg of commutative, unital Banach al-

gebras the same results hold, mutatis mutandis. The place of Semi-Grp is taken
by the category Ab-Mon of abelian monoids and the category TCcu-Alg of com-
mutative, unital TC-algebras and unit preserving TC-Alg-morphisms is the cor-
responding category of Eilenberg-Moore algebras.

(0.10) Remark. For a Banach algebra B define another Banach algebra Bop on
the same underlying set by taking the same addition, defining a new multiplication
with scalars by α◦ b := αb, α ∈ K, b ∈ B, and by taking the opposite multiplication
bo× b1 := b1bo. A

∗-Banach algebra is then defined as a Banach algebra B together
with a morphism �

∗ : B −→ Bop in Ban1, which is an involution as a set mapping.
A ∗-Banach algebra is essentially a ∗-normed Banach algebra in the notation of [14].
The ∗-Banach algebras with the contractive homomorphisms commuting with the
∗-operation form the category Ban∗1-Alg. The unit ball functor O : Ban

∗
1-Alg

−→ Set is pre-monadic but not monadic. One gets its left adjoint by substitut-
ing the category Semi-Grp∗ of ∗-semigroups for Semi-Grp in the proof of (0.1).
The category TC∗-Alg of ∗-TC-algebras, i.e. TC-algebras with an involution, and
involution preserving TC-algebra morphisms is the category of Eilenberg-Moore
algebras of O.

(0.11) Definition. A finitely totally convex algebra A is a finitely totally convex
space (cp. [6]) together with a morphism µ : A⊗A −→ A in TCfin, s. th.

µ(x⊗ µ(y ⊗ z)) = µ(µ(x ⊗ y)⊗ z), x, y, z ∈ A.

Again, one writes for short
xy := µ(x⊗ y),

x, y ∈ A. A morphism ϕ : A −→ B between two finitely totally convex algebras is
a TCfin-morphism, which also preserves this multiplication. With these morphisms
the finitely totally convex algebras constitute the categoryTCfin-Alg. It is evident,
how one has to define the category of commutative, resp. unital, resp. finitely totally
convex ∗-algebra.
As the following theorem shows, TCfin-Alg appears, too, as a category of

Eilenberg-Moore algebras.

(0.12) Theorem. If Norm1-Alg is the category of normed K-algebras and con-

tractive K-algebra homomorphisms, the unit ball functor Oa :Norm1-Alg −→ Set
is pre-monadic but not monadic. TCfin-Alg together with the canonical forget-
ful functor W : TCfin-Alg −→ Set is the category of Eilenberg-Moore algebras

of Oa and the canonical lifting of Oa, Ôa : Norm1-Alg −→ TCfin-Alg, is the
comparison functor.

The proof will be omitted, because of its analogy to the proof of (0.4). We will
give just a hint as to what has to be changed in the proof of (0.4) to yield (0.12).
The left adjoint l1,fin : Set −→ Vec1 of O : Vec1 −→ Set in [6, (1.5)], can be
lifted, as in (0.4), to a left adjoint ls1,fin : Semi-Grp −→ Norm1-Alg of O

s :

Norm1-Alg −→ Semi-Grp.
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The explicit construction of the left adjoint of Ôa : Norm1-Alg −→ TCfin-Alg
is analogous, taking into account the slightly different construction of Sfin in [6,
(7.10)]. The results (0.8) to (0.10) hold, of course, also for finitely totally convex
algebras, mutatis mutandis.

1. Ideals.

As a category of equationally defined universal algebras TC-Alg is complete
and cocomplete. Of course, the same statement holds for the category of unital,
resp. commutative (and unital), resp. ∗-TC-algebras and for the corresponding
categories of finitely totally convex algebras. As usual, limits are modelled on the
corresponding limits of the underlying sets and are also limits on the level of totally
convex spaces.
To obtain explicit knowledge of colimits is by far more complicated, as it is in the

case of totally convex spaces (cp. [6, §4], [9]). At first we will investigate coequalizers
or, equivalently, congruence relations. As in any algebraic theory, a congruence re-
lation in a TC-algebra is an equivalence relation on the underlying set, compatible
with the algebra operations. For many purposes it is convenient to consider for an
equivalence relation “∼” on a set X its graph, graph(∼) := {(x1, x2) | x1 ∈ X, x1 ∼
x2}. Because graph (�) is a bijection between the equivalence relations on X and
the subsets I ofX×X that contain the diagonal△X and are closed under the reflec-
tion (x1, x2) 7−→ (x2, x1) and under the transitivity operation ((x1, x2), (x2, x3) ∈ I
implies (x1, x3) ∈ I), we will often not distinguish between an equivalence relation
and its graph.
For aTC-algebraA, a left-ATC-space C is given by a totally convex space C and

an (external) left multiplication of elements of A with elements of C, (a, c) 7−→ ac,
which is distributive with respect to the totally convex operations on C, i.e. for
α ∈ Ω (cp. [6]) and ci ∈ C, i ∈ N, and a ∈ A

a(
∑

i

αici) =
∑

i

αi(aci)

holds, such that the resulting map ϕ : A −→ End(C) is a TC-algebra morphism.
Right-A TC-spaces are defined analogously.

(1.1) Definition. Let A be a (finitely) totally convex algebra. “∼” is called a left
ideal of A, if ∼< |A|× |A| is a congruence relation on the underlying totally convex
space |A| (cp. [10]) and a left-A TC-space, where the operation of A on ∼ is given
by a(x, y) := (ax, ay).
Analogously, a right ideal of A is a congruence relation on |A|, which is a right-A

TC-space with (x, y)a := (xa, ya) for a ∈ A. “∼” is called an ideal of A, if it is
both a left and a right ideal. It is easy to verify that a congruence relation “∼” on
|A| is an ideal of A, iff ∼< A×A, i.e. ∼ is a subalgebra of the TC-algebra A×A.
If ∼ is an ideal of the TC-algebra A, then A/ ∼ is canonically a TC-algebra

and the canonical projection π : A −→ A/ ∼ is a TC-Alg morphism. All the
usual homomorphism and isomorphism theorems of algebra remain in force, as do
the results on direct and subdirect products (see e.g. [3], [5]). Moreover, 2.10 in [8]
remains true in TC-Alg:
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(1.2) Proposition. Let ∼ be an ideal of the TC-algebra A and π : A −→ A/∼
the canonical projection. Then

(i) ‖π‖ = 0 or ‖π‖ = 1;
(ii) π is a coequalizer in TC-Alg.

Among the so called representations of a TC-algebra in the endomorphism al-
gebra of a left-A TC-space C, i.e. TC-Alg morphisms ϕ : A −→ End(C), is, as in
the classical case, the left-regular representation of A,

L : A −→ End(|A|),

defined for a, x ∈ A by La(x) := ax. L is obviously a morphism in TC-Alg. A
is called left-regular, if L is injective. The right-regular representation, R : A −→
End(|A|), is defined dually. R is an anti-morphism. A is called right-regular, if R
is injective. A is called regular, if A is left- and right-regular.

(1.3) Definition. If ϕ : A −→ B is a morphism of TC-algebras, then, as usual,
∼ϕ defined by ao ∼ϕ a1, if ϕ(ao) = ϕ(a1), for ao, a1 ∈ A, is an ideal of A, called
the ideal associated with ϕ.
Before looking at some congruences, which are of special interest, it should be

noted that anyTC-algebraA carries a “norm” ‖�‖ on the underlying totally convex
space |A|. It follows from [6], 6.3 and 6.4, that we have

(1.4) Proposition. Let A be a totally convex algebra. Then, for any a, b ∈ A

‖ab‖ ≤ ‖a‖‖b‖.

In [6] and [7] several interesting types of totally convex spaces are investigated.
Some of these properties also play a role in the theory of TC-algebras. Hence, we
introduce the following notation.

(1.5) Definition. If P is a property of (finitely) totally convex spaces, we say that
a totally convex algebra A has property P , iff the underlying totally convex space
|A| has property P . For instance the notion of a spherical or separated totally
convex algebra (cp. [7]), is well-defined.

The interior |Å| of the totally convex space |A| underlying the TC-algebra A is

canonically a TC-algebra, called the interior of A and denoted by Å (cp. [7, (10.1)]).
Several of the types of totally convex spaces discussed in [7] induce canonical con-
gruence relations on any totally convex space. These congruence relations induce
ideals in totally convex algebras, as is shown in the following

(1.6) Proposition. The full subcategory TCsep-Alg of separated totally convex
algebras is a reg-epi-reflective subcategory of TC-Alg.

Proof: We look at the reflection TC −→ TCsep on the level of totally convex
spaces as described in [8, (2.11)]: For A ∈ TC-Alg, x, y ∈ A, put x ∼ y, if
1
2x =

1
2y. Obviously ∼ is an ideal and the canonical projection πA : A −→ A/∼ is

the desired reflection. �
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(1.7) Proposition. The full subcategory TCsph-Alg of spherical totally convex
algebras is a mono-coreflective and a reg-epi-reflective subcategory of TC-Alg.

Proof: The first assertion follows, because, for A ∈ TC-Alg, the subspace Ts(A)
of spherical elements of A (cp. [7, 12.5]) is evidently even a subalgebra.

As for the second assertion, one considers the congruence relation defining the
reg-epi-reflection on the level of TC, i.e. for A ∈ TC-Alg and x, y ∈ A one puts
x ∼ y, if x = y or ‖x‖, ‖y‖ < 1 (cp. [7, (14.3)]). (1.4) shows that ∼ is even an ideal
of A, which proves the last assertion. �

For the investigation of ideals of TC-algebras the following result plays an im-
portant rôle. It corresponds to Proposition (1.2) in [10], which was crucial for the
investigation of congruences in TC.

(1.8) Proposition. Let ∼ be an ideal of the totally convex algebra A and denote
by I(∼) the subvector space of S(A) generated by the set {σA(x)− σA(y) | x, y ∈ A
and x ∼ y}. Then I(∼) is a closed ideal of the Banach algebra S(A) and the quotient
map π : A −→ A/∼ induces an isomorphism

S(A)/I(∼) ∼= S(A/∼).

Moreover, I(∼) is generated by σA(Å ∩ ker(∼)), where ker(∼) := {x | x ∈ A and
x ∼ 0}.

The proof is completely analogous to that of (1.2) in[10], because Lemma (1.1) in
[10] carries over to totally convex algebras. A statement analogous to (1.3) in [10]
holds, too. (1.8) obviously does not hold for unital TC-algebras, but is nevertheless
useful in this case, too. If one just forgets the identity of a unital TC-algebra
and applies (1.8), it is obvious that I(∼) is also an ideal in the unital Banach
algebra S(A). ker(∼), for an ideal ∼ of A, has some interesting properties (cp. [6,
(4.3)]):

(a) ker(∼) is a TC-subalgebra of A.
(b) ker(∼)A ⊆ ker(∼) and A ker(∼) ⊆ ker(∼).

In the classical case, i.e. in Banach algebras, these properties characterize ideals,
whereas, in the theory of TC-algebras, ideals are certain subalgebras of A × A.
Nevertheless, subalgebras satisfying properties (a) and (b) play an important role,
too, in the theory of TC-algebras. Generalizing the considerations of congruence
relations in TC in [8] one defines:

(1.9) Definition. (cp. [8, 2.4]): Let A be a TC-algebra and K a subalgebra of A.

Then, for any x, y ∈ A one puts x ∼K y, if 12x − 1
2y ∈ K. “∼K”, is called the

relation induced by K, which is obviously reflexive and symmetric.

In [8, 2.5], it was shown that this relation is also a congruence relation of totally
convex spaces, if K is r-closed. Condition (b) implies the compatibility with mul-
tiplication and is also necessary for this property, provided K is r-closed (cp. [8,
1.5]). 2.5, [8], implies the
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(1.10) Proposition. Let K be a subalgebra of the TC-algebra A. Then the
following are equivalent.

(i) ∼K is a separated ideal,

(ii) K is r-closed and satisfies KA ⊆ K and AK ⊆ K.

The other results of [8] carry over mutatis mutandis. The above results also hold,
mutatis mutandis, for finitely totally convex algebras. For instance, to obtain the
analogue of (1.10) for finitely totally convex algebras one has to use 4.6 in [8].
Finally, we present the following interesting example. For a semigroup S put

U := Ô(ls1(S)) \ { εδs | s ∈ S, ε ∈ K, |ε| = 1}

for the TC-algebra Ô(ls1(S)), (cp. (0.1)). The partition

Ô(ls1(S)) = U ∪
⋃

{{ εδs} | s ∈ S, ε ∈ K, |ε| = 1}

induces an equivalence relation ∼ on Ô(ls1(S)). ∼ is even a congruence relation on

Ô(ls1(S)) regarded as a totally convex space. The proof for this rests on the fact
that the εδs, s ∈ S, |ε| = 1, are exactly the extremal points of the totally convex

space Ô(ls1(S)) (cp. [10]). The following lemma gives a sufficient condition for ∼ to
be an ideal.

(1.11) Lemma. If S is a regular semigroup, then ∼ is an ideal.

Proof: A semigroup is called regular, if, for any a ∈ S, ax = ay implies x = y and
xa = ya implies x = y.

We have to show that, for u, v, w ∈ Ô(ls1(S)), u ∼ v implies wu ∼ wv and
uw ∼ vw. The implication is trivial for u = v, hence we assume u 6= v, i.e. u, v ∈ U .
First, we assume w /∈ U , i.e. w = εoδso , |εo| = 1, so ∈ S. One has a representation

u =
∞
∑

i=1
αiδsi with si 6= sj for i 6= j. wu /∈ U would imply

∞
∑

i=1

αiεoδsosi = εδt

with suitable t ∈ S, ε ∈ K, |ε| = 1, which implies εoδsosi = εδt for i ∈ N with
αi 6= o. Hence sosi = sosj for i, j ∈ N with αiαj 6= o, i.e. si = sj , because S is
regular. Hence, there is exactly one i ∈ N with αi 6= o and we get u = αiδsi , which
leads to the contradiction u /∈ U , because ‖u‖ = 1 holds. Analogously one proves
that u ∈ U implies uw ∈ U for every w /∈ U .
Now, take w ∈ U and assume, for the sake of simplicity, that αi 6= o for every i.

If wu /∈ U , then, as above,
∑

i

αiωδsi = εδt
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with suitable ε and t ∈ S, |ε| = 1, which implies ρiωδsi = εδt /∈ U for at least one

i, ρi := αi|αi|
−1. But this is a contradiction to our first result and we get wu ∈ U .

uw ∈ U is proved analogously.

Thus we have proved that Ô(ls1(S))/∼ is a TC-algebra. The same proof works,

mutatis mutandis, for commutative semigroups and (commutative) monoids. If

π : Ô(ls1(S)) −→ Ô(ls1(S))/∼ is the canonical projection, then the TC-algebra

Ô(ls1/S)/∼ has as elements 0 and the elements επ(δs), ε ∈ K, |ε| = 1, s ∈ S. And
an equation

∑

i

αiπ(xi) = επ(δs),

(αi | i ∈ I) ∈ Ω, holds, if for every i with αi 6= 0 π(xi) = εiπ(δs) and
∑

i
αiεi = ε.

Moreover, the product is given by

ε1π(δs1)ε1π(δs2) = ε1ε2π(δs1s2)

and all other products are 0. �

If one applies this, for a set X 6= φ, to the free semigroup Fs(X) generated by

X , the quotient Ô(la1(X))/∼ is called the totally convex algebra of monomials in

X and is denoted by KM{X}. The analogous construction for abelian semigroups
yields the commutative TC-algebra KM[X ] of commuting monomials in X . If one
considers the case of monoids resp. abelian monoids one gets the unital TC-algebra
KMu{X} resp. the commutative, unital TC-algebra KMu[X ] of monomials in X .
For a group the above construction yields a TC-field.
The above results remain valid for finitely totally convex algebras, mutatis mu-

tandis.

2. The tensor product.

The tensor product of totally convex spaces, which is the canonical generalization
of the projective tensor product of Banach spaces, was introduced in [6, (5.3)]. As
in the classical case this tensor product in TC induces a tensor product of TC-
algebras.

(2.1) Proposition. Let A,B be TC-algebras. Then:

(i) There is a unique multiplication in A⊗B, which makes A⊗B a TC-algebra,
s.th. (a0 ⊗ b0)(a1 ⊗ b1) = (a0a1) ⊗ (b0b1), ai ∈ A, bi ∈ B, i = 0, 1. This
TC-algebra is again denoted by A ⊗ B and called the tensor product of A
and B.

(ii) If A and B are commutative, resp. unital resp. ∗-TC-algebras, then so is
A⊗B.

(iii) If A and B are unital with unit elements eA resp. eB, then the mappings
iA : A −→ A⊗ B, iB : B −→ A ⊗ B, defined by iA(a) := a⊗ eB , iB(b) :=
eA⊗ b, a ∈ A, b ∈ B, are unital TC-algebra morphisms and the subalgebras
iA(A) and iB(B) of A⊗B commute elementwise.
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Proof: (i): To simplify the notation, we will often denote the underlying TC-
space |A| of a TC-algebra also by A. With the canonical isomorphism λA,B,A,B :
(A ⊗ B) ⊗ (A ⊗ B) −→ (A ⊗ A) ⊗ (B ⊗ B) we put µ := (µA ⊗ µB)λA,B,A,B.
µA : A⊗ A −→ A resp. µB : B ⊗B −→ B is the multiplication of A resp. B. It is
easily verified that µ fulfills (i).

(ii): In the commutative resp. unital case the assertion follows immediately from
the definition of µ. For ∗-TC-algebras A,B, the easiest way to turn the TC-algebra
A ⊗ B into a ∗-TC-algebra is as follows (oral communication by R. Börger). For
a TC-algebra A define another TC-algebra Aop on the same underlying set by
putting

(∗)
∞
∑

i=1

′αiai :=

∞
∑

i=1

ᾱiai,

for ai ∈ A, i ∈ N, and (αi | i ∈ N) ∈ Ω (cp. [6, §2]). The left side of (∗) denotes the
effect of (αi | i ∈ N) on the “new” totally convex space |Aop|, the right side is the
operation of (ᾱi | i ∈ N) on A, where ᾱi is the complex conjugate of αi ∈ K, i ∈ N.
|Aop| becomes a TC-algebra Aop, if one defines µAop : |Aop| ⊗ |Aop| −→ |Aop| by
µAop(a⊗ b) := µA(b ⊗ a).
A ∗-TC-algebra A is then a TC-algebra A together with a morphism sA : A −→

Aop in TC-Alg, which is an involution. It is customary to write a∗ := sA(a) for
a ∈ A. One may identify (A⊗B)op = Aop ⊗Bop for TC-algebras A,B. Now, it is
routine to check that, for ∗-TC-algebras A,B, sA ⊗ sB : A⊗B −→ Aop ⊗Bop is
again a ∗-TC-algebra.

(iii) is obvious. �

(2.2) Proposition. The tensor product of two unital, commutative TC-algebras
A0, A1, resp. of two unital, commutative

∗-TC-algebras is the coproduct in the
category TCcu-Alg resp. in the category TCcu∗-Alg of unital, commutative ∗-TC-
algebras. The injections iν : Aν −→ A0 ⊗ A1, ν = 0, 1, of the coproduct are given
by i0(a0) := a0⊗ e1, i1(a1) := e0⊗a1, with the unit element eν ∈ Aν and aν ∈ Aν ,

ν = 0, 1.

The proof is carried out in complete analogy to the proof in the classical case
of real or complex algebras. (2.2) gives a description of finite coproducts with the
tensor product in the two subcategories. The universal property expressed in (2.2)
remains valid for not necessarily commutative, unital TC- and ∗TC-algebras rela-
tive to morphisms fν : Aν −→ X , ν = 0, 1, satisfying f1(a1)f2(a2) = f2(a2)f1(a1)
for any aν ∈ Aν , ν = 0, 1.

The infinite tensor product of unital TC-algebras can be described, as in the
classical case, as the inductive limit of the finite partial tensor products. This
infinite tensor product has the usual properties and yields the infinite coproduct
in the category of unital, commutative TC-algebras resp. ∗-TC-algebras (cp. [2]).
The investigation of the structure of coproducts of non-commutative or non-unital
TC-algebras might meet considerable difficulties in view of the difficulties one has
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with the structure of the coproduct of general K-algebras. In TCfin-Alg all the
results of this section hold, mutatis mutandis.
As S : TC −→ Ban1 is left adjoint to Ô : Ban1 −→ TC ([6]), it preserves the

tensor product of totally convex spaces. In [10, (1.1)], it was shown that the (lifted)

open unit ball functor Õ : Ban1 −→ TC is left adjoint to S, hence Õ preserves the
(projective) tensor product in Ban1. Both statements remain true for TC-algebras.
The proof, however, is different, because the tensor product in Ban1-Alg as well
as in TC-Alg is no longer a left adjoint functor.

(2.3) Proposition. S : TC-Alg −→ Ban1-Alg and Õ : Ban1-Alg−→ TC-Alg,
the open unit ball functor, preserve finite tensor products.

Proof: For C,D ∈ TC-Alg define the morphism λ : S(C)⊗S(D) −→ S(C ⊗ D)
in Ban1-Alg by λ(σC (c) ⊗ σD(d)) : = σC⊗D(c ⊗ d). Conversely, the bi-morphism

β : C × D −→Ô(S(C)⊗S(D)), given by β(c, d) := σC (c) ⊗ σD(d), induces a TC-

morphism κ : C ⊗D −→ Ô(S(C)⊗S(D)) and this, in turn, a Ban1-morphism ϕ :
S(C⊗D) −→S(C)⊗S(D). A routine computation shows ϕ to be the set-theoretical
inverse of λ, i.e. λ is an isomorphism in Ban1-Alg.
For A ∈ Ban1-Alg, A ∼= S(Õ(A)) holds in Ban1-Alg. Hence, for A,B ∈ Ban1-

Alg, we get with the first assertion

A⊗B ∼= S(Õ(A))⊗ S(Õ(B)) ∼= S(Õ(A)⊗ Õ(B)),

or, with the analogue of [10, (1.1)],

Õ(A⊗B) ∼= Õ(A)⊗ Õ(B),

i.e. the second assertion. �

As isomorphisms in Ban1-Alg automatically preserve unit elements, S also pre-
serves the tensor product of unital TC-algebras. Moreover, an analysis of the above
proof shows that S preserves finite tensor products of ∗-TC-algebras and Õ finite
tensor products of Ban∗1-Alg. As left adjoint functors, S and Õ preserve infinite
tensor products in all cases, in which an infinite tensor product is an inductive limit
of finite tensor products.

3. Strongly aspherical algebras.

In [6, §6], a norm was defined for all elements of a totally convex space X . It
satisfies the inequality ‖αx‖ ≤ |α|‖x‖ for all α ∈ O(K), x ∈ X , with the equality
attained for |α| = 1 or ‖x‖ < 1. There are examples of totally convex spaces, in
which the above inequality is strict for some elements x and all α with |α| < 1 (cp.
[10, §5]). Totally convex spaces, for which ‖αx‖ = |α|‖x‖ for all α ∈ O(K) and all
x ∈ X are called normed (cp. [7, §13]). We will show here that the above inequality
can be strengthened to an equality for arbitrary totally convex spaces.

(3.1) Proposition. Let X be a totally convex space. For x ∈ X , x 6= 0, put

s(x) :=
‖σX(x)‖

‖x‖
.
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Then s(x) is the unique real number, 0 ≤ s(x) ≤ 1, such that for any α with
0 ≤ |α| < 1 and x ∈ X , x 6= 0,

‖αx‖ = |α|s(x)‖x‖.

Proof: Let x ∈ X , x 6= 0 and ‖x‖ < 1. Then, because σX restricted to the interior

X̊ is an isometry, we have s(x) = 1 and ‖αx‖ = |α|‖x‖. For the same reason, for
any x ∈ X and 0 ≤ |α| < 1,

‖αx‖ = ‖σX (αx)‖ = |α|‖σX (x)‖,

hence, for x 6= 0,
‖αx‖ = |α|s(x)‖x‖.

To show uniqueness, let t : X\{0} −→ [0, 1] be a mapping with ‖αx‖ = |α|t(x)‖x‖
for 0 ≤ |α| < 1, x ∈ X , x 6= 0. Then, for any x 6= 0,

t(x) =
‖12x‖
1
2‖x‖

= s(x).

�

In order to have s defined on all of X , we put s(0) := 1. For a totally convex
space X , the subspace Ts(X) < X of all spherical elements of X was introduced in

[7, 12.5]. If x ∈ Ts(X), x 6= 0, then 12x = 0 and

s(x) =
‖σX(x)‖

‖x‖
=
2 · 2−1‖σX (x)‖

‖x‖
= 2

‖σX(2
−1x)‖

‖x‖
= 0.

Conversely, s(x) = 0 implies ‖12x‖ = 0, i.e.
1
2x = 0 resp. x ∈ Ts(X). Hence,

(3.2) Ts(X) = s
−1({0}) ∪ {0}

holds.

(3.3) Corollary. Let A be a totally convex algebra. Then, for a, b ∈ A with ab 6= 0

s(ab)‖ab‖ ≤ s(a)s(b)‖a‖‖b‖

holds. In particular, Ts(A) is a subalgebra, even a left- and right-A TC-space.

Proof: One has

s(ab)‖ab‖ =
‖σA(ab)‖

‖ab‖
‖ab‖ = ‖σA(a)σA(b)‖

≤‖σA(a)‖‖σA(b)‖ = s(a)s(b)‖a‖‖b‖.

�

(3.2) shows that a totally convex space X is aspherical, if s(X) does not contain
0 or, equivalently, σX (∂(X)) does not contain 0 for the boundary ∂(X) = {x |
‖x‖ = 1}. This leads to the following stronger notion (cp. [12, 3.5]).
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(3.4) Definition. For a totally convex space X

ηX := inf{s(x) | x ∈ X}

is called the norm factor of X , 0 ≤ ηX ≤ 1. X is called strongly aspherical, if
ηX > 0. Obviously X is normed, if and only if ηX = 1.

This notion is a natural generalization of the norm quotient in [12, 3.5], and
a special case of the following concept.

(3.5) Definition. For a morphism f : X −→ Y of totally convex spaces we define
the norm factor of f

η(f) := inf

{

‖f(x)‖

‖x‖
| x ∈ X, x 6= 0

}

.

f is called homometric, if η(f) > 0 holds.

Obviously, a totally convex spaceX is strongly aspherical, iff σX : X −→Ô(S(X))
is homometric and, in this case, ηX = η(σX ). Moreover, because s(x) = 1 for
‖x‖ < 1, it suffices to verify ‖σX (x)‖ ≥ η > 0 for some η > 0 and all x ∈ X
with ‖x‖ = 1 in order to see that X is strongly aspherical. For |α| < 1 one defines
α̂ : X −→ X by α̂(x) = αx. Then α̂ is a TC-morphism and η(α̂) = |α|ηX . And
a subspace Y of X is norm-equivalent in the sense of [12, 3.5], iff the inclusion in:
Y −→ X is homometric.

(3.6) Proposition. For a totally convex space X the following implications hold:

(i) If X is normed, then it is strongly aspherical.
(ii) If X is strongly aspherical, then it is aspherical.

Proof: Obvious. �

(3.7) Proposition. Let A be a strongly aspherical TC-algebra. If a, b ∈ A satisfy
s(a)s(b) < ηA then ‖ab‖ < ηA.

Proof: For ‖ab‖ = 0 the assertion is trivial. Hence, assume ‖ab‖ 6= 0. Then (3.3)
implies

s(ab)‖ab‖ ≤ s(a)s(b)‖a‖‖b‖ ≤ s(a)s(b) < ηA.

‖ab‖ = 1 would lead to the contradiction ηA ≤ s(ab) < ηA, hence we get ‖ab‖ < 1,
i.e. s(ab) = 1 and ‖ab‖ < ηA. �

For finitely totally convex spaces (3.1) is valid, too, but one has to give a different
proof, because, for a finitely totally convex space X , σX restricted to the interior
X̊ is, in general, not an isometry. For regular finitely totally convex X (i.e. for any
x ∈ X ‖x‖ = 0 implies x = 0, cp. [7, (13.5)]), however, all proofs remain valid

verbatim, because σX/X̊ is an isometry, i.e. 1.5 in [9] holds.
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(3.8) Proposition. Let X be a finitely totally convex space. Then, for every
x ∈ X with ‖x‖ 6= 0 there is a unique s(x), 0 ≤ s(x) ≤ 1, s.th. for any α with
0 ≤ |α| < 1

‖αx‖ = |α|s(x)‖x‖

holds.

Proof: The uniqueness statement is shown as in (3.1). If, for x ∈ X , ‖x‖ 6= 0,
‖αx‖ = |α|‖x‖ for any α with |α| ≤ 1, then put s(x) := 1. If ‖αx‖ < |α|‖x‖ for some
α, for every λ, with ‖αx‖ < λ < |α|, there is a y ∈ X with αx = λy = α(λα−1y).
Due to [6, (4.1)], this implies γx = γ(λα−1y) for all γ with 0 ≤ |γ| < 1, or

‖γx‖ ≤ |γ|
λ

|α|

and thus

‖γx‖ ≤ |γ|
‖αx‖

|α|
< |γ|‖x‖,

for γ 6= 0. This means that we may interchange the roles of α and γ and get

|α|‖γx‖ = |γ|‖αx‖.

Therefore

s(x) :=
‖αx‖

|α|‖x‖

satisfies (3.8). �

Again one defines s(0) := 1. The other results of this section carry over to the
finitely totally convex case, mutatis mutandis. For example, the characterization of
Ts(X) for finitely totally convex X is

Ts(X) = N(X) ∪ s
−1({0})

(cp. [7, (14.10)]) and identical to (3.2), if X is regular. And the characterization of

the interior X̊ by s is given in the

(3.9) Corollary. Let X be a finitely totally convex space. Then, for x ∈ X with
‖x‖ < 1, s(x) = 1 holds.

Proof: For β with ‖x‖ < β < 1, we have x = βy with some y ∈ X . As ‖y‖ 6= 0,
we get for any α with 0 < |α| < 1,

‖αx‖ = ‖αβy‖ = |α|‖βy‖ = |α|‖x‖.

hence s(x) = 1. �
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4. Unitization.

The unit element e of a unital TC-algebra A is unique. If A 6= {0}, then ‖e‖ = 1
holds. For, assume ‖e‖ < 1, then, for any n ∈ N, ‖e‖ = ‖en‖ ≤ ‖e‖n follows, which
implies ‖e‖ = 0, i.e. e = 0 (cp. [6, (6.9)]) and hence the contradiction A = {0}.
The unit element of a TC-algebra may be spherical, as it is shown by the example
of the Linton algebra L(K) in (0.5). Obviously, e is spherical, iff A is spherical (see
also (5.2)).

(4.1) Proposition. Let A be a unital, not spherical TC-algebra, then A 6= {0}.
Moreover, u ∈ A satisfies αu = αe for some α ∈ K with 0 < |α| < 1, if and only if u
acts as a unit element on Å. If Å 6= {0}, then such an element u satisfies ‖u‖ = 1.

Proof: For a ∈ Å there are b ∈ A and ‖a‖ < β < 1 with a = βb. Moreover,
αu = αe implies γu = γe for all γ with |γ| < 1 ([6, (4.1)]). Hence,

a = βb = (βe)b = (βu)b = u(βb) = ua.

Similarly, we obtain au = a. The last assertion follows from (1.4). �

TCu-Alg is a subcategory of TC-Alg, which is not full (cp. (0.7)). The embed-
ding functor will be denoted by E : TCu-Alg →֒ TC-Alg.

(4.2) Theorem. E has a left adjoint U : TC-Alg−→TCu-Alg, called the uniti-
zation functor.

Proof: One possible proof consists of a simple application of the Adjoint Functor
Theorem. However, we wish to give a more explicit description of U, hence we
construct U(A), A ∈ TC-Alg, with the coproduct of totally convex spaces.

For A ∈ TC-Alg, let jK : |Ô(K)| −→ |Ô(K)| ∐ |A| and jA : |A| −→ |Ô(K)| ∐ |A|

denote the canonical injections into the coproduct |Ô(K)| ∐ |A| of the underlying
totally convex spaces (cp. (0.3) and [9]). Given a ∈ A, we define a morphism in TC

g(a) : |Ô(K)| ∐ |A| −→ |Ô(K)| ∐ |A|

by the equations g(a)(jK(ρ)) := jA(ρa), g(a)(jA(b)) := jA(ab) for ρ ∈Ô(K), b ∈ A.
A routine computation (cp. [6, §5]) shows that this defines a TC morphism

g : |A| −→ Hom(|Ô(K)| ∐ |A|, |Ô(K)| ∐ |A|).

Moreover,
f : |Ô(K)| −→ Hom(|Ô(K)| ∐ |A|, |Ô(K)| ∐ |A|),

defined by f(λ)(x) := λx is trivially a morphism in TC. The equations µ̂jK =
f, µ̂jA = g define a morphism

µ̂ : |Ô(K)| ∐ |A| −→ Hom(|Ô(K)| ∐ |A|, |Ô(K)| ∐ |A|)

in TC. Via the canonical adjunction isomorphism between tensor product and in-
ternal hom-functor (cp. [6, §5]), we get a morphism

µ : (|Ô(K)| ∐ |A|)⊗ (|Ô(K)| ∐ |A|) −→ |Ô(K)| ∐ |A|
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in TC, which makes |Ô(K)| ∐ |A| a TC-algebra U(A). For x, y ∈ |Ô(K)| ∐ |A|

one has explicitly µ(x ⊗ y) = µ̂(x)(y). As any element x of |Ô(K)| ∐ |A| can be
written in the form x = αjK(λ)+βjA(a), where αλ and βa are uniquely determined
by x (cp. [9]), we get for the product of two elements, which we denote as usual by
juxtaposition:

(4.3)

(αjK(λ) + βjA(a))(α
′jK(ρ) + β

′jA(b))

=µ((αjK(λ) + βjA(a)) ⊗ (α
′jK(ρ) + β

′jA(b)))

=µ̂((αjK(λ) + βjA(a))(α
′jK(ρ) + β

′jA(b)))

=αµ̂(jK(λ))(α
′jK(ρ) + β

′jA(b)) + βµ̂(jA(a))(α
′jK(ρ) + β

′jA(b))

=αf(λ)(α′jK(ρ) + β
′jA(b)) + βg(a)(α

′jK(ρ) + β
′jA(b))

=αα′λjK(ρ) + αβ
′λjA(b) + α

′βjA(ρa) + ββ
′jA(ab).

This shows that U(A) is a unital TC-algebra with unit element e := jK(1) and
that jA : A −→ U(A) is a morphism of TC-algebras. In order to see that U(A)
induces a left adjoint of E resp. a reflection ofTC-Alg into TCu-Alg, we prove that
jA is a reflection morphism. Let ψ be aTC-Algmorphism and C ∈TCu-Alg in the

diagram (∗). The TC morphism ψ̂ : |Ô(K)|∐|A| −→ |C| is defined by the equations

ψ̂jK = τC , ψ̂jA = ψ, where τC : |Ô(K)| −→ |C| is given by τC (λ) := λeC , eC the

unit element of C. We get ψ̂(e) = ψ̂(jK(1)) = τC (1) = eC , i.e. ψ̂ preserves the
unit element. As ψ preserves the product, (4.3) immediately implies that the same

holds for ψ̂, i.e. ψ̂ is a TCu-Alg morphism making (∗) commutative. Obviously ψ̂

is uniquely determined by ψ and ψ̂jA = ψ, because any TC
u-Alg morphism must

satisfy ψ̂jK = τC . Hence, (4.2) is proved. �

(∗)

A -
jA E(U(A))

b
b

b
b

b
b

b
b

~

ψ

..................
?

E(ψ̂)

E(C)

U describes the universal method of adjoining a unit element to a TC-algebra. Its
construction is analogous to the one used in classical algebra theory.

(4.4) Corollary. For any TC-algebra the following hold:

(i) U(A) is not spherical.
(ii) jA : A −→ E(U(A)) is an injective isometry.
(iii) Every element of U(A) can be written as λe + αjA(a), for some a ∈ A,

λ ∈ O(K) and |α| + |λ| ≤ 1. Both λ and αa are uniquely determined by
λe+ αjA(a).
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Proof: (i): αe = 0 implies αjK(1) = jK(α) = 0, i.e. α = 0. (ii) is proved in [9,
(2.1), (ii)], and (iii) follows from [9, (2.1), (i)], by applying the canonical projections
of the coproduct. �

For separated totally convex spaces the direct sum is the coproduct ([9, (2.7)]).
Hence, for a separated TC-algebra A we have, up to isomorphism,

U(A) = {(λ, αa) | |λ|+ |α| ≤ 1, a ∈ A}

with the product

(λ1, α1a1)(λ2, α2a2) = (λ1λ2, λ1α2a2 + α1λ2a1 + α1α2a1a2).

In particular, for a Banach algebra B, we get

U(Ô(B)) = {(λ, b) | (λ, b) ∈ K ×B, |λ|+ ‖b‖ ≤ 1}.

The construction of U implies that, for a morphism f : A −→ B in TC-Alg,
U(f) = |Ô(K)| ∐ f holds. Hence, we get the

(4.5) Corollary. U preserves monomorphisms. In particular, for a separated TC-

algebra A, U(σA) : U(A) −→ U(Ô ◦ S(A)) is injective.

Proof: Let m : A −→ B be a monomorphism in TC-Alg, then U(m)(λe +
αjA(a)) = λe + αjB(m(a)). Hence U(m)(λe + jA(a)) = 0 implies λe = 0 and
αjB(m(a)) = jB(m(αa)) = 0, i.e. λ = 0 and αa = 0, resp. λe+ αjA(a) = 0. �

As has been mentioned before, the unitization functor U is the analogue of the
unitization functor in classical algebra theory. We are now going to give an exact
description of the connection between both functors. The unitization functor of Ba-
nach algebras, which we denote by U0 : Ban1-Alg −→ Ban

u
1 -Alg is left adjoint to

the canonical embedding E0 : Ban
u
1 -Alg −→ Ban1-Alg. For a Banach algebra B,

one has |U0(B)| = K⊕ |B|, where ⊕ denotes the direct sum resp. l1-sum of Banach
spaces (the coproduct in Ban1). e0 = µK(1) will turn out to be the unit element
of U0(B) and every element of |U0(B)| has a unique representation λe0 + αµB(b),
λ, α ∈ K, b ∈ B, where µK : K −→ |U0(B)|, µB : |B| −→ |U0(B)| are the canonical
injections. |U0(B)| becomes a unital Banach algebra U0(B) with the product

(λ1e0 + α1µB(b1))(λ2e0 + α2µB(b2))

=λ1λ2e0 + λ1α2µB(b2) + α1λ2µB(b1) + α1α2µB(b1b2)

=λ1λ2e0 + µB(λ1α2b2 + α1λ2b1 + α1α2b1b2).

µB : B −→ E0(U0(B)) is the unit of the adjunction and an isometric injection.
For the moment, let us denote the comparison functor for unital Banach algebras

by Ôu : Banu
1 -Alg −→ TC

u-Alg (cp. (0.7)), its left adjoint by Su : TCu-Alg −→

Banu
1 -Alg and the unit by σ

u
C : C −→ Ôu(Su(C)), C ∈ TCu-Alg.
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(4.6) Theorem. There is a natural isomorphism Su ◦U ∼= U0 ◦ S.

Proof: Obviously Ô ◦E0 = E ◦ Ôu holds. Su ◦U and U0 ◦ S are both left adjoints
of Ô ◦ E0 hence must be naturally isomorphic. �

(4.7) Corollary. For an element λe + αjA(a) ∈ U(A), A a TC-algebra, the fol-
lowing hold:

(i) ‖λe+ αjA(a)‖ < 1 implies ‖λe+ αjA(a)‖ = |λ|+ ‖αa‖;
(ii) ‖λe+ αjA(a)‖ = 1 implies ‖λe+αjA(a)‖ = |λ|+ |α| and ‖a‖ = 1, provided

α 6= 0.

Proof: If τ : Su ◦ U −→ U0 ◦ S denotes the natural isomorphism of (4.6), the
complete statement of (4.6) actually is

Ô(µS(A))σA = (Ô ◦ E0)(τA)E(σ
u
U(A))jA.

(i): If λ = 0, then ‖αa‖ < 1; if λ 6= 0, then, because of |λ|+ |α| ≤ 1, |α| < 1, i.e.
also ‖αa‖ < 1. Hence,

‖λe+ αjA(a)‖ = ‖σu
U(A)(λe+ αjA(a))‖ =

‖λe0 + ασ
u
U(A)jA(a)‖ = ‖λe0 + σ

u
U(A)jA(αa)‖ =

|λ|+ ‖σu
U(A)jA(αa)‖ = |λ|+ ‖αa‖.

(ii): 1 = ‖λe+αjA(a)‖ ≤ |λ|+|α|‖α‖ ≤ |λ|+|α| ≤ 1, i.e. ‖λe+αjA(a)‖ = |λ|+|α|
and ‖a‖ = 1, if α 6= 0.

5. Inverses.

As we are going to investigate inverses, all TC-algebras in this section will be
assumed to be unital and the unit element of a unital TC-algebra A will be denoted
by eA or simply by e. For technical reasons all unital TC-algebras A in this section
are assumed to be not trivial, i.e. A 6= {0}.

(5.1) Definition. Let A be a unital TC-algebra. a ∈ A is called invertible, if
there is a b ∈ A with ab = ba = e; b is called an inverse of a. a ∈ A is called
weakly invertible, if there is a b ∈ A and a ρ ∈ O(K), s.th. ab = ba = ρe 6= 0; b is
called a weak inverse of a. Similarly one defines left resp. right (weakly) invertible
elements and left resp. right (weak) inverses.
As for the unit element e of a TC-algebra A 6= {0} ‖e‖ = 1 holds, a left resp.

right invertible element a of A clearly satisfies ‖a‖ = 1. Also, an element that is
both left and right (weakly) invertible is (weakly) invertible. Finally the inverse of
an element a is uniquely determined and as usual denoted by a−1. Weak inverses
of a are not uniquely determined in general: If b is a weak inverse of a, so is αb for
0 < |α| ≤ 1.
The set of invertible (weakly invertible) elements of A forms a group (monoid)

under the multiplication of A; it is denoted by IN(A) (WIN(A)). Obviously A 7−→
IN(A) (A 7−→ WIN(A)) is the object function of a functor IN : TCu-Alg −→
Grp(WIN : TCu-Alg −→Mon). For any A, IN(A) ⊂WIN(A) holds.
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(5.2) Proposition. Let A be a unital TC-algebra. Then the following are equiv-
alent:

(a) A is spherical,
(b) e is spherical,
(c) IN(A) = WIN(A).

Proof: (a) ⇐⇒ (b) is trivial (cp. [7, (12.5)]). If (b) holds, and a ∈WIN(A), then
there is a b ∈ A and ρ ∈ O(K) with ab = ba = ρe 6= 0, which implies |ρ| = 1, i.e.
a ∈ IN(A). (c) yields 12e = 0, i.e. e spherical. �

(5.3) Proposition. Let A be a unital, not spherical TC-algebra. If a ∈WIN(A)
and 0 < |ρ| ≤ 1, then also ρa ∈ WIN(A). In other words, WIN(A) is a cone
(without vertex) in A.

Proof: Obvious. �

(5.4) Proposition. Suppose that A is a unital not spherical TC-algebra. Then
a ∈ A is weakly invertible, if and only if σA(a) ∈ S(A) is invertible.

Proof: As A is not spherical, S(A) 6= {0} holds, s.th. ba = ab = ρe 6= 0 in
A implies σA(a)(ρ

−1σA(b)) = (ρ
−1σA(b))σA(a) = 1 6= 0 in S(A). Conversely, if

σA(a)x = xσA(a) = 1 in S(A), then y :=
1
2‖x‖

x satisfies ‖y‖ = 1
2 and σA(a)y =

yσA(a) =
1
2‖x‖

· 1. As σA maps Å isomorphically onto Õ(S(A)) (cp. [9, (1.5)]),

there is a unique b ∈ Å with σA(b) = y. Thus σA(ab) = σA(ba) = σA

(

1
2‖x‖

e
)

and

therefore ab = ba = 1
2‖x‖

e. �

In [8] a distance function was introduced for totally convex spaces X by putting

d(x, y) := ‖12x−
1
2y‖, x, y ∈ X .

(5.5) Lemma. Let A be a totally convex algebra. Then, for all a, b, x, y ∈ A

d(xy, ab) ≤M(2d(x, a)d(y, b) + ‖a‖d(y, b) + ‖b‖d(x, a)),

provided that one of the following conditions is satisfied:

(i) at least one of the four points a, b, x, y ∈ A has norm < 1, in which case
M = 1.

(ii) A is strongly aspherical, in which case M = η−1A .Proof:

1

2
(
1

2
x−
1

2
a)(
1

2
y −
1

2
b) +

1

4
a(
1

2
y −
1

2
b) +

1

4
(
1

2
x−
1

2
a)b =

1

2
(
1

4
xy −

1

4
xb−

1

4
ay +

1

4
ab) +

1

4
(
1

2
ay −

1

2
ab) +

1

4
(
1

2
xb−

1

2
ab) =

1

4
(
1

2
xy −

1

2
ab)

(cp. [6, (2.4), (ii)]). In case (i)

‖
1

2
xy −

1

2
ab‖ ≤

1

2
‖x‖‖y‖+

1

2
‖a‖‖b‖ < 1,
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whence

‖
1

4
(
1

2
xy −

1

2
ab)‖ =

1

4
d(xy, ab) ≤

1

2
d(x, a)d(y, b) +

1

4
‖a‖d(y, b) +

1

4
‖b‖d(x, a)

resulting in M = 1.
In case (ii),

‖
1

4
(
1

2
xy −

1

2
ab)‖ ≥

1

4
ηAd(xy, ab),

due to (3.1) and (3.4), whence

1

4
ηAd(xy, ab) ≤

1

2
d(x, a)d(y, b) +

1

4
‖a‖d(y, b) +

1

4
‖b‖d(x, a),

i.e. M = η−1A . �

(5.6) Lemma. Let a, b ∈ IN(A), then d(a−1, b−1) = d(a, b).

Proof: d(a−1, b−1) = ‖12a
−1 − 12b

−1‖ = ‖a−1(12b−
1
2a)b

−1‖ ≤

‖a−1‖d(a, b)‖b−1‖ = d(a, b). �

This distance function d induces a topology on A. In the following, if we refer to
the notion “topology”, we will always mean this topology.

(5.7) Proposition. Let A be a unital TC-algebra. Then:

(i) If A is not spherical, then Å ∩WIN(A) is a regular topological semigroup.
(ii) If A is strongly aspherical, then WIN(A) is a regular topological monoid
and IN(A) is a topological group.

Proof: (i): Å ∩WIN(A) is a topological semigroup because of (5.5), (i). To show
that it is regular, assume ab = ac with a, b, c ∈ Å ∩WIN(A). As da = ad = ρe 6= 0
with suitable d ∈ WIN(A), ρ ∈ O(K), ρb = ρc follows and hence b = c (cp. [7,
(11.6)]). This shows Å ∩WIN(A) to be a left regular semigroup, right regularity is
proved analogously. One may omit the assumption that A is not spherical, because
for spherical A (5.2) implies Å ∩WIN(A) = ∅.
(ii): (5.5), (ii), and (5.6) imply the second assertion, while the first one follows

from (5.5), (ii), alone.
(iii): As “separated” implies “strongly aspherical”, the assertions follow from (ii)

with the exception of regularity, which is proved as in (i). �

(5.8) Lemma. Let A be a unital, not spherical TC-algebra. Then, for any a ∈ A,
any λ, µ ∈ O(K) with |µ|+ |λ| ≤ 1 and |µ| < |λ|, λe− µa is weakly invertible.

Proof: With ρ := 1 − |µλ−1|,
∞
∑

i=0
|ρ(µλ )

i| ≤ 1 holds and a routine computation

using [6, (2.4), (ii)], shows

(λe− µa)
∞
∑

i=0

ρ(
µ

λ
)iai = λρe 6= 0.

�



226 D.Pumplün, H.Röhrl

(5.9) Proposition. For a unital, not spherical TC-algebra A,WIN(A) is an open
cone of A.
Proof: Let a ∈WIN(A) and ab = ba = ρe 6= 0 with 0 < ρ ≤ 1. Put ε := ρ

4 . Then
we claim that {x | x ∈ A, d(x, a) < ε} ⊆ WIN(A) holds. For an element x with
d(x, a) < ε we have, due to [6, (6.1)], that

1

2
a−
1

2
x = εy

for some y ∈ A. Hence
1

4
x =
1

4
a−
1

2
(
1

2
a−
1

2
x) =

1

4
a−

ε

2
y

and therefore

1

4
bx =

ρ

4
e−

ρ

8
by =

3

8
ρ(
2

3
e−
1

3
by).

By (5.8) there is a c ∈ A, such that c(23e−
1
3by) =

1
3e, hence

(
1

4
cb)x =

ρ

8
e.

Similarly there is a c′ ∈ A, such that

x(
1

4
bc′) =

ρ

8
e.

Thus x is weakly invertible. �

(5.10) Definition. Let A be a TC-algebra, then a ∈ A is called a left (resp. right)

topological zero divisor, if inf{ ‖ax‖ | 12 < ‖x‖ < 1} = 0 (resp. inf{ ‖xa‖ | 12 <

‖x‖ < 1} = 0). a is said to be a topological zero divisor, if inf{ ‖ax‖+ ‖xa‖ | 12 <
‖x‖ < 1} = 0.

(5.11) Proposition.

(i) A spherical TC-algebra does not have left (resp. right) topological zero
divisors.

(ii) For a not spherical TC-algebra every spherical element is a topological zero
divisor.

Proof: (i): Clearly, A is spherical, iff there is no x ∈ A with 12 < ‖x‖ < 1. Hence,
the infima in (5.10) are +∞.
(ii): Let a be a spherical element and 12 < ‖x‖ < 1. Then x = ρy, where

‖x‖ < ρ < 1 and y ∈ A is suitably chosen. Hence

ax = a(ρy) = (ρa)y = 0y = 0. �

(5.12) Theorem. Let A be a unital, not spherical TC-algebra and let a ∈ ∂
Å
(Å∩

WIN(A)). Then a is a topological zero divisor.

Proof: (5.4) and [9, (1.5)], imply that σA maps Å ∩WIN(A) homeomorphically

onto IN(S(A)) ∩ O̊(S(A)). Hence [1, Theorem 14], leads to our assertion. �

A unital TC-algebra B is called an extension of the unital TC-algebra A, if A
is a unital subalgebra of B and a norm-equivalent subspace of B (cp. [12, (3.5)]).
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(5.13) Definition. Let A be a unital TC-algebra. Then a ∈ A is called singular
(strongly singular), if it is not invertible (weakly invertible) in A. a ∈ A is called
permanently singular, if a is strongly singular in any extension of A.

Obviously, every strongly singular element is singular. The set of singular el-
ements of A is denoted by SING(A), the set of strongly singular elements by
SSING(A).

(5.14) Proposition. Let A be a unital TC-algebra. Then every left (resp. right)
topological zero divisor is permanently singular. In particular, every element of

∂
Å
(Å ∩WIN(A)) is permanently singular.

Proof: Let B be an extension of A with norm quotient η > 0 ([12, (3.5)]) and let
a ∈ A be a left topological zero divisor. For x ∈ A let ‖x‖

B
denote the norm in B.

Then there is a sequence xn ∈ A, n ∈ N, with 12 < ‖xn‖ < 1 and lim
n→∞

‖axn‖ = 0.

Suppose furthermore that a has a weak inverse b ∈ B, i.e. ab = ba = ρe 6= 0. As
‖xn‖ < 1, we have ‖ρxn‖ = |ρ|‖xn‖ and hence

η|ρ|‖xn‖ = η‖ρxn‖ ≤ ‖ρxn‖B
= ‖baxn‖B

≤ ‖b‖
B
‖axn‖

contradicting the assumption 12 < ‖xn‖. The assertion for right topological zero
divisors follows analogously and the last assertion is implied by (5.12). �

(5.15) Corollary. Let B be an extension of A. Then

(i) Å ∩WIN(A) ⊆ B̊ ∩WIN(B),

(ii) ∂
Å
(Å ∩WIN(A)) ⊆ ∂

B̊
(B̊ ∩WIN(B)).

Proof: (i) is obvious. As for (ii), (5.14) implies ∂
Å
(Å ∩WIN(A)) ⊆ SSING(B).

On the other hand, for a ∈ ∂
Å
(Å ∩WIN(A)) and every ε > 0 there is an element

a′ ∈ Å∩WIN(A) ⊆ B̊∩WIN(B), s.th. d(a, a′) = ‖12a−
1
2a

′‖ < ε. Hence, dB(a, a
′) ≤

d(a, a′) < ε implies (ii), where dB is the distance function of B. �

As the left regular representation L : A −→ End(|A|) (cp. Section 1) is an
isometry, End(|A|) is, via L, an extension of A for A a unital TC-algebra.

(5.16) Corollary. Let A be a unital TC-algebra. Then

(i) a ∈ SING(A), if and only if La ∈ SING(End(|A|)).
(ii) If A is commutative and not spherical, then

a ∈ SSING(A) , if and only if La ∈ SSING(End(|A|)).

Proof: (i) is proved as in [1, p. 15].

(ii): “⇐=” is obvious. If a ∈ SSING(A) and La were weakly invertible, there
would be a ϕ ∈ End(|A|), s.th. La ◦ ϕ = ϕ ◦ La = ρidA 6= 0. This would imply
a ∈WIN(A), i.e. a contradiction. �
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6. Quasi-inverses.

(6.1) Definition. Let A be a TC-algebra and x, y ∈ A. One defines

x ◦ y :=
1

3
x+
1

3
y −
1

3
xy.

x is called a left quasi-inverse of y and y a right quasi-inverse of x, if x◦y = 0 holds.
For α ∈ K with |α| < 1

3 one defines

x ◦α y := αx + αy − αxy.

x is called a weak left quasi-inverse of y and y a weak right quasi-inverse of x, if
x◦α y = 0 holds for every α with |α| <

1
3 . A (weak) quasi-inverse of x is an element,

that is both a (weak) left and a (weak) right quasi-inverse of x.
Obviously the operation “◦α” is trivial for α = 0. Moreover, to see that y is

a weak right quasi-inverse of x it is enough to verify x ◦α y = 0 for one α 6= 0:

(6.2) Lemma. Let A be a TC-algebra and x ∈ A. Then any right quasi-inverse y

of x is a weak right quasi-inverse of x. If there is an α with |α| < 1
3 and x ◦α y = 0,

then y is a weak right quasi-inverse of x.

Proof: For α, β ∈ K let 0 < |β| ≤ |α| ≤ 1
3 , then

β

α
(x ◦α y) =

β

α
(αx + αy − αxy) = x ◦β y,

β(x ◦α y) = α(x ◦β y).i.e.

Hence, for α = 13 , |β| <
1
3 , x ◦ y = 0 implies 13 (x ◦β y) = 0, i.e. x ◦β y = 0, because

‖x ◦β y‖ < 1 holds. Similarly, if |α|, |β| <
1
3 and x ◦α y = 0, the above equation

implies α(x ◦β y) = 0 and again x ◦β y = 0 follows. Obviously the analogue of (6.2)
for (weak) left quasi-inverses holds, too. �

(6.3) Corollary. If A is an aspherical TC-algebra, y is a left (right) quasi-inverse
of x, if and only if y is a weak left (right) quasi-inverse of x.

Proof: Let y be a weak left quasi-inverse of x, i.e. y ◦α x = 0 for (any) α with

0 < |α| < 1
3 . The equation in the proof of (6.2) then implies α(y ◦ x) = 0, i.e.

y ◦ x = 0, because A is aspherical. �

(6.4) Proposition. Let A be a TC-algebra. Suppose that x ∈ A has a (weak)
left quasi-inverse z and a (weak) right quasi-inverse y, then γy = γz, for all γ with
|γ| < 1. In particular, if A is separated, then x is (weakly) quasi-invertible.

Proof: For α, β ∈ K with |α| ≤ 1
3 , |β| ≤ 1

3 the following formulae are easily
verified:

x ◦α 0 = 0 ◦α x = αx,

z ◦α (x ◦β y) = αz + αβx+ αβy − αβxy − αβzx− αβzy + αβzxy,

(z ◦α x) ◦β y = αβz + αβx − αβzx+ βy − αβzy − αβxy + αβzxy.

A straightforward computation now leads to our assertion. �
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(6.5) Proposition. Let A be a unital, not spherical TC-algebra. If x ∈ A has y

as weak left quasi-inverse, then, for any 0 < |α| < 1
2 , αe− αy is a weak left inverse

of 12e−
1
2x.

Proof: For any β with |β| < 2
3 one has

β2(
1

2
e−
1

2
y)(
1

2
e−
1

2
x) = (

β

2
)2e−

β

2
(y ◦ β

2

x) = β2(
1

4
e).

Hence, [6, (4.1)], leads to

(
λ

2
e−

λ

2
y)(
1

2
e−
1

2
x) =

λ

4
e

for all |λ| < 1, whence our claim follows. �

(6.6) Proposition. Let A be a TC-algebra and let x, y ∈ A. Then y is a weak
left quasi-inverse of x, if and only if, in U(A), βe − βjA(y) is a weak left inverse

of βe− βjA(x) for all 0 < |β| < 1
2 . If, in addition, A is aspherical, then y is a left

quasi-inverse of x, if and only if, in U(A), 12e −
1
2 jA(y) is a weak left inverse of

1
2e−

1
2jA(x).

Proof: Similarly to the proof of (6.5) we obtain, for 0 < |β| ≤ 1
2 and α :=

β2

1−β2
,

(βe− βjA(y))(βe− βjA(x)) = β
2e− (1− β2)jA(y ◦α x).

Hence, if y is a (weak) left quasi-inverse of x, the weak left invertibility follows from
(4.4), (i). Conversely, if βe− βjA(y) is a weak left inverse of βe− βjA(x), then, for
some 0 < |ρ| ≤ 1,

β2e− (1− β2)jA(y ◦α x) = ρe

holds. Hence, (4.4), (iii), implies that y ◦α x is spherical. But, for |β| <
1
2 , we have

‖y ◦α x‖ < 1 and therefore y ◦α x = 0. For β =
1
2 α =

1
3 holds, i.e. y ◦ x = 0, if A is

aspherical. �

Obviously, the assertions of (6.6) remain true, if one replaces “left” by “right”.

(6.7) Corollary. Let A be a TC-algebra and let x ∈ A with ‖x‖ < 1
2 . Then x is

weakly quasi-invertible. If, in addition, A is aspherical, then x is quasi-invertible.

Proof: Since ‖x‖ < 1
2 we have x =

1
2y for some y ∈ A. Hence

1

2
e−
1

2
jA(x) =

1

2
e−
1

4
jA(y).

By (5.8) this has as a weak inverse the element

∞
∑

i=0

1

2
(
1

2
)ijA(y

i) =
1

2
e−
1

2

∞
∑

i=1

(
1

2
)ijA(y

i).

Therefore the assertions follow from (6.6). �

The set of (weakly) quasi-invertible elements of a TC-algebra A is denoted by
(WQIN(A)) QIN(A). Obviously, QIN(A) ⊆WQIN(A).
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7. The spectrum of an element.

(7.1) Definition. Let A be a complex unital TCfin-algebra and let a ∈ A. Then

SSpA(a) (resp. SpA(a)) is the set of all λ ∈ C such that λ
1+|λ|

e − 1
1+|λ|

a is in

SING(A) (resp. SSING(A)). SpA(a) is called the spectrum of a in A, SSpA(a) is
called the strong spectrum of a in A. Whenever the context is clear we drop the
subscript “A”.

(7.2) Lemma. For all a ∈ A, Sp(a) ⊂ SSp(a). Moreover, A is spherical if and
only if SSp(a) = Sp(a), for all a ∈ A.

Proof: Straightforward. �

(7.3) Lemma. Let A be a complex, unital, not spherical TCfin-algebra. Then,

for all a, b ∈ A, SpA(ab)\{0} = SpA(ba)\{0}.

Proof: Suppose λ
1+|λ|

e− 1
1+|λ|

ab has x as a weak inverse, i.e. let

x(
λ

1 + |λ|
e−

1

1 + |λ|
ab) = (

λ

1 + |λ|
e−

1

1 + |λ|
ab)x = ρe 6= 0.

Put

α :=
1 + |λ|

1 + |λ|+ |ρ|−1
and β :=

ρ−1

1 + |λ|+ |ρ|−1
.

Then a simple computation shows

(αe+ βbxa)(
λ

1 + |λ|
e−

1

a+ |λ|
ba) = (

λ

1 + |λ|
e−

1

1 + |λ|
ba)(αe+ βbxa)

=
λ

1 + |λ|+ |ρ|−1
e,

which proves our assertion. �

(7.4) Lemma. Let f : A −→ B be a unital homomorphism of complex, unital
TCfin-algebras. Then, for all a ∈ A,

(i) SSpB(f(a)) ⊆ SSpA(a),
(ii) SSpEnd(|A|)(La) ⊆ SSpA(a).

Proof: Obvious. �

(7.5) Lemma. Let f : A −→ B be a unital homomorphism of complex, unital,
not spherical TCfin-algebras. Then for all a ∈ A,

(i) SpB(f(a)) ⊆ SpA(a),
(ii) SpEnd(|A|)(La) ⊆ SpA(a).

Proof: Obvious. �
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(7.6) Theorem. Let A be a complex, unital, not spherical TC-algebra. Then for
all a ∈ A,

(i) SpA(a) ⊂ {z | z ∈ C, |z| ≤ ‖a‖ } ⊂ O(C),
(ii) SpA(a) = SpS(A)(σA(a)).

Proof: (i): Let ‖a‖ < ρ ≤ 1. Then

λ

1 + |λ|
e−

1

1 + |λ|
a =

λ

1 + |λ|
e−

1

1 + |λ|
ρb,

for some b ∈ A. By (5.8) this element has a weak inverse provided | ρλ | < 1, that is,
if |ρ| < |λ|. Hence our assertion follows in case ‖a‖ < 1. In case ‖a‖ = 1, choose
ρ = 1 and b = a in this argument.
(ii): Suppose that 0 /∈ Sp(a) and a is spherical. Then a is weakly invertible.

Hence, for some 0 < |ρ| ≤ 1 and b ∈ A, ab = ρe. However,

0 6=
1

2
ρe =

1

2
(ab) = (

1

2
a)b = 0,

which is a contradiction. Thus 0 ∈ Sp(a) for spherical a. Now let 0 6= λ ∈ C. Then

1

2
e(

λ

1 + |λ|
e−

1

1 + |λ|
a) =

λ

2(1 + |λ|)
e−

1

1 + |λ|
(
1

2
a) =

λ

2(1 + |λ|)
e,

whence λ
1+|λ|

e − 1
1+|λ|

a is weakly invertible, and thus λ /∈ Sp(a). Therefore, for a

spherical, Sp(a) = {0} = Sp(σA(a)).
Now suppose that a is not spherical and λ /∈ Sp(a). Then there is a 0 < |ρ| ≤ 1

and b ∈ A such that

(
λ

1 + |λ|
eA −

1

1 + |λ|
a)b = b(

λ

1 + |λ|
e−

1

1 + |λ|
a) = ρeA 6= 0.

Hence

σA(
λ

1 + |λ|
eA −

1

1 + |λ|
a)σA(b) = σA(b)σA(

λ

1 + |λ|
eA −

1

1 + |λ|
a) = ρeS(A) 6= 0.

This means that

σA(
λ

1 + |λ|
eA −

1

1 + |λ|
a) =

λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a)

is invertible and therefore λ /∈ SpS(A)(σA(a)). Conversely, assume that λ /∈

SpS(A)(σA(a)). Then there exists an x ∈ S(A) with

(
λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a))x = x(

λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a)) = eS(A).
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Since y := x
2‖x‖

satisfies ‖y‖ = 12 , there is a b ∈ A such that σA(b) = y and ‖b‖ =
1
2 .

The last equation renders

σA(
λ

1 + |λ|
eA −

1

1 + |λ|
a)σA(b) = σA(b)σA(

λ

1 + |λ|
eA −

1

1 + |λ|
a) =

1

2‖x‖
eS(A)

or,

σA((
λ

1 + |λ|
eA −

1

1 + |λ|
a)b) = σA(b(

λ

1 + |λ|
eA −

1

1 + |λ|
a)) = σA(

1

2‖x‖
eA).

Since σA maps Å injectively and since

‖(
λ

1 + |λ|
eA −

1

1 + |λ|
a)b‖ ≤

1

2
and ‖b(

λ

1 + |λ|
eA −

1

1 + |λ|
a)‖ ≤

1

2
,

we see that λ
1+|λ|

eA − 1
1+|λ|

a is weakly invertible and hence λ /∈ SpA(a). �

Let A be a TC-algebra and let a ∈ A. Then we define the spectral radius r(a)
of a by

r(a) := r(σA(a)),

where r(σA(a)) is the usual spectral radius (see [1, 2.7]).

(7.7) Corollary. Let A be a complex, unital, not spherical TC-algebra. Then,
for all a ∈ A, SpA(a) is a non-empty compact subset of O(C) and

r(a) = max{|λ| | λ ∈ SpA(a)}.

Proof: (7.6) and [1, Theorem 5.8]. �

(7.8) Proposition. Let A be a complex. unital, not spherical TC-algebra. Let

furthermore p(z) =
n
∑

i=0
αiz

i be a polynomial with
n
∑

i=0
|αi| ≤ 1. Then, for all a ∈ A

SpA(p(a)) = {p(λ) | λ ∈ SpA(a)}.

Proof: Same as for [1, Proposition 5.5], keeping in mind that for such a polynomial
p(z) with αn 6= 0, having the roots λ1, . . . , λn, the equation

p(z) = β

n
∏

i=1

(
λi

1 + |λi|
−

1

1 + |λi|
z)

holds, where

β := (−1)nαn

n
∏

i=1

(1 + |λi|)

and |β| ≥ 1. �
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(7.9) Theorem. Let A be a complex, unital, not spherical TCfin-algebra. Then

(i) ‖a‖ < 1 implies SSp(a) = C,

(ii) ‖a‖ = 1 and ‖σA(a)‖ < 1 imply SSp(a) = C,

(iii) ‖a‖ = 1 and ‖σA(a)‖ = 1 imply SSp(a) ⊇ C\R
+
0 e

iϕ, for some ϕ, and either

SSp(a) ⊇ C\{0} or ‖ teiϕ

1+t eA − 1
1+ta‖ = 1 and ‖ teiϕ

1+t eS(A) −
1
1+tσA(a)‖ = 1,

for all t ∈ R
+
0 .

Proof: (i): Since

‖
λ

1 + |λ|
e−

1

1 + |λ|
a‖ ≤

|λ|

1 + |λ|
+

‖a‖

1 + ‖λ‖
< 1,

for all λ ∈ C, λ
1+|λ|

e− 1
1+|λ|

a fails to be invertible for all λ ∈ C.

(ii): Suppose λ /∈ SSp(a). Then there is a b ∈ A with

(
λ

1 + |λ|
eA −

1

1 + |λ|
a)b = b(

λ

1 + |λ|
eA −

1

1 + |λ|
a) = eA.

Hence

(
λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a))σA(b) =σA(b)(

λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a))

= eS(A)

and

1 = ‖eS(A)‖ ≤ ‖
λ

1 + |λ|
eS(A) −

1

1 + |λ|
σA(a)‖‖σA(b)‖ ≤

≤
|λ|

1 + |λ|
+

‖σA(a)‖

1 + |λ|
< 1,

which is a contradiction.
(iii): For λ 6= 0 and any µ ∈ C we have

(
λ

1 + |λ|
e−

1

1 + |λ|
a)(

µ

1 + |µ|
e−

1

1 + |µ|
a) =

=
λµ

(1 + |λ|)(1 + |µ|)
e−

λ+ µ

(1 + |λ|)(1 + |µ|)
a+

1

(1 + |λ|)(1 + |µ|)
a2

and hence

‖(
λ

1 + |λ|
e−

1

1 + |λ|
a)(

µ

1 + |µ|
e−

1

1 + |µ|
a)‖ ≤

1 + |λ+ µ|+ |λ||µ|

(1 + |λ|)(1 + |µ|)
.
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However, the latter is < 1 precisely, if µ /∈ R
+
0 λ, in which case not both

λ
1+|λ|

e −
1

1+|λ|
a and µ

1+|µ|
e − 1

1+|µ|
a are invertible. This proves the first claim in (iii). [10,

(2.7)], shows that either

‖
teiϕ

1 + t
eA −

1

1 + t
a‖ = 1 and ‖

teiϕ

1 + t
eS(A) −

1

1 + t
σA(a)‖ = 1, for all t ∈ R

+
0 ,

or

‖
teiϕ

1 + t
eA −

1

1 + t
a‖ = 1 and ‖

teiϕ

1 + t
eS(A) −

1

1 + t
σA(a)‖ < 1, for all t ∈ R

+
0 .

In the second case we have R
+
0 e

iϕ ⊆ SSp(a), whence our assertion holds. �

(7.10) Theorem. Let A be a complex, unital, spherical TCfin-algebra. Then

(i) SSp(0) = C and SSp(te) = C\{−t}R
+
0 , for t ∈

∑

(C).

(ii) ‖a‖ = 1 implies SSp(a) ⊇ C\R
+
0 e

iϕ, for some ϕ, and

either ‖
teiϕ

1 + t
e−

1

1 + t
a‖ = 1, for all t ∈ R

+
0

or
teiϕ

1 + t
e−

1

1 + t
a = 0, for all t ∈ R

+.

Proof: (i): Obvious.
(ii): Similar to the proof of (7.9), (iii). �
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